@article {628, title = {Efficient and Robust Image Restoration Using Multiple-Feature L2-Relaxed Sparse Analysis Priors}, journal = {IEEE Transactions on Image Processing}, volume = {24}, year = {2015}, month = {Dec}, pages = {5046-5059}, abstract = {

We propose a novel formulation for relaxed analysis-based sparsity in multiple dictionaries as a general type of prior for images, and apply it for Bayesian estimation in image restoration problems. Our formulation of a l2 -relaxed l0 pseudo-norm prior allows for an especially simple maximum a posteriori estimation iterative marginal optimization algorithm, whose convergence we prove. We achieve a significant speedup over the direct (static) solution by using dynamically evolving parameters through the estimation loop. As an added heuristic twist, we fix in advance the number of iterations, and then empirically optimize the involved parameters according to two performance benchmarks. The resulting constrained dynamic method is not just fast and effective, it is also highly robust and flexible. First, it is able to provide an outstanding tradeoff between computational load and performance, in visual and objective, mean square error and structural similarity terms, for a large variety of degradation tests, using the same set of parameter values for all tests. Second, the performance benchmark can be easily adapted to specific types of degradation, image classes, and even performance criteria. Third, it allows for using simultaneously several dictionaries with complementary features. This unique combination makes ours a highly practical deconvolution method.

}, keywords = {Bayes methods, Bayesian estimation, Convergence, Dictionaries, Estimation, Kernel, L2-relaxed L0 pseudo norm, L2-relaxed L0 pseudo-norm prior, L2-relaxed sparse analysis priors, Maximum likelihood estimation, Optimization, Redundancy, computational load, constrained dynamic method, deconvolution, deconvolution method, dynamically evolving parameters, estimation loop, fast constrained dynamic algorithm, image restoration, iterative marginal optimization, iterative methods, maximum a posteriori estimation, mean square error, mean square error methods, multiple representations, multiple-feature L2-relaxed sparse analysis priors, optimisation, robust tunable parameters, structural similarity terms}, issn = {1057-7149}, doi = {10.1109/TIP.2015.2478405}, author = {Javier Portilla and Antonio Trist{\'a}n-Vega and Ivan W. Selesnick} } @article {423, title = {Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data}, journal = {IEEE Transactions on Biomedical Engineering}, volume = {57}, year = {2010}, pages = {2850-2860}, abstract = {

We present a method for supervised, automatic, and reliable classification of healthy controls, patients with bipolar disorder, and patients with schizophrenia using brain imaging data. The method uses four supervised classification learning machines trained with a stochastic gradient learning rule based on the minimization of KullbackLeibler divergence and an optimal model complexity search through posterior probability estimation. Prior to classification, given the high dimensionality of functional MRI (fMRI) data, a dimension reduction stage comprising two steps is performed: first, a one-sample univariate t-test mean-difference Tscore approach is used to reduce the number of significant discriminative functional activated voxels, and then singular value decomposition is performed to further reduce the dimension of the input patterns to a number comparable to the limited number of subjects available for each of the three classes. Experimental results using functional brain imaging (fMRI) data include receiver operation characteristic curves for the three-way classifier with area under curve values around 0.82, 0.89, and 0.90 for healthy control versus nonhealthy, bipolar disorder versus nonbipolar, and schizophrenia patients versus nonschizophrenia binary problems, respectively. The average three-way correct classification rate (CCR) is in the range of 70\%-72\%, for the test set, remaining close to the estimated Bayesian optimal CCR theoretical upper bound of about 80\%, estimated from the one nearest-neighbor classifier over the same data. {\^A}{\textcopyright} 2010 IEEE.

}, keywords = {Algorithms, Artificial Intelligence, Bayes Theorem, Bayesian learning, Bayesian networks, Biological, Brain, Case-Control Studies, Classifiers, Computer-Assisted, Diseases, Functional MRI (fMRI), Humans, Learning machines, Learning systems, Magnetic Resonance Imaging, Models, Operation characteristic, Optimization, ROC Curve, Reproducibility of Results, Signal Processing, Singular value decomposition, Statistical tests, Stochastic models, Student t test, area under the curve, article, bipolar disorder, classification, controlled study, functional magnetic resonance imaging, human, machine learning, major clinical study, neuroimaging, patient coding, receiver operating characteristic, reliability, schizophrenia}, issn = {00189294}, doi = {10.1109/TBME.2010.2080679}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-78649311169\&partnerID=40\&md5=d3b90f1a3ee4ef209d131ef986e142db}, author = {J I Arribas and V D Calhoun and T Adali} }