In this work, we introduce the Perceptron Average neural network fusion strategy and implemented a number of other fusion strategies to identify breast masses in mammograms as malignant or benign with both balanced and imbalanced input features. We numerically compare various fixed and trained fusion rules, i.e., the Majority Vote, Simple Average, Weighted Average, and Perceptron Average, when applying them to a binary statistical pattern recognition problem. To judge from the experimental results, the Weighted Average approach outperforms the other fusion strategies with balanced input features, while the Perceptron Average is superior and achieves the goals with lowest standard deviation with imbalanced ensembles. We concretely analyze the results of above fusion strategies, state the advantages of fusing the component networks, and provide our particular broad sense perspective about information fusion in neural networks.

}, keywords = {Biological organs, Breast cancers, Component neural networks (CNN), Image segmentation, Information fusions, Learning algorithms, Linear systems, Mammography, Mathematical models, Multilayer neural networks, Pattern recognition, Posterior probabilities, Tumors}, isbn = {0780383591}, doi = {10.1109/IJCNN.2004.1381010}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-10844231826\&partnerID=40\&md5=2be794a5832413fed34152d61dd49388}, author = {Y Wu and J He and Y Man and Juan I. Arribas} } @conference {413, title = {Fusing Output Information in Neural Networks: Ensemble Performs Better}, booktitle = {Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings}, year = {2003}, address = {Cancun}, abstract = {A neural network ensemble is a learning paradigm where a finite number of component neural networks are trained for the same task. Previous research suggests that an ensemble as a whole is often more accurate than any of the single component networks. This paper focuses on the advantages of fusing different nature network architectures, and to determine the appropriate information fusion algorithm in component neural networks by several approaches within hard decision classifiers, when solving a binary pattern recognition problem. We numerically simulated and compared the different fusion approaches in terms of the mean-square error rate in testing data set, over synthetically generated binary Gaussian noisy data, and stated the advantages of fusing the hard outputs of different component networks to make a final hard decision classification. The results of the experiments indicate that neural network ensembles can indeed improve the overall accuracy for classification problems; in all fusion architectures tested, the ensemble correct classification rates are better than those achieved by the individual component networks. Finally we are nowadays comparing the above mentioned hard decision classifiers with new soft decision classifier architectures that make use of the additional continuous type intermediate network soft outputs, fulfilling probability fundamental laws (positive, and add to unity), which can be understood as the a posteriori probabilities of a given pattern to belong to a certain class.

}, keywords = {Algorithms, Backpropagation, Classification (of information), Computer simulation, Decision making, Estimation, Gaussian noise (electronic), Information fusions, Mathematical models, Medical imaging, Model selection, Multilayer neural networks, Neural network ensembles, Pattern recognition, Probability, Probability estimation, Problem solving, Regularization, Statistical methods, Statistical pattern recognition, Vectors}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-1542301061\&partnerID=40\&md5=32dbadb3b6ac3c6ae1ea33d89b52c75f}, author = {Y Wu and Juan I. Arribas} }