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Snakes: Active Contour Models 
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Abstraet 

A snake is an energy-minimizing spline guided by external constraint forces and infIuenced by. ¡mage 
forces tha! puIl it toward features such as lines /lnd edges, Snakes are active.contour models: they lock 
onto nearby edges, localizing them aecurately, Sea le-s pace continuation can be used to enlarge the cap­
ture region surrounding a feature. Snakes provide a unified account of a number ofvisual problems, in­
c1uding rletection of edges, linea, ami subjeetive contours; motion traeIcing; and stereo matching. We 
have used snakes successfully for interactive interpretation, in which user-imposed constraint forces 
guide the snake near features of interest. 

1 Introduction 

In recent computational VlSlon research, low­
level tasks such as edge or line' detection, stereo 
matching, aud motion tracking have been widely 
regarded as autonomous bottom-up processes. 
Marr and Nishihara [11), in a strong statement of 
thi, view, say Iha! up to the 2.5D sketch, no 
"higher-IeveJ" information is yet brought to bear: 
the computations proceed by utilizing only what 
is available in the ¡mage itself. This rigidly se­
quential approaeh propaga tes mistakes made at 
a low level without opportunity for correction_ It 
Iherefore imposes stringent demands on the reH­
ability of low-Ievel Il1echanisms. As a weaker but 
more attainable goal for low-Ievel processing, we 
argue that it ought to provide sets of alternative 

. organizations among which higher-Ievel pro­
cesses may choose. rather Ihan shackling them 
prematurely wilh a unique answer. 

In this paper we investigate the use of energy 
minimization as a framework with!n which to 
realize this goal. We seek to design energy fune­
tions whose local minima comprise the set of 
alternative solutions available to high~['-Ievel 

processes. The choice among these alternatives 
could require sorne type of search or high-Ievel 
reasoning_ Tn the absencc of a weU-developed 
high-Ievel mechanism, however, we use lin in­
teractive approach 10 explore the alternative 

organizations_ By adding suitable energy lerms lO 
the rninimization, it is possible for a user to push 
the mode! out of a local minimum toward the 
de.ired solution. Thc rcsult is aI! active model 
tha! falls into the desired solution when placed 
near it 

Energy minimizing rnudels have a nch histo!)' 
in vision golng back at least to Sperling's stereo 
model [16}. Such models have typically been 
regarded as autunumous, but we have developed 
interactive techniques for guiding them. Interact­
jng wilh such models allows us to explore the en­
ergy lautlscapeve!)' easily and develop effective 
energy functions that have few local rninima lmd 
little dependence on starting points. We hope 
thereby to make the job of high-Ievel interpreta­
tion manageable yet not' constrained un­
necessarily by irreversible low-level decisions_ 

The problem domajn we address is tha! of 
findíng salient image contours-edges, lines, and 
subjeclive contours-as well as tracking those 
contours during motion and matching them in 
stereopsis. Our variational approach lO finding 
image contours differs from the traditional ap­
proach of detecting edges and then !inIcing them. 
In our model, issues such as !he connectivity of 
Ihe contours anrl the presencc of cOUlt:rs atIecl 
the energy functional and hence the detailed 
structu re of the locally optimal con tour. These 

, issues can. in principIe, be resolved by ve!)' high-
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(a) 

(e) 

Fig. l. Lowcr-lc:ft: Orjginal wuutl photograph from Brodatz . 
. Others: Three difforent local minima for Ihe acrive cantanr 

modo!. 

level computations. Perhaps more importantly, 
high-Icvclmechanisllls can interact with the con­
topr model by pushing ir toward an appropriate 
local minimum. Oprimization and relaxation 
have been used previously in edge and line detec­
tion, (3,5,13,24,25], but without theinreractive 
guiding used here. . 

In many image interpretation tasks. the correet 
interpretation of low-Ievel events can require 
high-Ievel knowledge. Considero for example. the 
¡hree perceptual organizations of two dark lines 
in figure 1. The ¡hree ditTeren! organizations cor­
respond to three different local minima in our 
line-contour mode!. It is important to notice thar 
the shapes of the lines are materially different 
in the three examples. no! just becau~e of ~ dif­
ferent linking of line segments. The segments 
themselves are changed by the perceptual 
organization. 

(b) 

(d) 

Without detailed knowledge about the object 
in view, it is difficult to justify a choice among the 
three interpretations. Knowing that wood is a 
layered structure, or perhaps inferring its laye red 
structure from elsewhere in the picture could 
help to rule out interpretation (b). Beyond Ihat, 
the 'corree!' interpretation conld be very task de­
penden!. In many dornains, su eh as analyzing 
seismíc data, ¡he choice of interpretation can de­
pend on expert knowledge. Different seismic in­
terpreters can derive significantly different per­
ceptual organízations [rom the same seismic 
sections depending on thcir knowledge amI 
training. Because a single 'corree!' interpretation 
cannot always be defined, we suggest low-Ievel 
mechanisms which seek apIJrupriarelocal min­
ima instead of searching for global mínima. 

Unlike most other techniques for finding 
. salient contours, QUl" mudel is active. It is always 



minimizing its cnergy functiollal and therefore 
exhibits dynamic behavior. Because of the way 
the contours slither while minimizing their en­
crgy, we caU them snakes. Changes in high-Ievel 
interpretation can exert forces on a snake as it 
continues its minimization. Even in the absence 
oC suc:h forces, snakes exhibit hysteresis when ex­
posed to moving stimuli. 

Snakes do nOI try to solve the entire problem of 
finding salient image contours. They rely on 
olher mechanisms to place them somewhere 
near the desired contour. However, even in cases 
where no satisfactory automatic starting mech­
anism exisls, snakes can stilI be used for semi­
automatic image interpretation. If an expert tI<er 
pushes a snake close to an intended contaur, its 
energy mininúzation will carry it tbe rest of the 
way. The minimization provide~ ~ 'power assist' 
for a person pointing to a con tour feature.' 

Snakes are an example ofa more general tech­
nique of matching a deformable mode) lO an 
image by means of eneigy minimization. In spiril 
and motivation, this idea shares much with the 
rubher templates ofWidrow (23). From any starl­
ing point, the snake deforms itself into conform­
ity with the nearest salient contaur. We have ap­
plied the same basie tcchniques (u (he problem of 
3D object reconstrnction from silhouettes by 
using energy minimizing surfaces with preferred 
symmetries (17). We expect this general approach 
Will find a wide range of applicability in visiono 

In section 2 we present a basic mathematicaI 
deSClil'liun of snakes along with their Euler 
equations. Then insection 3 we give details ofthe 
ene-rgy terms that can make a snake attracted 10 

different types 01' important static, monocular 
features such as Hnes, edges, and subjective con­
tours. Section 4 addresses the applicability ()f 
snake models to stereo correspondence and mo­
tion tracking. FinaIly, section 5 discusses further 
refinemenls and directions of our current work. 

2 Basic Snake Behavior 

Our basíc snake model is a controUed continuity 
[l8) spline under Ihe influence of image for¡;es 
and external constraint forces. The internal 
spline forces serve to impose a piecewise smooth­
ness canstrain!. The image forces push lhe snake 
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toward salient image features Iike Hnes, edges, 
and subjective contours. The externa! constraint 
forces are responsible for putting the snake near 
the desired local minimum. These forces can, for 
example, come from a user interface, automatic 
attentional mechanisms. or high-lev~l ¡n.terpre­
tations. 

Representing the position of a snake paramet­
rically by ves) = (x(s),y(.<)), we c.an write its energy 
functional as 

E~"" = f E,.,,,(v(s)) ds 

'" f E¡n,(v(s)) + Eim •• .(v(s)) 

+ E",n(v(s)) ds (1) 

whcrc E¡ .. represeul ¡he internal energy of the 
spline due to bending, E¡mago gives rise to the 
image forces, and E,o. gives rise to the external 
conslrdint forces. In lhis section, we develop E'n' 
and give examples of E,nn for interactive inter­
pretation. E¡mago is deveJoped in section 3. 

2.1 Internal Energy 

The interna! spline energy can be written 

E'n' - (a,(S)IT,(S)I' + ~(s)lv,,(s)12)/2 (2) 

The spline energy is composed of a first-order 
term controlled by n«) ~nd a second-order term 
controlled by ~(s). The first-order term makes the 
snake act like a membrane and the second-order 
term makes it act like' a thin pInte. Adjustíng the 
weights !les) and ~(s) controls the relative impor­
tance of the membrane and thiñ-plate terms. Set­
ting pes) to zCro at a point aUuws the snake 10 

beco me second-order discontinuous and develop 
a comer. The controlled continuity spline is a 
gencralizatíon oC" Tikonov stabílIzer 119J and 
can formalIy be regarded as regularizing [14,15) 
the problem. 

D~lails of our minimizatíon procedure are 
given in the appendix. The procedure is an D(n) 
iterative technique using sparse matrix methods. 
Each iteration effectively takes implicit Euler 
steps with respect to the internal energy and ex­
plicit Euler steps with respect to the image and 
'external constraint energy. The numeric con-
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siderations are relatively importan!. In a fullyex­
plicit Euler method, it takes O(I/~) iteralions each 
of 0(11) tímc for an impulse IU lravel down lhe 
length of a snake. The resulting snakes are Ilac­
cid. In order lO erecl more rigid snakes. it is vital 
to use a more staLJle melhod lhal can accom­
modale lhe large internal forces. Our semi­
implicil melhod allows forces to lrave! the entire 
length oC a snake in a single 0(11) ¡teration. 

2.2 Sl1ake Pit 

1 n order lo experiment with di fferent energy 
functions for low-level visual tasks. we have 

. developed a user-interface for snakes on a Sym­
holies Lisp Machine. The interface allows a user 
to select starting poinls and exert forces on 
snakes interactively as they minimize their en­
ergy. In addition to its value as a researeh 1001. 

the user-interface has proven very useful for 
semiautomatic image interpretation. In order to 
specify a particular image featul'f', Ihe user has 

only 10 push a snake near the feature. Once clase 
enough, the energy minimization will pull Ihe 
snake in the rest ofthe way. Accurale tracking of 
contour features can be specified in this way with 
tittle more effort than poinling. The snake energy 
minimization provides a 'power assis!' for 
image interpretation. 

Our interface allows the user to connect a 
spring to any poi nt on a snake. The olher end of 
the spnng can be anchored at a fixed position, 
connected to another point on a snake, or 
dragged around using Ihe mouse. Creating a 
spring between . XI and X2 sirnply adds 
-k(x, - X,)2 lo Ihe external constraint encrgy 

E.:on o 

In addition lo springs, the user interface pro­
vicies a 1/; repulsion force controllable by the 
mouse. The Ilr energy functional i5 clipped near 
I "" O to prevent numencal instability. so the 
resulting potential is depicted by a vol¡;ano icono 
The volcano is very use fui for pushing a snake 
out of one local mínimum and ¡nto another. 

Figure 2 shows the snake-pit interface beíng 

N/f. 2. The Snake Pit user-interface. Snakes are shoWII in black, springs and Ihe volcano are in white. 



used. The two dark lines are different snakes 
which the user has connected with two springs 
shown in white. The olher springs attach points 
on ¡he snakes to fixed positions On the screen. In 
the upper right, the volcano can be seen bending 
a nearby snake. Each oC the snakes has a sharp 
comer which has becn spccificd IJ y the user. 

3 Image Forees 

In order to make snakes useful for early vision we 
nccd energy fUllctionals Iha! attract them to 
salient [eatures in images. In this section, wepre­
sent !hree different energy functionals which at­
traet ¡¡ snake to lines, edges, and terminations. 
The total image energy can be expressed as 
a weighted combinatian af the three energy 
functionals 

r/.R.3. Two edee snAk~~ ('In a pe:u.and potCLtO. Uppcr .. lt::fI.: Tbe 
user has puJled one ofthe sna.kes away from the edge ofthe 
pear. Other.: Nlerthe user let' go. (he sn.ke .nap' back 10 the 
edge of lhe pear. 
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E ¡mage ¡.::;:;; W lineE line + W edge!:.' edge + W (crmE ICfm 

(3) 

By adjuslíng the welghls, a wide range of snake 
behavior can be created. 

3.1 Line Functional 

The simples! use fuI image functional is the 
image intensity itself. If we set 

E un, ~ [(x, y) (4) 

then depending on the sign oC WUn" the snake wilI 
be attracted either ta light linl's oc dark lines. 
Subject to its olher constraints, the snake will try 
to align itself with the lightest or darkest nearby 
contour. This energy functional was used with 
the snakes shown in figure 1. By pushing with the 
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volcano, a user can rapidly move a snake from 
one ofthese positions to another. The coarse con­
trol necessary to no so suggesls Ihal symbolic at­
tenlional meehanisms mighl be able to guide a 
snake effectively. 

3.2 Edge Functional 

Finding edges in an image can also be done with 
a very simple energy funclional. Ir we sel E'd¡¡e '" 
-IVJ(x,y)I', thcn Ihe "nake is anracted to con­
tours with large image gradienlS. An example of 
the use of this functional is shown in figure 3. In 
the upper lefl, a user has placed two snakes on 
the edges of the pear a nd potato. He has then 
pulled part ofthe snakeoff the pear with a spring. 
TIle remaining pictures show what happens 
when he lets go. The snake snaps back rapidly lo 
lhe boundary of Ihe pear. 

3.3 Scale Space 

In figure 3, the snake was attracted lO the pear 
boundary [rom a fairly large distan ce away be­
cause of the spline energy termo This type of con­
vergence is rather common for snakes.lfpart of a 
snake finds a low-energy image feature, the ' 
spline term wil! pul! neighboring parts of the 
snake loward a possible continuation of lhe fea­
ture. This effeclively pl~ces a large energy well 
around a good local minimum. A similar effecl 
can be achieved by spalially smoolhing the edge­
or line-energy functional. One can allow the 
snake lo come to equilibrium on a very blurry en­
ergy functional and lhen slowly reduce lhe bluf­
ringo The result is minimization by scale-con­
linuation [20,21 J. 

In orderto show the relationship of scale-space 
continuation to the Marr-Hildreth theory of 
edge-detection (10], we have experimenled with a 
slightly different edge funclional. The edge­
energy func:tional is 

(5) 

where G. is a Gaussian of standard deviation G. 

Minima of Ihis functional lie on zero-crossings 
of G. * V2¡ which define edges in the Marr-

Hildreth Iheory. Adding Ihis energy lerm lo a 
snake means that the snake is attracled lo zero­
crossings, bUl slill constrained by ilS own 
smoothness. Figure 4 shows scale-space con­
tinuation applied to this energy functional. The 
upper len shows the snake in equilibrium at a 
very coarse scale. Since ¡he edge-energy function 
is very blurred, lhe snake does a poor job of 
Jocalizing lhe edge, but is attracted lo this local 
minimum from very far away. Slowly reducing 
the blurring leads the snake 10 the po<ition 
shown in the upper righ! and finally 10 lhe posi­
lion shown in the lower left. For reference. lhe 
zero-crossings of G. * V2¡ corre<f!(¡nning 10 the 
energy funCtion of the snake in the lower left are 
shown superimposed on the same snake in the 
Iower right. Note !hat th" snake jumps from One 
piece of a zero-crossing contour to another. Al 
lhis scale, lhe shapes of the zero-crossings are 
dominatl"n by lhe small-scale texture rather than 
the region boundary, but the snake nevertheless 
is ab!e to use the zero-crossings for Iocalization 
beca use of ils smoothnes3 constraint 

3.4 Terminaríon Functional 

In order to find terminations of line segments 
and comers, we use the curvature nflevellines in 

Fig.4. Upper-left: Edge snake in equilibrimn.l co.",. '.'lIe. 
Upper-right: Snake in equilibrium at intermediate seale. 
Lower-Iefi: Final snake equilibrium atier scale-space con­
tinuation. Lower-right: Zero-crossings overlayed 00 final 
snakf!! position. 



a slight1y smoothed image. Let qx,y) = G.(x,y) * 
¡(x, y) be a slightly smoothed version oC the 
¡mage. Let e = tan- 1 (C/C,) be tbe gradient angle 
and let n = (cos 9, sin 9) and OJ. = (-sin 9, cos 9) 
be unit vectors along and perpendicular to the 
gradient dlrection. Tben the curvature ofthe level 
contours in C(x,y) can be written 

(6) 

(7) 

CyyC; - 2C"C,Cy + CxxC~ 
= (C; + C;)3I2 .- (8) 

By combining Eedll< and E"rm, we can create a 
snake tlla! 15 altla~tt:t1 lu edges or terminations. 
Figure 5 shows an example of such a snake ex­
posed to a standard subjective contour illusion 
[71. Tbe shape of the snake contour between the 
edges and ¡ines in the illusion is entirely deter­
mined by the spline smobthness termo The varia­
lional problem solved bythe snake ls very closely 
related to a variational formulation proposed by 
Brady et al. [21 for the interpolation of subjective 
contours. Ullman's [221 proposal of interpolating 

Fig. 5. Righ': Standard subjective contour illusion. Left 
Edge/tennination sn.k. in equilibrium On the subjeclive 
c.ootoU¡;, 
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using piecewise circular ares would probably 
abo produce a very similar interpolation. An ap­
pealing aspect of the snake model is that tbe 
same snake that finds subjective contours can 
very effectively find more traditional edges in 
natural imagery. It may, moreover, provide sorne· 
insight into why the ability to see subjective con­
tours i5 important. 

A Curther unusual aspeet of the snake model 
that bears on the psychophysics of subjective 
contonTS is hystheresis. Since snakes are constnn­
tly minimizing their energy, they can exhibit hys­
teresis when shown moving stimuli. Figure 6 
shows a snake tracking a moving subjective con­
tour. As the horizontalline segment on the right 
moves over, the snake bends more and more 
until thc interna! spline forees overpuwer tbe 
image forces. Tben the snake falls offthe Hne and 
reverts to a smoother shape. Bringing the Hne 
segment close enough to the' snake makes the 
snake reattach. While it is difficult to show the 
hysteresis in a still picture, the reader can easily 
verifY ¡he corresponding hysteresis in human vi­
sion by recreating the moving stimulus. Tbis type 
ofhysteresis is uncharaeteristic of purely bottom­
up processes and global optimizations. 
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4 Stereo and Motion 

4.1 Scereo 

Snakes can also be applied to the problem of 
stereo rnatching. In stereo, iftwo contours corre­
spond, then the disparity should vary slowly 
along the contour unless the conlour rapidly 
recedes in depth. Psychophysical evidence [4) of 
a disparity gradient tirnit in human stereopsis in­
dicates that Ihe human visual systcm al least lo 
sorne degree assumes that disparities do not 
change too rapidly wíth space. This constraint 
can be expressed in an additional euergy fune­
tional ror a stereo snake: 

(9) 
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line slides lo Ihe righ~ the snake bond. uotil il falls off Ihe 
lineo Bringing Ihe line close enough m.k •• Ihe snak. reatlach, 

where r(s) and 0(8) are left and right snake 
eontours. 

Since the disparity smoothness constraint is 
applied along contours, it shares a strong simi­
larity wíth Hildreth's (8) smóothness constraint 
for computing optic flow. This canstraint means 
that during the process oflocalizing a contour in 
one eye, information about the corresponding 
con tour in the o/her eye is used. 1 n stereo snakes, 
the stereo match actually affects the detection 
and localization of the features on which the 
mMch is based. This diffcrs imponantIy, for ex' 
ample, from lhe Marr-Poggio stereo theory (12) 
in which the basic stereo matching primitive 
zero-crossings 1l1ways Tema in unchanged by the 
matching process. 

Figure 7 shows an example of a 3D surface 
reconstructed from di~parities measured along a 



Fíg. 7. Boltom: Slereogram of a. benl piece of papero Below: 
Surrace reconslruction from lhe outline ofthe paper matched 
using stereo snakes. The suñact" múdel is rendered from a 
very different viewpoint lhan lhe original 10 emphasíze that ít 
is a fuIl 3D modeL rather lhan a 2.5D mode!. 

Fig.8. Solocled frames from a 2·second video sequenc. show· 
ing snakes used for mmion tracking. After being initialized to 
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single stereo snake on the outIíne oC a piece oC 
papero The surface is rendered from a very dif­
f~r~nt viewpoint than the original to emphasize 
Ihat a 3D model of lhe piece of paper has been 
computed rather Ihan merely a 2.5D model. 

4.2 Motían 

Once a snake finds a salient visual feature, it 
'Iocks on.' If the feature then begins to move 
slowly, th~ snake will simply track the same local 
minimum. Movementthat is too rapid can cause 
a snake to flip ¡nto a different local mínimum, 
uut for ordinary speeds and video-rate sampling, 
snakes do a goodjob oftracking motion. Figure 8 
shows eight selected frames out of a two-second 
video sequence. cdge-attracted snakes were in­
itialized by hand on the speaker's Iips in lhe firsl 
frame. After that, lhe snakes tracked lhe lip 
movements automatically. 

Tbe motíon tracking was done in this case 
wilhout any interframe constraints. Introducine 
5uch constraints will doubtless make the tracking 

the speaker's lips in the first frame. [he snakes automatically 
track t.he!: lip movements ..... ith high 'Ü;-l..:untcy. 
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more robust. A simple way 10 do so is ro give the 
snake mass. Then the snake will predict ils nex! 
position based on its previon. velocity, 

5 Conclusion 

Snakes have proven useful for interactive specifi­
cation of image contours. We have bcgun to use 
Ihem as a basis for interactively matching 3D 
models to images. As we develop better energy 
functionals the 'power nssist' of snakes becomes 
increasingly effective, Scale-space continuatíon 
can greatly enlarge the capture region around 
feMores of interest. 

The sna ke model provides a uní fied ¡reatmenl 
to a colleclion ol' visual problems that have been 
treated differently in the pas!. Edges, lines, and 
subjective contours can all be found by essen­
tially the same mechanisms. Tracking these fea­
tutes through mulion and matching them in 
stereo is easily handled ín the same framework, 

Snakes, perhaps, embody Marr's nOlion of 
'leas! cOJ1lmitmenf (9] more than his bottom-up 
2.5D sketch. The snake provides a number of 
widelyseparated local mínima 10 furtherlevelsof 
prucessing. Instead of committing irrevocably to 
a single interpretation,snakes can change their 
interpretatíon based on additional evidence from 
higher levels of processing. They can, for exam­
pIe, adjust monocular edge-finding based on 
binocular matches. 

We believe Ihat the ability to have alllevels' of 
visual processing influence the lowest-Ievel vi­
sual interpretations will turn out to be very im­
portan!. Local energy-minimizing systems like 
snakes olTer an attractive method for doing Ihis. 
The energy minimizaríon ¡caves a mueh simpler 
problem for higher level processing. 
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Appendix: Numerical Methods 

Let E,,, = E¡mag, + E,oo' When a(s) = a, and I)(s) '" 
1) are constants, minímizing lhe energy fune­
lional of equalion (1) gives rise 10 the following 
two independent Euler equations: 

+ ¡:¡ vE", - O ox# J-'XSS.~$ + a.\.- - (10) 

¡:¡ vE,,, - O (11) ay" + ,..y"" + --¡¡y -
When a(s) and I)(s) are not constant, it is sim­

pler to go directly lo a discrete formulation ofthe 
enclgy functional In equation (2), Then we can 
write 

a 

E;;'a" = L E,.,U) + E,,,(i) (12) 
j "" I 

Approxímating the derivatives with finite dif­
ferences and converting to vector notation with Vi 

= (Xi,y,) = (x(ih),y(ih», we expand E¡o.(i) 

E'n,(i) ~ a'¡v¡ - v¡_d 1!2hl 

+ 1),IVi - 1 - 2v, + vi +d l /2h4 (13) 

whcrc we define v(O) = ven). Let fx(i) = iJE .. /iJx, 
andf/i) = iJE.,,/Vy¡ where !he derivatives are ap­
proximated by a finite dilTerence ir they cannot 
be computed analyticalIy. Now the correspond-

. ing Euler equations a-re 

+ ~i-l[Vi-2 - 2v¡_J + Vi] 

- 2~{[Vi_J - 2v{ + VI+I) 

+ ~1+1[Vi - "2Vi+1 + V1+1) 

+ (fx(i),f,(i)) = O (14) 

The above Euler equations can be written in ma­
trix form as 

Ax + r,(x, y) '" O 

Ay + f,(x. y) =0 

where A is a pentadiagonal banded matrix. 

(15) 

(16) 

To solve equ!ltions (15) Qnd (16), we set the 
right-hand sides of the equations equal to lhe 
product of a step size and the negative time 
derivatives of the left-hnnd sides. Taking into ac-



count derivatives ofthe external forces we use re­
quires changing A at each iteration, so we achieve 
faster iteration by simply assumin¡¡; tha! f, ~nd f, 
are constan! during a time step. This yields an ex­
plicit Euler method with respect to the external 
rorces. The internal forces. howev"f, are com­
pletely specified by the banded matrlx, so we can 
evaluate the time derlvative al time t rather than 
time t - I and therefore arrive at sn implicit 
Euler step for the internal forces. The resulting 
equations are 

Ax, + f,(x,_" Y,-rJ = -y(x, - X,_I) (17) 

Ay, + fy(X'_hY,_d = -:y(y,- Yt-I) (18) 

where y is a step size. At equilibrium, the time 
derivátive vanishes and we end up with a solu­
tion of equations (15) and (16). 

Equations (17) and (18) can be solved by ma-
trix inversion: 

x, = (A + yl)-I(x'_1 - f,(x,_"y,_.) (19) 

y, = (A + y1r'(Y'_1 - fy(X'_hY'_I» (20) 

TIte matrix A + yl is a pentadiagonal banded 
matrix, so its inverse can be calculated by LV 
decompositions in O(n) time [6,1], Hence equa­
tions (19) ami (20) provide a rapid solution to 
equations (15) and (16). The method is implicit 
with respect to the internal rorces, so it can solve 
very rigid snakes with large step sizes. Ifthe exter­
nal forces become large, however, the explicit 
Euler steps of ¡he externa! forces will reqlli re 
much smaller step sizes. 
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