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Preface

Partial di�erential equations (PDEs) have led to an entire new �eld in image
processing and computer vision. Hundreds of publications have appeared in the last
decade, and PDE-based methods have played a central role at several conferences
and workshops.

The success of these techniques is not really surprising, since PDEs have proved
their usefulness in areas such as physics and engineering sciences for a very long
time. In image processing and computer vision, they o�er several advantages:

� Deep mathematical results with respect to well-posedness are available, such
that stable algorithms can be found. PDE-based methods are one of the
mathematically best-founded techniques in image processing.

� They allow a reinterpretation of several classical methodsunder a novel uni-
fying framework. This includes many well-known techniquessuch as Gaussian
convolution, median �ltering, dilation or erosion.

� This understanding has also led to the discovery of new methods. They
can o�er more invariances than classical techniques, or describe novel ways
of shape simpli�cation, structure preserving �ltering, and enhancement of
coherent line-like structures.

� The PDE formulation is genuinely continuous. Thus, their approximations
aim to be independent of the underlying grid and may reveal good rotational
invariance.

PDE-based image processing techniques are mainly used for smoothing and
restoration purposes. Many evolution equations forrestoring images can be de-
rived as gradient descent methods for minimizing a suitableenergy functional, and
the restored image is given by the steady-state of this process. Typical PDE tech-
niques for imagesmoothingregard the original image as initial state of a parabolic
(di�usion-like) process, and extract �ltered versions from its temporal evolution.
The whole evolution can be regarded as a so-calledscale-space, an embedding of
the original image into a family of subsequently simpler, more global representa-
tions of it. Since this introduces a hierarchy into the imagestructures, one can use
a scale-space representation for extracting semanticallyimportant information.

One of the two goals of this book is to give an overview of the state-of-the-art of
PDE-based methods for image enhancement and smoothing. Emphasis is put on a
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vi PREFACE

uni�ed description of the underlying ideas, theoretical results, numerical approxi-
mations, generalizations and applications, but also historical remarks and pointers
to open questions can be found. Although being concise, thispart covers a broad
spectrum: it includes for instance an early Japanese scale-space axiomatic, the
Mumford{Shah functional for image segmentation, continuous-scale morphology,
active contour models and shock �lters. Many references aregiven which point the
reader to useful original literature for a task at hand.

The second goal of this book is to present an in-depth treatment of an interest-
ing class of parabolic equations which may bridge the gap between scale-space and
restoration ideas: nonlinear di�usion �lters. Methods of this type have been pro-
posed for the �rst time by Perona and Malik in 1987 [326]. In order to smooth an
image and to simultaneously enhance important features such as edges, they apply
a di�usion process whose di�usivity is steered by derivatives of the evolving image.
These �lters are di�cult to analyse mathematically, as they may act locally like
a backward di�usion process. This gives rise to well-posedness questions. On the
other hand, nonlinear di�usion �lters are frequently applied with very impressive
results; so there appears the need for a theoretical foundation.

We shall develop results in this direction by investigatinga general class of
nonlinear di�usion processes. This class comprises lineardi�usion �lters as well as
spatial regularizations of the Perona{Malik process, but it also allows processes
which replace the scalar di�usivity by a di�usion tensor. Thus, the di�usive 
ux
does not have to be parallel to the grey value gradient: the �lters may become
anisotropic. Anisotropic di�usion �lters can outperform isotropic ones with respect
to certain applications such as denoising of highly degraded edges or enhancing
coherent 
ow-like images by closing interrupted one-dimensional structures. In or-
der to establish well-posedness and scale-space properties for this class, we shall
investigate existence, uniqueness, stability, maximum{minimum principles, Lya-
punov functionals, and invariances. The proofs present mathematical results from
the nonlinear analysis of partial di�erential equations.

Since digital images are always sampled on a pixel grid, it isnecessary to know
if the results for the continuous framework carry over to thepractically relevant
discrete setting. These questions are an important topic ofthe present book as
well. A general characterization of semidiscrete and fullydiscrete �lters, which
reveal similar properties as their continuous di�usion counterparts, is presented. It
leads to a semidiscrete and fully discrete scale-space theory for nonlinear di�usion
processes. Mathematically, this comes down to the study of nonlinear systems of
ordinary di�erential equations and the theory of nonnegative matrices.

Organization of the book. Image processing and computer vision are inter-
disciplinary areas, where researchers, practitioners andstudents may have a very
di�erent scienti�c background and di�ering intentions. As a consequence, I have
tried to keep this book as self-contained as possible, and toinclude various aspects
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such that it should contain interesting material for many readers. The prerequisites
are kept to a minimum and can be found in standard textbooks onimage process-
ing [163], matrix analysis [407], functional analysis [9, 58, 7], ordinary di�erential
equations [56, 412], partial di�erential equations [185] and their numerical aspects
[293, 286]. The book is organized as follows:

Chapter 1 surveys the fundamental ideas behind PDE-based smoothing and
restoration methods. This general overview sketches theirtheoretical properties,
numerical methods, applications and generalizations. Thediscussed methods in-
clude linear and nonlinear di�usion �ltering, coupled di�u sion{reaction methods,
PDE analogues of classical morphological processes, Euclidean and a�ne invariant
curve evolutions, and total variation methods.

The subsequent three chapters explore a theoretical framework for anisotropic
di�usion �ltering. Chapter 2 presents a general model for the continuous setting
where the di�usion tensor depends on the structure tensor (interest operator,
second-moment matrix), a generalization of the Gaussian-smoothed gradient al-
lowing a more sophisticated description of local image structure. Existence and
uniqueness are discussed, and stability and an extremum principle are proved.
Scale-space properties are investigated with respect to invariances and information-
reducing qualities resulting from associated Lyapunov functionals.

Chapter 3 establishes conditions under which comparable well-posedness and
scale-space results can be proved for the semidiscrete framework. This case takes
into account the spatial discretization which is characteristic for digital images,
but it keeps the scale-space idea of using a continuous scaleparameter. It leads
to nonlinear systems of ordinary di�erential equations. Weshall investigate under
which conditions it is possible to get consistent approximations of the continuous
anisotropic �lter class which satisfy the abovementioned requirements.

In practice, scale-spaces can only be calculated for a �nitenumber of scales,
though. This corresponds to the fully discrete case which istreated in Chapter
4. The investigated discrete �lter class comes down to solving linear systems of
equations which may arise from semi-implicit time discretizations of the semidis-
crete �lters. We shall see that many numerical schemes sharetypical features
with their semidiscrete counterparts, for instance well-posedness results, extremum
principles, Lyapunov functionals, and convergence to a constant steady-state. This
chapter also shows how one can design e�cient numerical methods which are in
accordance with the fully discrete scale-space framework and which are based on
an additive operator splitting (AOS).

Chapter 5 is devoted to practical topics such as �lter design, examples and ap-
plications of anisotropic di�usion �ltering. Speci�c models are proposed which are
tailored towards smoothing with edge enhancement and multiscale enhancement
of coherent structures. Their qualities are illustrated using images arising from
computer aided quality control and medical applications, but also �ngerprint im-
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ages and impressionistic paintings shall be processed. Theresults are juxtaposed
to related methods from Chapter 1.

Finally, Chapter 6 concludes the book by giving a summary anddiscussing
possible future perspectives for nonlinear di�usion �ltering.
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Chapter 1

Image smoothing and restoration
by PDEs

PDE-based methods appear in a large variety of image processing and computer
vision areas ranging from shape-from-shading and histogramme modi�cation to
optic 
ow and stereo vision.

This chapter reviews their main application, namely the smoothing and restora-
tion of images. It is written in an informal style and refers to a large amount of
original literature, where proofs and full mathematical details can be found.

The goal is to make the reader sensitive to the similarities,di�erences, advan-
tages and shortcomings of these techniques, and to point outthe main results and
open problems in this rapidly evolving area.

For each class of methods the basic ideas are explained and their theoretical
background, numerical aspects, generalizations, and applications are discussed.
Many of these ideas are borrowed from physical phenomena such as wave prop-
agation or transport of heat and mass. Nevertheless, also gas dynamics, crack
propagation, grass�re 
ow, the study of salinity pro�les in oceanography, or mech-
anisms of the retina and the brain are closely related to someof these approaches.
Although a detailed discussion of these connections would be far beyond the scope
of this work, they are mentioned wherever they appear, in order to allow the
interested reader to pursue these ideas. Also many historical notes are added.

The outline of this chapter is as follows: We start with reviewing the physi-
cal ideas behind di�usion processes. This helps us to betterunderstand the next
sections which are concerned with the properties of linear and nonlinear di�usion
�lters in image processing. The subsequent study of image enhancement methods
of di�usion{reaction type relates di�usion �lters to varia tional image restoration
techniques. After that we investigate morphological �lters, a topic which looks at
�rst glance fairly di�erent to the di�usion approach. Never theless, it reveals some
interesting relations when it is interpreted within a PDE framework. This becomes

1



2 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

especially evident when considering curvature-based morphological PDEs. Finally
we shall discuss total variation image restoration techniques which permit discon-
tinuous solutions. The last section summarizes the advantages and shortcomings
of the main methods and gives an outline of the questions we are concerned with
in the subsequent chapters.

1.1 Physical background of di�usion processes

Most people have an intuitive impression of di�usion as a physical process that
equilibrates concentration di�erences without creating or destroying mass. This
physical observation can be easily cast in a mathematical formulation.

The equilibration property is expressed byFick's law:

j = � D � r u: (1.1)

This equation states that a concentration gradientr u causes a 
uxj which aims
to compensate for this gradient. The relation betweenr u and j is described by
the di�usion tensor D, a positive de�nite symmetric matrix. The case wherej and
r u are parallel is calledisotropic. Then we may replace the di�usion tensor by a
positive scalar-valueddi�usivity g. In the generalanisotropic case,j and r u are
not parallel.

The observation that di�usion does only transport mass without destroying it
or creating new mass is expressed by thecontinuity equation

@tu = � div j (1.2)

where t denotes the time.
If we plug in Fick's law into the continuity equation we end upwith the di�usion

equation
@tu = div ( D � r u): (1.3)

This equation appears in many physical transport processes. In the context of
heat transfer it is calledheat equation. In image processing we may identify the
concentration with the grey value at a certain location. If the di�usion tensor is
constant over the whole image domain, one speaks ofhomogeneousdi�usion, and
a space-dependent �ltering is calledinhomogeneous. Often the di�usion tensor is a
function of the di�erential structure of the evolving imageitself. Such a feedback
leads tononlinear di�usion �lters . Di�usion which does not depend on the evolving
image is calledlinear.

Sometimes the computer vision literature deviates from thepreceding nota-
tions: It can happen that homogeneous �ltering is named isotropic, and inhomo-
geneous blurring is called anisotropic, even if it uses a scalar-valued di�usivity
instead of a di�usion tensor.
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1.2 Linear di�usion �ltering

The simplest and best investigated PDE method for smoothingimages is to apply
a linear di�usion process. We shall focus on the relation between linear di�usion
�ltering and the convolution with a Gaussian, analyse its smoothing properties for
the image as well as its derivatives, and review the fundamental properties of the
Gaussian scale-space induced by linear di�usion �ltering.Afterwards a survey on
discrete aspects is given and applications and limitationsof the linear di�usion
paradigm are discussed. The section is concluded by sketching two linear general-
izations which can incorporate a-priori knowledge: a�ne Gaussian scale-space and
directed di�usion processes.

1.2.1 Relations to Gaussian smoothing

Gaussian smoothing

Let a grey-scale imagef be represented by a real-valued mappingf 2 L1(IR 2). A
widely-used way to smoothf is by calculating the convolution

(K � � f )(x) :=
Z

IR 2

K � (x � y) f (y) dy (1.4)

where K � denotes the two-dimensional Gaussian of width (standard deviation)
� > 0 :

K � (x) :=
1

2�� 2
� exp

 

�
jxj2

2� 2

!

: (1.5)

There are several reasons for the excellent smoothing properties of this method:
First we observe that sinceK � 2 C1 (IR 2) we get K � � f 2 C1 (IR 2); even if f is
only absolutely integrable.

Next, let us investigate the behaviour in the frequency domain. When de�ning
the Fourier transformation F by

(F f )( ! ) :=
Z

IR 2

f (x) exp(� ih!; x i ) dx (1.6)

we obtain by the convolution theorem that

(F (K � � f )) ( ! ) = ( F K � )( ! ) � (F f )( ! ): (1.7)

Since the Fourier transform of a Gaussian is again Gaussian-shaped,

(F K � )( ! ) = exp

 

�
j! j2

2=� 2

!

; (1.8)



4 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

we observe that (1.4) is a low-pass �lter that attenuates high frequencies in a
monotone way.

Interestingly, the smoothing behaviour can also be understood in the context
of a PDE interpretation.

Equivalence to linear di�usion �ltering

It is a classical result (cf. e.g. [331, pp. 267{271] and [185, pp. 43{56]) that for any
bounded f 2 C(IR 2) the linear di�usion process

@tu = � u; (1.9)

u(x; 0) = f (x) (1.10)

possesses the solution

u(x; t ) =

(
f (x) ( t = 0)
(K p

2t � f )(x) ( t > 0):
(1.11)

This solution is unique, provided we restrict ourselves to functions satisfying

ju(x; t )j � M � exp (ajxj2) (M; a > 0): (1.12)

It depends continuously on the initial imagef with respect to k : kL 1 (IR 2 ) ; and it
ful�ls the maximum{minimum principle

inf
IR 2

f � u(x; t ) � sup
IR 2

f on IR2 � [0; 1 ): (1.13)

From (1.11) we observe that the timet is related to the spatial width � =
p

2t of
the Gaussian. Hence, smoothing structures of order� requires to stop the di�usion
process at time

T = 1
2 � 2: (1.14)

Figure 5.2 (b) and 5.3 (c) in Chapter 5 illustrate the e�ect of linear di�usion
�ltering.

Gaussian derivatives

In order to understand the structure of an image we have to analyse grey value

uctuations within a neighbourhood of each image point, that is to say, we need
information about its derivatives. However, di�erentiation is ill-posed1, as small
perturbations in the original image can lead to arbitrarily large 
uctuations in
the derivatives. Hence, the need for regularization methods arises. A thorough

1A problem is called well-posed, if it has a unique solution which depends continuously on
the input data and parameters. If one of these conditions is violated, it is called ill-posed.
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treatment of this mathematical theory can be found in the books of Tikhonov and
Arsenin [402], Louis [266] and Engl et al. [128].

One possibility to regularize is to convolve the image with aGaussian prior to
di�erentiation [404]. By the equality

@n
x1

@m
x2

(K � � f ) = K � � (@n
x1

@m
x2

f ) = ( @n
x1

@m
x2

K � ) � f (1.15)

for su�ciently smooth f , we observe that all derivatives undergo the same Gaussian
smoothing process as the image itself and this process is equivalent to convolving
the image with derivatives of a Gaussian.

Replacing derivatives by theseGaussian derivativeshas a strong regularizing
e�ect. This property has been used to stabilize ill-posed problems like deblurring
images by solving the heat equation backwards in time2 [141, 177]. Moreover, Gaus-
sian derivatives can be combined to so-calleddi�erential invariants , expressions
that are invariant under transformations such as rotations, for instance jr K � � uj
or � K � � u.

Di�erential invariants are useful for the detection of features such as edges,
ridges, junctions, and blobs; see [256] for an overview. To illustrate this, we focus
on two applications for detecting edges.

A frequently used method is theCanny edge detector[69]. It is based on calcu-
lating the �rst derivatives of the Gaussian-smoothed image. After applying sophis-
ticated thinning and linking mechanisms (non-maxima suppressionand hysteresis
thresholding), edges are identi�ed as locations where the gradient magnitude has a
maximum. This method is often acknowledged to be the best linear edge detector,
and it has become a standard in edge detection.

Another important edge detector is theMarr{Hildreth operator [278], which
uses theLaplacian-of-Gaussian (LoG)� K � as convolution kernel. Edges off are
identi�ed as zero-crossings of �K � � f . This needs no further postprocessing and
always gives closed contours. There are indications that LoGs and especially their
approximation by di�erences-of-Gaussians (DoGs)play an important role in the
visual system of mammals, see [278] and the references therein. Young developed
this theory further by presenting evidence that the receptive �elds in primate eyes
are shaped like the sum of a Gaussian and its Laplacian [449],and Koenderink
and van Doorn suggested the set of Gaussian derivatives as a general model for
the visual system [242].

If one investigates the temporal evolution of the zero-crossings of an image �l-
tered by linear di�usion, one observes an interesting phenomenon: When increasing
the smoothing scale� , no new zero-crossings are created which cannot be traced
back to �ner scales [439]. This evolution property is calledcausality [240]. It is

2Of course, solutions of the regularization can only approximate the solution of the original
problem (if it exists). In practice, increasing the order of applied Gaussian derivatives or reducing
the kernel size will �nally deteriorate the results of deblurring.
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closely connected to the maximum{minimum principle of certain parabolic opera-
tors [189]. Attempts to reconstruct the original image fromthe temporal evolution
of the zero-crossings of the Laplacian have been carried outby Hummel and Mo-
niot [190]. They concluded, however, that this is practically unstable unless very
much additional information is provided.

In the western world the evolution property of the zero-crossings was the key
investigation which has inspired Witkin to the so-called scale-space concept [439].
This shall be discussed next.

1.2.2 Scale-space properties

The general scale-space concept

It is a well-known fact that images usually contain structures at a large variety of
scales. In those cases where it is not clear in advance which is the right scale for the
depicted information it is desirable to have an image representation at multiple
scales. Moreover, by comparing the structures at di�erent scales, one obtains a
hierarchy of image structures which eases a subsequent image interpretation.

A scale-spaceis an image representation at a continuum of scales, embedding
the imagef into a family f Tt f jt � 0g of gradually simpli�ed versions of it, provided
that it ful�ls certain requirements 3. Most of these properties can be classi�ed as
architectural, smoothing (information-reducing) or invariance requirements [12].

An important architectural assumption is recursivity, i.e. for t = 0, the scale-
space representation gives the original imagef , and the �ltering may be split into
a sequence of �lter banks:

T0f = f; (1.16)

Tt+ sf = Tt (Tsf ) 8 s; t � 0: (1.17)

This property is very often referred to as thesemigroup property. Other architec-
tural principles comprise for instance regularity properties ofTt and local behaviour
as t tends to 0.

Smoothing properties and information reduction arise fromthe wish that the
transformation should not create artifacts when passing from �ne to coarse rep-
resentation. Thus, at a coarse scale, we should not have additional structures
which are caused by the �ltering method itself and not by underlying structures
at �ner scales. This simpli�cation property is speci�ed by numerous authors in
di�erent ways, using concepts such as no creation of new level curves (causality)
[240, 450, 189, 255], nonenhancement of local extrema [30, 257], decreasing number

3Recently it has also been proposed to extend the scale-spaceconcept to scale{imprecision
spaceby taking into account the imprecision of the measurement device [171].
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of local extrema [255], maximum loss of �gure impression [196], Tikhonov regular-
ization [302, 303], maximum{minimum principle [189, 328],positivity [324, 138],
preservation of positivity [191, 193, 320], comparison principle [12], and Lyapunov
functionals [415, 429]. Especially in the linear setting, many of these properties are
equivalent or closely related; see [426] for more details.

We may regard an image as a representative of an equivalence class containing
all images that depict the same object. Two images of this class di�er e.g. by grey-
level shifts, translations and rotations or even more complicated transformations
such as a�ne mappings. This makes the requirement plausiblethat the scale-space
analysis should be invariant to as many of these transformations as possible, in
order to analyse only the depicted object [196, 16].

The pioneering work of Alvarez, Guichard, Lions and Morel [12] shows that
every scale-space ful�lling some fairly natural architectural, information-reducing
and invariance axioms is governed by a PDE with the original image as initial
condition. Thus, PDEs are the suitable framework for scale-spaces.

Often these requirements are supplemented with an additional assumption
which is equivalent to the superposition principle, namelylinearity:

Tt (af + bg) = a Tt f + b Ttg 8 t � 0; 8 a; b2 IR: (1.18)

As we shall see below, imposing linearity restricts the scale-space idea to essentially
one representative.

Gaussian scale-space

The historically �rst and best investigated scale-space isthe Gaussian scale-space,
which is obtained via convolution with Gaussians of increasing variance, or { equiv-
alently { by linear di�usion �ltering according to (1.9), (1 .10).

Usually a 1983 paper by Witkin [439] or a 1980 report by Stans�eld [392]
are regarded as the �rst references to the linear scale-space idea. Recent work
by Weickert, Ishikawa and Imiya [426, 427], however, shows that scale-space is
more than 20 years older: An axiomatic derivation of 1-D Gaussian scale-space
has already been presented by Taizo Iijima in a technical paper from 1959 [191]
followed by a journal version in 1962 [192]. Both papers are written in Japanese.

In [192] Iijima considers an observation transformation � which depends on
a scale parameter� and which transforms the original imagef (x) into a blurred
version4 �[ f (x0); x; � ]. This class of blurring transformations is calledboke(defo-
cusing). He assumes that it has the structure

�[ f (x0); x; � ] =
1Z

�1

� f f (x0); x; x0; � gdx0; (1.19)

4The variable x0 serves as a dummy variable.
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and that it should satisfy �ve conditions:

(I) Linearity (with respect to multiplications):
If the intensity of a pattern becomesA times its original intensity, then the
same should happen to the observed pattern:

�[ Af (x0); x; � ] = A �[ f (x0); x; � ]: (1.20)

(II) Translation invariance:
Filtering a translated image is the same as translating the �ltered image:

�[ f (x0� a); x; � ] = �[ f (x0); x � a; � ]: (1.21)

(III) Scale invariance:
If a pattern is spatially enlarged by some factor� , then there exists a� 0 =
� 0(�; � ) such that

�[ f (x0=� ); x; � ] = �[ f (x0); x=�; � 0]: (1.22)

(IV) (Generalized) semigroup property:
If f is observed under a parameter� 1 and this observation is observed un-
der a parameter� 2, then this is equivalent to observingf under a suitable
parameter � 3 = � 3(� 1; � 2):

�
h
�[ f (x00); x0; � 1]; x; � 2

i
= �[ f (x00); x; � 3]: (1.23)

(V) Preservation of positivity:
If the original image is positive, then the observed image ispositive as well:

�[ f (x0); x; � ] > 0 8 f (x0) > 0; 8 � > 0: (1.24)

Under these requirements Iijima derives in a very systematic way that

�[ f (x0); x; � ] =
1

2
p

��

1Z

�1

f (x0) exp

 
� (x � x0)2

4� 2

!

dx0: (1.25)

Thus, �[ f (x0); x; � ] is just the convolution betweenf and a Gaussian with standard
deviation �

p
2.

This has been the starting point of an entire world of linear scale-space research
in Japan, which is basically unknown in the western world. Japanese scale-space
theory was well-embedded in a general framework for patternrecognition, feature
extraction and object classi�cation [195, 197, 200, 320], and many results have
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been established earlier than in the western world. Apart from their historical
merits, these Japanese results reveal many interesting qualities which should induce
everyone who is interested in scale-space theory to have a closer look at them. More
details can be found in [426, 427] as well as in some English scale-space papers
by Iijima such as [195, 197]. In particular, the latter ones show that there is no
justi�cation to deny Iijima's pioneering role in linear scale-space theory because of
language reasons.

Table 1.1: Overview of continuous Gaussian scale-space axiomatics (I1 = Iijima
[191, 192], I2 = Iijima [193, 194], I3 = Iijima [196], O = Otsu [320], K = Koenderink
[240], Y = Yuille/Poggio [450], B = Babaud et al. [30], L1 = Lindeberg [255], F1 =
Florack et al. [140], A = Alvarez et al. [12], P = Pauwels et al.[324], N = Nielsen
et al. [303], L2 = Lindeberg [257], F2 = Florack [138]).

I1 I2 I3 O K Y B L1 F1 A P N L2 F2
convolution kernel � � � � � � � � � � �
semigroup property � � � � � � � � �
locality �
regularity � � � � � � � �
in�netes. generator �
max. loss principle �
causality � � � � �
nonnegativity � � � � � �
Tikhonov regulariz. �
aver. grey level invar. � � � � � �

at kernel for t ! 1 � �
isometry invariance � � � � � � � � � � �
homogen. & isotropy �
separability � �
scale invariance � � � � � � � �
valid for dimension 1 2 2 2 1,2 1,2 1 1 > 1 N 1,2 N N N

Table 1.1 presents an overview of the current Japanese and western Gaussian
scale-space axiomatics (see [426, 427] for detailed explanations). All of these ax-
iomatics use explicitly or implicitly5 a linearity assumption. We observe that {
despite the fact that many axiomatics reveal similar �rst principles { not two of
them are identical. Each of the 14 axiomatics con�rms and enhances the evidence
that the others give: that Gaussian scale-space is unique within a linear framework.

A detailed treatment of Gaussian scale-space theory can be found in two
Japanese monographs by Iijima [197, 198], as well as in English books by Lin-
deberg [256], Florack [139], and ter Haar Romeny [176]. A collection edited by

5Often it is assumed that the �lter is a convolution integral. This is equivalent to linearity
and translation invariance.
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Sporring, Nielsen, Florack and Johansen [389] gives an excellent overview of the
various aspects of this theory, and additional material is presented in [211]. Many
relations between Gaussian scale-space and regularization theory have been elab-
orated by Nielsen [302], and readers who wish to analyse linear and nonlinear
scale-space concepts in terms of di�erential and integral geometry can �nd a lot
of material in the thesis of Salden [351].

1.2.3 Numerical aspects

The preceding theory is entirely continuous. However, in practical problems, the
image is sampled at the nodes(pixels) of a �xed equidistant grid. Thus, the di�u-
sion �lter has to be discretized.

By virtue of the equivalence of solving the linear di�usion equation and con-
volving with a Gaussian, we can either approximate the convolution process or the
di�usion equation.

When restricting the image to a �nite domain and applying theFast Fourier
Transformation (FFT), convolution in the spatial domain can be reduced to mul-
tiplication in the frequency domain, cf. (1.7). This proceeding requires a �xed
computational e�ort of order N logN , which depends only on the pixel number
N , but not on the kernel size� . For large kernels this is faster than most spatial
techniques. Especially for small kernels, however, aliasing e�ects in the Fourier
domain may create oscillations and over- and undershoots [178].

One e�cient possibility to approximate Gaussian convolution in the spatial do-
main consists of applying recursive �lters [109, 448]. Morefrequently the Gaussian
kernel is just sampled and truncated at some multiple of its standard deviation
� . Factorizing a higher-dimensional Gaussian into one-dimensional Gaussians re-
duces the computational e�ort to O(N� ). Convolution with a truncated Gaussian,
however, reveals the drawback that it does not preserve the semigroup property of
the continuous Gaussian scale-space [255].

Lindeberg [255] has established a linear scale-space theory for the semidiscrete6

case. His results are in accordance with those of Norman [312], who proposed in
1960 that the discrete analogue of the Gaussian kernel should be given in terms of
modi�ed Bessel functions of integer order. Since this scale-space family arises nat-
urally from a semidiscretized version of the di�usion equation, it has been argued
that approximating the di�usion equation should be preferred to discretizing the
convolution integral [255].

Recently, interesting semidiscrete and fully discrete linear scale-space formula-
tions have been established utilizing stochastic principles:�Astr•om and Heyden [27]
study a framework based on stationary random �elds, while the theory by Salden
et al. [353] exploits the relations between di�usion and Markov processes.

6By semidiscrete we mean discrete in space and continuous in time throughout this work.
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Among the numerous numerical possibilities to approximatethe linear di�usion
equation, �nite di�erence (FD) schemes dominate the �eld. Apart from some im-
plicit approaches [166, 67, 68] allowing realizations as a recursive �lter [14, 10, 451],
explicit schemes are mainly used. A very e�cient approximation of the Gaus-
sian scale-space results from applying multigrid ideas. The Gaussian pyramid[64]
has the computational complexityO(N ) and gives a multilevel representation at
�nitely many scales of di�erent resolution. By subsequently smoothing the image
with an explicit scheme for the di�usion equation and restricting the result to a
coarser grid, one obtains a simpli�ed image representationat the next coarser grid.
Due to their simplicity and e�ciency, pyramid decompositions have become very
popular and have been integrated into commercially available hardware [70, 214].
Pyramids are not invariant under translations, however, and sometimes it is ar-
gued that they are undersampled and that the pyramid levels should be closer7.
These are the reasons why some people regard pyramids ratheras predecessors of
the scale-space idea than as a numerical approximation8.

1.2.4 Applications

Due to its equivalence to convolution with a Gaussian, linear di�usion �ltering has
been applied in numerous �elds of image processing and computer vision. It can
be found in almost every standard textbook in these �elds.

Less frequent are applications which exploit theevolution of an image under
Gaussian scale-space. Thisdeep structureanalysis [240] provides useful information
for extracting semantic information from an image, for instance

� for �nding the most relevant scales(scale selection, focus-of-attention). This
may be done by searching for extrema of (nonlinear) combinations of normal-
ized Gaussian derivatives [256] or by analysing information theoretic mea-
sures such as the entropy [208, 388] or generalized entropies [390] over scales.

� for multiscale segmentation of images [172, 254, 256, 313, 408]. The idea is
to identify segments at coarse scales and to link backwards to the original
image in order to improve the localization.

In recent years also applications of Gaussian scale-space to stereo, optic 
ow
and image sequences have become an active research �eld [139, 215, 241, 258, 259,
302, 306, 441]. Several scale-space applications are summarized in a survey paper
by ter Haar Romeny [175].

7Of course, multiresolution techniques such as pyramids or discrete wavelet transforms [92,
106] are just designed to have few or no redundancies, while scale-space analysis intends to
extract semantical information by tracing signals through a continuum of scales.

8Historically, this is incorrect: Iijima's scale-space work [191] is much older than multigrid
ideas in image processing.
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Interesting results arise when one studies linear scale-space on a sphere [236,
353]: while the di�usion equation remains the correct concept, Gaussian kernels are
of no use anymore: appropriate kernels have to be expressed in terms of Legendre
functions [236]. This and other results [12, 255] indicate that the PDE formulation
of linear scale-space in terms of a di�usion equation is morenatural and has a
larger generalization potential than convolution with Gaussians.

1.2.5 Limitations

In spite of several properties that make linear di�usion �ltering unique and easy
to handle, it reveals some drawbacks as well:

(a) An obvious disadvantage of Gaussian smoothing is the fact that it does not
only smooth noise, but also blurs important features such asedges and, thus,
makes them harder to identify. Since Gaussian smoothing is designed to be
completely uncommitted, it cannot take into account any a-priori informa-
tion on structures which are worth being preserved (or even enhanced).

(b) Linear di�usion �ltering dislocates edges when moving from �ner to coarser
scales, see e.g. Witkin [439]. So structures which are identi�ed at a coarse
scale do not give the right location and have to be traced backto the original
image [439, 38, 165]. In practice, relating dislocated information obtained at
di�erent scales is di�cult and bifurcations may give rise to instabilities. These
coarse-to-�ne tracking di�culties are generally denoted as thecorrespondence
problem.

(c) Some smoothing properties of Gaussian scale-space do not carry over from
the 1-D case to higher dimensions: A closed zero-crossing contour can split
into two as the scale increases [450], and it is generally nottrue that the
number of local extrema is nonincreasing, see [254, 255] forillustrative coun-
terexamples. A deep mathematical analysis of such phenomena has been
carried out by Damon [105] and Rieger [342]. It turned out that the pairwise
creation of an extremum and a saddle point is not an exception, but happens
generically.

Regarding (b) and (c), much e�orts have been spent in order tounderstand
the deep structure in Gaussian scale-space, for instance byanalysing its toppoints
[210]. There is some evidence that these points, where the gradient vanishes and
the Hessian does not have full rank, carry essential image information [212]. Part
III of the book edited by Sporring et al. [389] and the references therein give an
overview of the state-of-the-art in deep structure analysis.

Due to the uniqueness of Gaussian scale-space within a linear framework we
know that any modi�cation in order to overcome the problems (a){(c) will either
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renounce linearity or some scale-space properties. We shall see that appropriate
methods to avoid the shortcomings (a) and (b) are nonlinear di�usion processes,
while (c) requires morphological equations [206, 207, 218].

1.2.6 Generalizations

Before we turn our attention to nonlinear processes, let us �rst investigate two
linear modi�cations which have been introduced in order to address the problems
(a) and (b) from the previous section.

A�ne Gaussian scale-space

A straightforward generalization of Gaussian scale-spaceresults from renouncing
invariance under rotations. This leads to thea�ne Gaussian scale-space

u(x; t ) :=
Z

IR 2

1

4�
q

det(D t )
exp

 

�
(x � y)> D � 1

t (x � y)
4

!

f (y) dy (1.26)

whereD t := tD , t > 0, and D 2 IR2� 2 is symmetric positive de�nite9. For a �xed
matrix D, calculating the convolution integral (1.26) is equivalent to solving a
linear anisotropic di�usion problem with D as di�usion tensor:

@tu = div ( D r u); (1.27)

u(x; 0) = f (x): (1.28)

In [427] it is shown that a�ne Gaussian scale-space has been axiomatically derived
by Iijima in 1962 [193, 194]. He namedu(x; t ) the generalized �gureof f , and (1.27)
the basic equation of �gure[196]. In 1971 this concept was realized in hardware in
the optical character reader ASPET/71 [199, 200]. The scale-space part has been
regarded as the reason for its reliability and robustness.

In 1992 Nitzberg and Shiota [310] proposed to adapt the Gaussian kernel shape
to the structure of the original image. By chosingD in (1.26) as a function of the
structure tensor (cf. Section 2.2) off , they combined nonlinear shape adaptation
with linear smoothing. Later on similar ideas have been developed in [259, 443].

It should be noted that shape-adapted Gaussian smoothing with a spatially
varying D is no longer equivalent to a di�usion process of type (1.27).In practice
this can be experienced by the fact that shape-adaptation ofGaussian smoothing
does not preserve the average grey level, while the divergence formulation ensures
that this is still possible for nonuniform di�usion �lterin g; see Section 1.1. Also in
this case the di�usion equation seems to be more general. If one wants to relate

9Isotropic Gaussian scale-space can be recovered using the unit matrix for D .
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shape-adapted Gaussian smoothing to a PDE, one has to carry out sophisticated
scaling limits [310].

Noniterative shape-adapted Gaussian smoothing di�ers from nonlinear aniso-
tropic di�usion �ltering by the fact that the latter one intr oduces a feedback into
the process: it adapts the di�usion tensor in (1.27) to the di�erential structure of
the �ltered image instead of the original image. Such concepts will be investigated
in Section 1.3.3 and in the remaining chapters of this book.

Directed di�usion

Another method for incorporating a-priori knowledge into alinear di�usion process
is suggested by Illner and Neunzert [202]. Provided we are given some background
information in form of a smooth imageb, they show that under some technical
requirements and suitable boundary conditions the classical solution u of

@tu = b� u � u � b; (1.29)

u(x; 0) = f (x) (1.30)

converges tobalong a path where the relative entropy with respect tobincreases in
a monotone way. Numerical experiments have been carried outby Giuliani [159],
and an analysis in terms of nonsmoothb and weak solutions is due to Illner and
Tie [203].

Such adirected di�usion processrequires to specify an entire image as back-
ground information in advance; in many applications it would be desirable to
include a priori knowledge in a less speci�c way, e.g. by prescribing that features
within a certain contrast and scale range are considered to be semantically impor-
tant and processed di�erently. Such demands can be satis�edby nonlinear di�usion
�lters.

1.3 Nonlinear di�usion �ltering

Adaptive smoothing methods are based on the idea of applyinga process which
itself depends on local properties of the image. Although this concept is well-
known in the image processing community (see [349] and the references therein
for an overview), a corresponding PDE formulation was �rst given by Perona and
Malik [326] in 1987. We shall discuss this model in detail, especially its ill-posedness
aspects. This gives rise to study regularizations. These techniques can be extended
to anisotropic processes which make use of an adapted di�usion tensor instead of
a scalar di�usivity.
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1.3.1 The Perona{Malik model

Basic idea

Perona and Malik propose a nonlinear di�usion method for avoiding the blurring
and localization problems of linear di�usion �ltering [326, 328]. They apply an
inhomogeneous process that reduces the di�usivity at thoselocations which have
a larger likelihood to be edges. This likelihood is measuredby jr uj2. The Perona{
Malik �lter is based on the equation

@tu = div ( g(jr uj2) r u): (1.31)

and it uses di�usivities such as

g(s2) =
1

1 + s2=� 2
(� > 0): (1.32)

Although Perona and Malik name their �lter anisotropic, it should be noted that
{ in our terminology { it would be regarded as an isotropic model, since it utilizes
a scalar-valued di�usivity and not a di�usion tensor.

Interestingly, there exists a relation between (1.31) and the neural dynamics of
brightness perception: In 1984 Cohen and Grossberg [94] proposed a model of the
primary visual cortex with similar inhibition e�ects as in t he Perona{Malik model.

The experiments of Perona and Malik were visually very impressive: edges
remained stable over a very long time. It was demonstrated [328] that edge de-
tection based on this process clearly outperforms the linear Canny edge detector,
even without applying non-maxima suppression and hysteresis thresholding. This
is due to the fact that di�usion and edge detection interact in one single process
instead of being treated as two independent processes whichare to be applied
subsequently. Moreover, there is another reason for the impressive behaviour at
edges, which we shall discuss next.

Edge enhancement

To study the behaviour of the Perona{Malik �lter at edges, let us for a moment
restrict ourselves to the one-dimensional case. This simpli�es the notation and
illustrates the main behaviour since near a straight edge a two-dimensional image
approximates a function of one variable.

For the di�usivity (1.32) it follows that the 
ux function �( s) := sg(s2) satis�es
� 0(s) � 0 for jsj � � , and � 0(s) < 0 for jsj > � , see Figure 1.1. Since (1.31) can
be rewritten as

@tu = � 0(ux )uxx ; (1.33)

we observe that { in spite of its nonnegative di�usivity { the Perona{Malik model
is of forward parabolic typefor jux j � � , and of backward parabolic typefor jux j > � .
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0
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Figure 1.1: (a)Left: Di�usivity g(s2)= 1
1+ s2=� 2 : (b) Right: Flux function

�( s)= s
1+ s2=� 2 .

Hence,� plays the role of acontrast parameterseparating forward (low contrast)
from backward (high contrast) di�usion areas.

It is not hard to verify that the Perona{Malik �lter increase s the slope at
in
ection points of edges within a backward area: If there exists a su�ciently
smooth solutionu it satis�es

@t (u2
x) = 2 ux@x (ut ) = 2� 00(ux )uxu2

xx + 2� 0(ux)uxuxxx : (1.34)

A location x0 whereu2
x is maximal at some timet is characterized by uxuxx = 0

and uxuxxx � 0: Therefore,

(@t (u2
x)) ( x0; t) � 0 for jux(x0; t)j > � (1.35)

with strict inequality for uxuxxx < 0:
In the two-dimensional case, (1.33) is replaced by [12]

@tu = � 0(r u)u�� + g(jr uj2)u�� (1.36)

where thegauge coordinates� and � denote the directions perpendicular and paral-
lel to r u, respectively. Hence, we have forward di�usion alongisophotes(i.e. lines
of constant grey value) combined with forward{backward di�usion along
owlines
(lines of maximal grey value variation).

We observe that the forward{backward di�usion behaviour isnot only restricted
to the special di�usivity (1.32), it appears for all di�usiv ities g(s2) whose rapid
decay causes non-monotone 
ux functions �(s) = sg(s2). Overviews of several
common di�usivities for the Perona{Malik model can be foundin [43, 343], and
a family of di�usivities with di�erent decay rates is investigated in [36]. Rapidly
decreasing di�usivities are explicitly intended in the Perona{Malik method as they
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give the desirable result of blurring small 
uctuations andsharpening edges. There-
fore, they are the main reason for the visually impressive results of this restoration
technique.

It is evident that the \optimal" value for the contrast param eter � has to depend
on the problem. Several proposals have been made to facilitate such a choice in
practice, for instance adapting it to a speci�ed quantile inthe cumulative gradient
histogramme [328], using statistical properties of a training set of regions which
are considered as 
at [444], or estimating it by means of the local image geometry
[270].

Ill-posedness

Unfortunately, forward{backward equations of Perona{Malik type cause some the-
oretical problems. Although there is no general theory for nonlinear parabolic
processes, there exist certain frameworks which allow to establish well-posedness
results for a large class of equations. Let us recall three examples:

� Let S(N ) denote the set of symmetricN � N matrices and Hess(u) the
Hessian ofu. Classical di�erential inequality techniques [411] basedon the
Nagumo{Westphal lemma require that the underlying nonlinear evolution
equation

@tu = F (t; x; u; r u; Hess(u)) (1.37)

satis�es the monotony property

F (t; x; r; p; Y ) � F (t; x; r; p; X ) (1.38)

for all X; Y 2 S(2) where Y � X is positive semide�nite.

� The same requirement is needed for applying the theory of viscosity solutions.
A detailed introduction into this framework can be found in apaper by
Crandall, Ishii and Lions [103].

� Let H be a Hilbert space with scalar product (:; :) and A : H ! H . In order
to apply the concept of maximal monotone operators [57] to the problem

du
dt

+ Au = 0; (1.39)

u(0) = f (1.40)

one has to ensure thatA is monotone, i.e.

(Au � Av; u� v) � 0 8 u; v 2 H: (1.41)
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We observe that the nonmonotone 
ux function of the Perona{Malik process im-
plies that neither (1.38) is satis�ed norA de�ned by Au := � div (g(jr uj2) r u)
is monotone. Therefore, none of these frameworks is applicable to ensure well-
posedness results.

One reason why people became pessimistic about the well-posedness of the
Perona{Malik equation was a result by H•ollig [187]. He constructed a forward{
backward di�usion process which can have in�nitely many solutions. Although this
process was di�erent from the Perona{Malik process, one waswarned what can
happen. In 1994 the general conjecture was that the Perona{Malik �lter might have
weak solutions, but one should neither expect uniqueness nor stability [329]. In the
meantime several theoretical results are available which provide some insights into
the actual degree of ill-posedness of the Perona{Malik �lter.

Kawohl and Kutev [222] proved that the Perona{Malik processdoes not have
global (weak)C1 solutions for intial data that involve backward di�usion. The exis-
tence of localC1 solutions remained unproven. If they exist, however, Kawohl and
Kutev showed that these solutions are unique and satisfy a maximum-minimum
principle. Moreover, under special assumptions on the initial data, it was possible
to establish a comparison principle.

Kichenassamy [224, 225] proposed a notion of generalized solutions, which are
piecewise linear and contain jumps, and he showed that an analysis of their moving
and merging gives similar e�ects to those one can observe in practice.

Results of You et al. [446] give evidence that the Perona{Malik process is
unstable with respect to perturbations of the initial image. They showed that the
energy functional leading to the Perona{Malik process as steepest descent method
has an in�nite number of global minima which are dense in the image space. Each
of these minima corresponds to a piecewise constant image, and slightly di�erent
initial images may end up in di�erent minima for t ! 1 .

Interestingly, forward{backward di�usion equations of Perona{Malik type are
not as unnatural as they look at �rst glance: besides their importance in computer
vision they have been proposed as a mathematical model for heat and mass transfer
in a stably strati�ed turbulent shear 
ow. Such a model is used to explain the
evolution of stepwise constant temperature or salinity pro�les in the ocean. Related
equations also play a role in population dynamics and viscoelasiticity, see [35] and
the references therein.

Numerically, the mainly observable instability is the so-called staircasing e�ect,
where a sigmoid edge evolves into piecewise linear segmentswhich are separated
by jumps. It has already been observed by Posmentier in 1977 [333]. He used an
equation of Perona{Malik type for numerical simulations ofthe salinity pro�les
in oceans. Starting from a smoothly increasing initial distribution he reported the
creation of perturbations which led to a stepwise constant pro�le after some time.
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In image processing, numerical studies of the staircasing e�ect have been carried
out by Nitzberg and Shiota [310], Fr•ohlich and Weickert [148], and Benhamouda
[36]. All results point in the same direction: the number of created plateaus de-
pends strongly on the regularizing e�ect of the discretization. Finer discretizations
are less regularizing and lead to more \stairs". Weickert and Benhamouda [425]
showed that the regularizing e�ect of a standard �nite di�erence discretization is
su�cient to turn the Perona{Malik �lter into a well-posed in itial value problem
for a nonlinear system of ordinary di�erential equations. Its global solution satis-
�es a maximum{minimum principle and converges to a constantsteady-state. The
theoretical framework for this analysis will be presented in Chapter 3.

There exists also a discrete explanation why staircasing isessentially the only
observable instability: In 1-D, standard FD discretizations are monotonicity pre-
serving, which guarantees that no additional oscillationsoccur during the evolu-
tion. This has been shown by Dzu Magaziewa [123] in the semidiscrete case and
by Benhamouda [36, 425] in the fully discrete case with an explicit time discretiza-
tion. Further contributions to the explanation and avoidance of staircasing can be
found in [4, 36, 98, 225, 438].

Scale-space interpretation

Perona and Malik renounced the assumption of Koenderink's linear scale-space
axiomatic [240] that the smoothing should treat all spatialpoints and scale levels
equally. Instead of this, they required that region boundaries should be sharp and
should coincide with the semantically meaningful boundaries at each resolution
level (immediate localization), and that intra-region smoothing should be preferred
to inter-region smoothing(piecewise smoothing). These properties are of signi�cant
practical interest, as they guarantee that structures can be detected easily and
correspondence problems can be neglected. Experiments demonstrated that the
Perona{Malik �lter satis�es these requirements fairly well [328].

In order to establish a smoothing scale-space property for this nonlinear dif-
fusion process, a natural way would be to prove a maximum{minimum principle,
provided one knows that there exists a su�ciently smooth solution. Since the ex-
istence question used to be the bottleneck in the past, the �rst proof is due to
Kawohl and Kutev who established an extremum principle for their local weakC1

solution to the Perona{Malik �lter [222]. Of course, this isonly partly satisfying,
since in scale-space theory one is interested in having an extremum principle for
the entire time interval [0; 1 ).

Nevertheless, also other attempts to apply scale-space frameworks to the Perona{
Malik process have not been more successful yet:

� Salden [350], Florack [143] and Eberly [124] proposed to carry over the linear
scale-space theory to the nonlinear case by considering nonlinear di�usion



20 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

processes which result from special rescalings of the linear one. Unfortunately,
the Perona{Malik �lter turned out not to belong to this class [143].

� Alvarez, Guichard, Lions and Morel [12] have developed a nonlinear scale-
space axiomatic which comprises the linear scale-space theory as well as
nonlinear morphological processes (which we will discuss in 1.5 and 1.6).
Their smoothing axiom is a monotony assumption(comparison principle)
requiring that the scale-space is order-preserving:

f � g =) Tt f � Ttg 8 t � 0: (1.42)

This property is closely related to a maximum{minimum principle and to
L1 -stability of the solution [12, 261]. However, the Perona{Malik model
does not �t into this framework, because its local weak solution satis�es a
comparison principle only for some �nite time, but not for all t > 0; see [222].

1.3.2 Regularized nonlinear models

It has already been mentioned that numerical schemes may provide implicit reg-
ularizations which stabilize the Perona{Malik process [425]. Hence, it has been
suggested to introduce the regularization directly into the continuous equation in
order to become more independent of the numerical implementation [81, 310].

Since the dynamics of the solution may critically depend on the sort of regu-
larization, one should adjust the regularization to the desired goal of the forward{
backward heat equation [35]. One can apply spatial or temporal regularization
(and of course, a combination of both). Below we shall discuss three examples
which illustrate the variety of possibilities and their tailoring towards a speci�c
task.

(a) The �rst spatial regularization attempt is probably due to Posmentier who
observed numerically the stabilizing e�ect of averaging the gradient within
the di�usivity [333].

A mathematically sound formulation of this idea is given by Catt�e, Lions,
Morel and Coll [81]. By replacing the di�usivity g(jr uj2) of the Perona{
Malik model by a Gaussian-smoothed versiong(jr u� j2) with u� := K � � u
they end up with

@tu = div ( g(jr u� j2) r u): (1.43)

In [81] existence, uniqueness and regularity of a solution for � > 0 have been
established.

This process has been analysed and modi�ed in many ways: Whitaker and
Pizer [438] have suggested that the regularization parameter � should be
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a decreasing function int, and Li and Chen [252] have proposed to subse-
quently decrease the contrast parameter� . A detailed study of the in
uence
of the parameters in a regularized Perona{Malik model has been carried out
by Benhamouda [36]. Ka�cur and Mikula [217] have investigated a modi�ca-
tion which allows to di�use di�erently in di�erent grey valu e ranges. Spatial
regularizations of the Perona{Malik process leading to anisotropic di�usion
equations have been proposed by Weickert [413, 415] and willbe described
in 1.3.3. Torkamani{Azar and Tait [403] suggest to replace the Gaussian
convolution by the exponential �lter of Shen and Castan10 [381].

In Chapter 2 we shall see that spatial regularizations lead to well-posed scale-
spaces with a large class of Lyapunov functionals which guarantee that the
solution converges to a constant steady-state.

From a practical point of view, spatial regularizations o�er the advantage
that they make the �lter insensitive to noise at scales smaller than � . There-
fore, when regarding (1.43) as an image restoration equation, it exhibits
besides the contrast parameter� an additional noise scale� . This avoids a
shortcoming of the genuine Perona{Malik process which misinterprets strong
oscillations due to noise as edges which should be preservedor even enhanced.
Examples for spatially regularized nonlinear di�usion �ltering can be found
in Figure 5.2 (c) and 5.4 (a),(b).

(b) P.-L. Lions proved in a private communication to Mumford that the one-
dimensional process

@tu = @x (g(v) @x u); (1.44)

@tv = 1
� (j@xuj2 � v) (1.45)

leads to a well-posed �lter (cf. [329]). We observe thatv is intended as a
time-delay regularization of j@xuj2 where the parameter� > 0 determines
the delay. These equations arise as a special case of the spatio-temporal
regularizations of Nitzberg and Shiota [310] when neglecting any spatial reg-
ularization. Mumford conjectures that this model gives piecewise constant
steady-states. In this case, the steady-state solution would solve a segmen-
tation problem.

(c) In the context of shear 
ows, Barenblatt et al. [35] regularized the one-
dimensional forward{backward heat equation by considering the third-order
equation

@tu = @x (�( ux )) + �@xt (	( ux)) (1.46)

10This renounces invariance under rotation.
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where 	 is strictly increasing and uniformly bounded in IR, and j� 0(s)j =
O(	 0(s)) as s ! �1 . This regularization was physically motivated by in-
troducing a relaxation time � into the di�usivity.

For the corresponding initial boundary value problem with homogeneous
Neumann boundary conditions they proved the existence of a unique gen-
eralized solution. They also showed that smooth solutions may become dis-
continuous within �nite time, before they �nally converge to a piecewise
constant steady-state.

These examples demonstrate that regularization is much more than stabilizing
an ill-posed process:Regularization is modeling. Appropriately chosen regulariza-
tions create the desired �lter features.We observe that spatial regularizations are
closer to scale-space ideas while temporal regularizationare more related to image
restoration and segmentation, since they may lead to nontrivial steady-states.

1.3.3 Anisotropic nonlinear models

All nonlinear di�usion �lters that we have investigated so far utilize a scalar-valued
di�usivity g which is adapted to the underlying image structure. Therefore, they
are isotropic and the 
ux j = � gr u is always parallel to r u. Nevertheless, in
certain applications it would be desirable to bias the 
ux towards the orientation
of interesting features. These requirements cannot be satis�ed by a scalar di�u-
sivity anymore, a di�usion tensor leading to anisotropic di�usion �lters has to be
introduced.

First anisotropic ideas in image processing date back to Graham [167] in 1962,
followed by Newman and Dirilten [300], Lev, Zucker and Rosenfeld [250], and
Nagao and Matsuyama [297]. They used convolution masks thatdepended on
the underlying image structure. Related statistical approaches were proposed by
Knutsson, Wilson and Granlund [237]. These ideas have been further developed
by Nitzberg and Shiota [310], Lindeberg and G�arding [259],and Yang et al. [443].
Their suggestion to use shape-adapted Gaussian masks has been discussed in Sec-
tion 1.2.6.

Anisotropic di�usion �lters usually apply spatial regular ization strategies11. A
general theoretical framework for spatially regularized anisotropic di�usion �lters
will be presented in the remaining chapters of this book.

Below we study two representatives of anisotropic di�usionprocesses. The �rst
one o�ers advantages at noisy edges, whereas the second one is well-adapted to the
processing of one-dimensional features. They are called edge-enhancing anisotropic
di�usion and coherence-enhancing anisotropic di�usion, respectively.

11An exception is the time-delay regularization of Cottet and El-Ayyadi [100, 101].
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(a) Anisotropic regularization of the Perona{Malik process
In the interior of a segment the nonlinear isotropic di�usion equation (1.43)
behaves almost like the linear di�usion �lter (1.9), but at edges di�usion
is inhibited. Therefore, noise at edges cannot be eliminated successfully by
this process. To overcome this problem, a desirable method should prefer
di�usion along edges to di�usion perpendicular to them.

Anisotropic models do not only take into account the modulusof the edge
detector r u� , but also its direction. To this end, we construct the orthonor-
mal system of eigenvectorsv1, v2 of the di�usion tensor D such that they
re
ect the estimated edge structure:

v1 k r u� ; v2 ? r u� : (1.47)

In order to prefer smoothing along the edge to smoothing across it, Weickert
[415] proposed to choose the corresponding eigenvalues� 1 and � 2 as

� 1(r u� ) := g(jr u� j2); (1.48)

� 2(r u� ) := 1 : (1.49)

Section 5.1 presents several examples where this process isapplied to test
images.

In general, r u does not coincide with one of the eigenvectors ofD as long
as � > 0: Hence, this model behaves really anisotropic. If we let the regular-
ization parameter � tend to 0, we end up with the isotropic Perona{Malik
process.

Another anisotropic model which can be regarded as a regularization of an
isotropic nonlinear di�usion �lter has been described in [413].

(b) Anisotropic models for smoothing one-dimensional objects
A second motivation for introducing anisotropy into di�usion processes arises
from the wish to process one-dimensional features such as line-like structures.
To this end, Cottet and Germain [102] constructed a di�usiontensor with
eigenvectors as in (1.47) and corresponding eigenvalues

� 1(r u� ) := 0 ; (1.50)

� 2(r u� ) :=
� jr u� j2

1 + ( jr u� j=� )2
(� > 0): (1.51)

This is a process di�using solely perpendicular tor u� . For � ! 0, we
observe thatr u becomes an eigenvector ofD with corresponding eigenvalue
0. Therefore, the process stops completely. In this sense, it is not intended as
an anisotropic regularization of the Perona{Malik equation. Well-posedness
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results for the Cottet{Germain �lter comprise an existenceproof for weak
solutions.

Since the Cottet{Germain model di�uses only in one direction, it is clear
that its result depends very much on the smoothing direction. For enhancing
parallel line-like structures, one can improve this model when replacingr u?

�

by a more robust descriptor of local orientation, the structure tensor (cf.
Section 2.2). This leads tocoherence-enhancing anisotropic di�usion[418],
which shall be discussed in Section 5.2, where also many examples can be
found.

1.3.4 Generalizations

Higher dimensions. It is easily seen that many of the previous results can
be generalized to higher dimensions. This may be useful whenconsidering e.g.
medical image sequences from computerized tomography (CT)or magnetic reso-
nance imaging (MRI), or when applying di�usion �lters to the postprocessing of

uctuating higher-dimensional numerical data. The �rst three-dimensional non-
linear di�usion �lters have been investigated by Gerig et al. [155] in the isotropic
case and by Rambaux and Gar�con [339] in the anisotropic case. A generalization
of coherence-enhancing anisotropic di�usion to higher dimensions is proposed in
[428], and S�anchez{Ortiz et al. [355] describe nonlinear di�usion �ltering of 3-D
image sequences by treating them as 4-D data sets.

More sophisticated structure descriptors. The edge detectorr u� en-
ables us to adapt the di�usion to magnitude and direction of edges, but it can
neither distinguish between edges and corners nor does it give a reliable measure
of local orientation. As a remedy, one can steer the smoothing process by more
advanced structure descriptors such as higher-order derivatives [127] or tensor-
valued expressions of �rst-order derivatives [414, 418]. The theoretical analysis in
the present work shall comprise the second possibility. It has also been proposed
to replacer u� by a Bayesian classi�cation result in feature space [26].

Vector-valued models. Vector-valued images can arise either from devices
measuring multiple physical properties or from a feature analysis of one single
image. Examples for the �rst category are colour images, multi-spectral Landsat
exposures and multi-spin echo MR images, whereas representatives of the second
class are given by statistical moments or thejet spaceinduced by the image itself
and its partial derivatives up to a given order. Feature vectors play an important
role for tasks like texture segmentation.
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The simplest idea how to apply di�usion �ltering to multicha nnel images would
be to di�use all channels separately and independently fromeach other. This leads
to the undesirable e�ect that edges may be formed at di�erentlocations for each
channel. In order to avoid this, one should use a common di�usivity which combines
information from all channels. Such isotropic vector-valued di�usion models were
studied by Gerig et al. [155, 156] and Whitaker [433, 434] in the context of medical
imagery. Extensions to anisotropic vector-valued models with a common tensor-
valued structure descriptor for all channels have been investigated by Weickert
[422].

1.3.5 Numerical aspects

For nonlinear di�usion �ltering numerous numerical methods have been applied:
Finite element techniques are described in [367, 391, 34, 216]. B•ansch and

Mikula reported a signi�cant speed-up by supplementing them with an adaptive
mesh coarsening [34]. Neural network approximations to nonlinear di�usion �lters
are investigated by Cottet [100, 99] and Fischl and Schwartz[137]. Perona and
Malik [327] propose hardware realizations by means of analogue VLSI networks
with nonlinear resistors. A very detailed VLSI proposal hasbeen developed by
Gijbels et al. [158].

In [148] three schemes for a spatially regularized 1-D Perona{Malik �lter are
compared: a wavelet method of Petrov{Galerkin type, a pseudospectral method
and a �nite-di�erence scheme. It turned out that all results became fairly similar,
when the regularization parameter� was su�ciently large. Since the computational
e�ort is of a comparable order of magnitude, it seems to be a matter of taste which
scheme is preferred.

Most implementations of nonlinear di�usion �lters are based on �nite di�er-
ence methods, since they are easy to handle and the pixel structure of digital
images already provides a natural discretization on a �xed rectangular grid. Ex-
plicit schemes are the most simple to code and, therefore, they are used almost
exclusively. Due to their local behaviour, they are well-suited for parallel architec-
tures. Nevertheless, they su�er from the fact that fairly small time step sizes are
needed in order to ensure stability. Semi-implicit schemes{ which approximate the
di�usivity or the di�usion tensor in an explicit way and the r est implicitly { are
considered in [81]. They possess much better stability properties. A fast multigrid
technique using a pyramid algorithm for the Perona{Malik �lter has been studied
by Acton et al. [5, 4]; see also [349] for related ideas.

While the preceding techniques are focusing onapproximating a continuous
equation, it is often desirable to have a genuinely discretetheory which guarantees
that an algorithm exactlyreveals the same qualitative properties as its continuous
counterpart. Such a framework is presented in [420, 421], both for the semidiscrete
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Table 1.2: Requirements for continuous, semidiscrete and fully dis-
crete nonlinear di�usion scale-space.

requirement continuous semidiscrete discrete
ut = div ( Dr u) du

dt = A(u)u u0 = f
u(t = 0) = f u(0) = f uk+1 = Q(uk)uk

hDr u; ni = 0
smoothness D 2 C1 A Lipschitz- Q continuous

continuous
symmetry D symmetric A symmetric Q symmetric
conservation div form; column sums column sums

re
ective b.c. are 0 are 1
nonnega- positive nonnegative nonnegative
tivity semide�nite o�-diagonals elements
connectivity uniformly pos. irreducible irreducible;

de�nite pos. diagonal

and for the fully discrete case. A detailed treatment of thistheory can be found
in Chapter 3 and 4, respectively. Table 1.2 gives an overviewof the requirements
which are needed in order to prove well-posedness, average grey value invariance,
causality in terms of an extremum principle and Lyapunov functionals, and con-
vergence to a constant steady-state [423].

We observe that the requirements belong to �ve categories: smoothness, sym-
metry, conservation, nonnegativity and connectivity requirements. These criteria
are easy to check for many discretizations. In particular, it turns out that suitable
explicit and semi-implicit �nite di�erence discretizatio ns of many discussed models
create discrete scale-spaces. The discrete nonlinear scale-space concept has also led
to the development of fast novel schemes, which are based on an additive operator
splitting (AOS) [424, 430]. Under typical accuracy requirements, they are about
10 times more e�cient than the widely used explicit schemes,and a speed-up by
another order of magnitude can be achieved by a parallel implementation [431]. A
general framework for AOS schemes will be presented in Section 4.4.2.

1.3.6 Applications

Nonlinear di�usion �lters have been applied for postprocessing 
uctuating data
[269, 415], for visualizing quality-relevant features in computer aided quality con-
trol [299, 413, 418], and for enhancing textures such as �ngerprints [418]. They have
proved to be useful for improving subsampling [144] and linedetection [156, 418],
for blind image restoration [445], for scale-space based segmentation algorithms
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[307, 308], for segmentation of textures [433, 437] and remotely sensed data [6, 5],
and for target tracking in infrared images [65]. Most applications, however, are
concerned with the �ltering of medical images [26, 28, 29, 155, 244, 248, 264, 270,
308, 321, 355, 386, 393, 431, 434, 437, 444]. Some of these applications will be
investigated in more detail in Chapter 5.

Besides such speci�c problem solutions, nonlinear di�usion �lters can be found
in commercial software packages such as the medical visualization tool Analyze.12

1.4 Methods of di�usion{reaction type

This section investigates variational frameworks, in which di�usion{reaction equa-
tions or coupled systems of them are interpreted as steepestdescent minimizers of
suitable energy functionals. This idea connects di�usion methods to edge detection
and segmentation ideas.

Besides the variational interpretation there exist other interesting theoretical
frameworks for di�usion �lters such as the Markov random �eld and mean �eld
annealing context [152, 153, 247, 251, 328, 387], robust statistics [41], and deter-
ministic interactive particle models [279]. Their discussion, however, would lead us
beyond the scope of this book.

1.4.1 Single di�usion{reaction equations

Nordstr•om [311] has suggested to obtain a reconstructionu of a degraded image
f by minimizing the energy functional

E f (u; w) :=
Z




�
� � (u� f )2 + w�jr uj2 + � 2 � (w� ln w)

�
dx: (1.52)

The parameters� and � are positive weights andw : 
 ! [0; 1] gives a fuzzy edge
representation: in the interior of a region,w approaches 1 while at edges,w is close
to 0 (as we shall see below).

The �rst summand of E punishes deviations ofu from f (deviation cost), the
second term detects unsmoothness ofu within each region(stabilizing cost), and
the last one measures the extend of edges(edge cost). Cost terms of these three
types are typical for variational image restoration methods.

The corresponding Euler equations to this energy functional are given by

0 = � �(u� f ) � div (wr u); (1.53)

0 = � 2 � (1� 1
w ) + jr uj2; (1.54)

12Analyzeis a registered trademark of Mayo Medical Ventures, 200 First Street SW, Rochester,
MN 55905, U.S.A.
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equipped with a homogeneous Neumann boundary condition foru.
Solving (1.54) forw gives

w =
1

1 + jr uj2=� 2
: (1.55)

We recognize thatw is identical with the Perona{Malik di�usivity g(jr uj2) in-
troduced in (1.32). Therefore, (1.53) can be regarded as thesteady-state equation
of

@tu = div ( g(jr uj2) r u) + � (f � u): (1.56)

This equation can also be obtained directly as the descent method of the functional

Ff (u) :=
Z




�
� � (u� f )2 + � 2 � ln

�
1+ jr uj2

� 2

��
dx: (1.57)

The di�usion{reaction equation (1.56) consists of the Perona{Malik process
with an additional bias term � �(f � u). One of Nordstr•om's motivations for intro-
ducing this term was to free the user from the di�culty of specifying an appropriate
stopping time for the Perona{Malik process.

However, it is evident that the Nordstr•om model just shifts the problem of
specifying a stopping timeT to the problem of determining � . So it seems to
be a matter of taste which formulation is preferred. People interested in image
restoration usually prefer the reaction term, while for scale-space researchers it is
more natural to have a constant steady-state as the simplestimage representation.

Nordstr•om's method may su�er from the same ill-posedness problems as the
underlying Perona{Malik equation, and it is not hard to verify that the energy
functional (1.57) is nonconvex. Therefore, it can possess numerous local minima,
and the process (1.56) withf as initial condition does not necessarily converge to
a global minimum. Similar di�culties may also arise in other di�usion{reaction
models, where convergence results have not yet been established [152, 186].

A popular possibility to avoid these ill-posedness and convergence problems is
to renounce edge-enhancing di�usivities in order to end up with (nonquadratic)
convex functionals [43, 88, 110, 367, 391]. In this case the frameworks of convex
optimization and monotone operators are applicable, ensuring well-posedness and
stability of a standard �nite-element approximation [367].

Di�usion{reaction approaches have been applied to edge detection [367, 391],
to the restoration of inverse scattering images [263], to SPECT [88] and vascular
reconstruction in medical imaging [102, 325], and to optic 
ow [368, 111] and
stereo problems [343]. They can be extended to vector-valued images [369] and
to corner-preserving smoothing of curves [136, 323]. Di�usion{reaction methods
with constant di�usivities have also been used for local contrast normalization in
images [330].
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1.4.2 Coupled systems of di�usion{reaction equations

Mumford and Shah [295, 296] have proposed to obtain a segmented imageu from
f by minimizing the functional

E f (u; K ) = �
Z




(u� f )2 dx +
Z


 nK

jr uj2 dx + � jK j (1.58)

with nonnegative parameters� and � . The discontinuity set K consists of the
edges, and its one-dimensional Hausdor� measurejK j gives the total edge length.
Like the Nordstr•om functional (1.52), this expression consists of three cost terms:
the �rst one is the deviation cost, the second one gives the stabilizing cost, and
the third one represents the edge cost.

The Mumford{Shah functional can be regarded as a continuousversion of the
Markov random �eld method of Geman and Geman [154] and the weak membrane
model of Blake and Zisserman [42]. Related approaches are also used to model
materials with two phases and a free interface.

The fact that (1.58) leads to a free discontinuity problem causes many challeng-
ing theoretical questions [249]. The book of Morel and Solimini [292] covers a very
detailed analysis of this functional. Although the existence of a global minimizer
with a closed edge setK has been established [108, 17], uniqueness is in general
not true [292, pp. 197{198]. Regularity results forK in terms of (at least) C1-arcs
have recently been obtained [18, 19, 20, 48, 49, 107].

The concept of energy functionals for segmenting images o�ers the practical
advantage that it provides a framework for comparing the quality of two seg-
mentations. On the other hand, (1.58) exhibits also some shortcomings, e.g. the
problem that sigmoid-like edges produce multiple segmentation boundaries(over-
segmentation, staircasing e�ect)[377]. Another drawback results from the fact that
the Mumford{Shah functional allows only singularities which are typical for mini-
mal surfaces: Corners or T-junctions are not possible and segments meet at triple
points with 120o angle [296]. In order to avoid such problems, modi�cations of the
Mumford{Shah functional have been proposed by Shah [379]. An a�ne invariant
generalization of (1.58) is investigated in [32, 31] and applied to a�ne invariant
texture segmentation [31, 33], and a Mumford{Shah functional for curves can be
found in [323].

Since many algorithms in image processing can be restated asversions of the
Mumford{Shah functional [292] and since it is a prototype ofa free discontinuity
problem it is instructive to study this variational problem in more detail.

Numerical complications arise from the fact that the Mumford{Shah functional
has numerous local minima. Global minimizers such as the simulated annealing
method used by Geman and Geman [154] are extremely slow. Hence, one searches
for fast (suboptimal) deterministic strategies, e.g. pyramidal region-growing algo-
rithms [3, 239].
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Another important class of numerical methods is based on theidea to approx-
imate the discontinuity set K by a smooth function w, which is close to 0 near
edges ofu and which approximates 1 elsewhere.

We may for instance study the functional

Ff (u; w) :=
Z




�
� � (u� f )2 + w2�jr uj2 + � �

�
cjr wj2+ (1� w)2

4c

��
dx (1.59)

with a positive parameterc specifying the \edge width". Ambrosio and Tortorelli
proved that this functional converges to the Mumford{Shah functional for c ! 0
(in the sense of �-convergence, see [22] for more details).

Minimizing Ff corresponds to the gradient descent equations

@tu = div ( w2r u) + � �(f � u); (1.60)

@tw = c� w � w
� jr uj2 + (1� w)

4c (1.61)

with homogeneous Neumann boundary conditions. Equations of this type are in-
vestigated by Richardson and Mitter [341]. Since (1.60) resembles the Nordstr•om
process (1.56), similar problems can arise: The functionalFf is not jointly convex
in u and v, so it may have many local minima and a gradient descent algorithm
may get trapped in a poor local minimum. Well-posedness results for this system
have not been obtained up to now, but a maximum{minimum principle and a local
stability proof have been established.

Another di�usion{reaction system is studied by Shah [375, 376]. He replaces
the functional (1.58) by two coupled convex energy functionals and applies gradi-
ent descent. This results in �nding an equilibrium state between two competing
processes. Experiments indicate that it converges to a stable solution. Proesmans
et al. [337, 336] observed that this solution looks fairly blurred since the equations
contain di�usion terms such as � u. They obtained pronounced edges by replacing
such a term by its Perona{Malik counterpart div (g(jr uj2) r u). Related equations
are also studied in [398]. Of course, this approach gives rise to the same theoretical
questions as (1.60), (1.61).

The system of Richardson and Mitter is used for edge detection [341]. Shah in-
vestigates di�usion{reaction systems for matching stereoimages [378], while Proes-
mans et al. apply coupled di�usion-reaction equations to image sequence analysis,
vector-valued images and stereo vision [336, 338]. Their �nite di�erence algorithms
run on a parallel transputer network.

It should also be mentioned that there exist reaction{di�usion systems which
have been applied to image restoration [334, 335, 382], texture generation [406, 440]
and halftoning [382], and which are not connected to Perona{Malik or Mumford{
Shah ideas. They are based on Turing's pattern formation model [405].
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1.5 Classic morphological processes

Morphology is an approach to image analysis based on shapes.Its mathematical
formalization goes back to the group around Matheron and Serra, both working
at ENS des Mines de Paris in Fontainebleau. The theory had �rst been developed
for binary images, afterwards it was extended to grey-scaleimages by regarding
level sets as shapes. Its applications cover biology, medical diagnostics, histology,
quality control, radar and remote sensing, science of material, mineralogy, and
many others.

Morphology is usually described in terms of algebraic set theory, see e.g. [280,
371, 181, 184] for an overview. Nevertheless, PDE formulations for classic morpho-
logical processes have been discovered recently by Brockett and Maragos [60], van
den Boomgaard [50], Arehart et al. [25] and Alvarez et al. [12].

This section surveys the basic ideas and elementary operations of binary and
grey-scale morphology, presents its PDE representations for images and curves,
and summarizes the results concerning well-posedness and scale-space properties.
Afterwards numerical aspects of the PDE formulation of these processes are dis-
cussed, and generalizations are sketched which comprise the morphological equiv-
alent of Gaussian scale-space.

1.5.1 Binary and grey-scale morphology

Binary morphology considersshapes (silhouettes), i.e. closed setsX � IR2 whose
boundaries are Jordan curves [16]. Henceforth, we identifya shapeX with its
characteristic function

� (x) :=

(
1 if x 2 X ,
0 else.

(1.62)

Binary morphological operations a�ect only the boundary curve of the shape and,
therefore, they can be viewed as curve or shape deformations.

Grey-scale morphology generalizes these ideas [274] by decomposing an image
f into its level sets f X af; a 2 IRg; where

X af := f x 2 IR2; f (x) � ag: (1.63)

A binary morphological operationA can be extended to some grey-scale imagef
by de�ning

X a(Af ) := A(X af ) 8 a 2 IR: (1.64)

We observe that for this type of morphological operations only grey-level sets
matter. As a consequence, they are invariant under monotonegrey-level rescalings.
This morphological invariance (grey-scale invariance)is characteristic for all meth-
ods we shall study in Section 1.5 and 1.6, except for 1.5.6 andsome modi�cations
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in 1.6.5. It is a very desirable property in all cases where brightness changes of the
illumination occur or where one wants to be independent of the speci�c contrast
range of the camera. On the other hand, for applications likeedge detection or
image restoration, contrast provides important information which should be taken
into account. Moreover, in some cases isolines may give inadequate information
about the depicted physical object boundaries.

1.5.2 Basic operations

Classic morphology analyses a shape by matching it with a so-called structuring
element, a bounded setB � IR2. Typical shapes forB are discs, squares, or ellipses.

The two basic morphological operations,dilation and erosionwith a structuring
elementB , are de�ned for a grey-scale imagef 2 L1 (IR 2) by [60]

dilation: ( f � B ) (x) := sup f f (x � y); y2 Bg; (1.65)

erosion: (f 	 B ) (x) := inf f f (x+ y); y2 Bg: (1.66)

These names can be easily motivated when considering a shapein a binary image
and a disc-shaped structuring element. In this case dilation blows up its boundaries,
while erosion shrinks them.

Dilation and erosion form the basis for constructing other morphological pro-
cesses, for instanceopeningand closing:

opening: (f � B ) (x) := (( f 	 B ) � B ) (x); (1.67)

closing: (f � B ) (x) := (( f � B ) 	 B ) (x): (1.68)

In the preceding shape interpretation opening smoothes theshape by breaking nar-
row isthmuses and eliminating small islands, while closingsmoothes by eliminating
small holes, fusing narrow breaks and �lling gaps at the contours [181].

1.5.3 Continuous-scale morphology

Let us consider a convex structuring elementtB with a scaling parametert > 0.
Then, calculating u(t) = f � tB and u(t) = f 	 tB; respectively13, can be shown
to be equivalent to solving

@tu(x; t ) = sup
y2 B

hy; r u(x; t )i ; (1.69)

@tu(x; t ) = inf
y2 B

hy; r u(x; t )i : (1.70)

with f as initial condition [12, 360].

13Henceforth, we frequently use the simpli�ed notation u(t) instead of u(:; t)
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By choosing e.g.B := f y 2 IR2; jyj � 1g one obtains

@tu = jr uj; (1.71)

@tu = �jr uj: (1.72)

The solution u(t) is the dilation (resp. erosion) off with a disc of radius t and
centre 0 as structuring element. Figure 5.5 (a) presents thetemporal evolution of
a test image under such a continuous-scale dilation.

Connection to curve evolution

Morphological PDEs such as (1.71) or (1.72) are closely related to shape and
curve evolutions. This can be illustrated by considering a smooth Jordan curve
C : [0; 2� ] � [0; 1 ) ! IR2,

C(p; t) =

 
x1(p; t)
x2(p; t)

!

(1.73)

wherep is the parametrization andt is the evolution parameter. We assume that
C evolves in outer normal directionn with speed� , which may be a function of
its curvature � := det( Cp ;Cpp )

jCp j3 :

@tC = � (� ) � n; (1.74)

C(p;0) = C0(p): (1.75)

One can embed the curveC(p; t) in an imageu(x; t ) in such a way that C is just
a level curve ofu. The corresponding evolution foru is given by [319, 362, 16]

@t u = � (curv(u)) � jr uj: (1.76)

where the curvature ofu is

curv(u) := div

 
r u
jr uj

!

: (1.77)

Sometimes the image evolution (1.76) is called theEulerian formulation of the
curve evolution (1.74), because it is written in terms of a �xed coordinate system.

We observe that (1.71) and (1.72) correspond to the simple cases� = � 1.
Hence, they describe the curve evolutions

@tC = � n: (1.78)

This equation moves level sets in normal direction with constant speed. Such a
process is also namedgrass�re 
ow or prairie 
ow . It is closely related to the
Huygens principle for wave propagation [25]. Its importance for shape analysis
in biological vision has already been pointed out in the sixties by Blum [47]. He
simulated grass�re 
ow by a self-constructed opticomechanical device.
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1.5.4 Theoretical results

Equations such as (1.78) may develop singularities and intersections even for
smooth initial data. Hence, concepts of jump conditions, entropy solutions, and
shocks have to be applied to this shape evolution [228].

A suitable framework for the image evolution equation (1.76) is provided by
the theory of viscosity solutions [103]. The advantage of this analysis is that it
allows us to treat shapes with singularities such as corners, where the classical
solution concept does not apply, but a unique weak solution in the viscosity sense
still exists.

It can be shown [90, 129, 103], that for an initial value

f 2 BUC(IR 2) := f ' 2 L1 (IR 2) j ' is uniformly continuous on IR2g (1.79)

the equations (1.69),(1.70) possess a unique global viscosity solution u(x; t ) which
ful�ls the maximum{minimum principle

inf
IR 2

f � u(x; t ) � sup
IR 2

f on IR2 � [0; 1 ): (1.80)

Moreover, it is L1 -stable: for two di�erent initial images f , g the corresponding
solutions u(t), v(t) satisfy

ku(t) � v(t)kL 1 (IR 2 ) � k f � gkL 1 (IR 2) : (1.81)

1.5.5 Scale-space properties

Brockett and Maragos [60] pointed out that the convexity ofB is su�cient to
ensure the semigroup property of the corresponding dilations and erosions. This
establishes an important architectural scale-space property.

Similar results have been found by van den Boomgaard and Smeulders [53].
Moreover, they conjecture a causality property where singularities play a role sim-
ilar to zero-crossings in Gaussian scale-space.

Jackway and Deriche [206, 207] prove a causality theorem forthe dilation{
erosion scale-space, which is also based on local extrema instead of zero-crossings.
They establish that under erosion the number of local minimais decreasing, while
dilation reduces the number of local maxima. The location ofthese extrema is
preserved during their whole lifetime.

A complete scale-space interpretation is due to Alvarez, Guichard, Lions and
Morel [12]: They prove that under three architectural assumptions (semigroup
property, locality and regularity), one smoothing axiom (comparison principle) and
additional invariance requirements (grey-level shift invariance, invariance under ro-
tations and translations, morphological invariance), a two-dimensional scale-space
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equation has the following form:

@tu = jr uj F (t; curv(u)) (1.82)

Clearly, dilation and erosion belong to the class (1.82), thus being good candi-
dates for morphological scale-spaces. Indeed, in [12] it isshown that the converse
is true as well: all axioms that lead to (1.82) are ful�lled.14

1.5.6 Generalizations

It is possible to extend morphology with a structuring element to morphology with
non
at structuring functions. In this case we have to renounce invariance under
monotone grey level transformations, but we gain an interesting insight into a
process which has very much in common with Gaussian scale-space.

A dilation of an image f with a structuring function b : IR2 ! IR is de�ned as

(f � b) (x) := sup
y2 IR 2

f f (x � y) + b(y)g: (1.83)

This is a generalization of de�nition (1.65), since one can recover dilation with a
structuring element B by considering the 
at structuring function

b(x) :=

(
0 (x 2 B);

�1 (x 62B):
(1.84)

Van den Boomgaard [50, 51] and Jackway [206] proposed to dilate an imagef (x)
with quadratic structuring functions of type

b(x; t ) = �
jxj2

4t
(t > 0): (1.85)

It can be shown [50, 53] that the resultu(x; t ) is a weak solution of

@tu = jr uj2; (1.86)

u(x; 0) = f (x): (1.87)

The temporal evolution of a test image under this process is illustrated in Figure
5.5 (b).

In analogy to the fact that Gaussian-type functionsk(x; t ) = aexp(jx j2

4t ) are the
only rotationally symmetric kernels which are separable with respect to convolu-
tion, van den Boomgaard proves that the quadratic structuring functions b(x; t )
are the only rotationally invariant structuring functions which are separable with
respect to dilation [50, 51].

14Invariance under rotations is only satis�ed for a disc centered in 0 as structuring element.
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A useful tool for understanding this similarity and many other analogies be-
tween morphology and linear systems theory is theslope transform. This general-
ization of the Legendre transform is the morphological equivalent of the Fourier
transform. It has been discovered simultaneously by Dorst and van den Boomgaard
[119] and by Maragos [275] in slightly di�ering formulations.

The close relation between (1.86) and Gaussian scale-spacehas also triggered
Florack and Maas [142] to study a one-parameter family of isomorphisms of linear
di�usion which reveals (1.86) as limiting case.

1.5.7 Numerical aspects

Dilations or erosions with quadratic structuring functions are separable and, thus,
they can be implemented very e�ciently by applying one-dimensional operations.
A fast algorithm is described by van den Boomgaard [51].

For morphological operations with 
at structuring elements, the situation is
more complicated. Schemes for dilation or erosion which arebased oncurve evo-
lution turn out be be di�cult to handle: they require prohibi tive small time steps,
and su�er from the problem of coping with singularities and topological changes
[319, 25, 360].

For this reason it is useful to discretize the correspondingimageevolution equa-
tions. The widely-usedOsher{Sethian schemes[319] are based on the idea to derive
numerical methods for such equations from techniques for hyperbolic conservation
laws. Overviews of these level set approaches and their various applications can be
found in [372, 374].

To illustrate the basic idea with a simple example, let us restrict ourselves to the
one-dimensional dilation equation@tu= j@xuj: A �rst-order upwind Osher{Sethian
scheme for this process is given by

un+1
i � un

i

�
=

s �

min
� un

i � un
i � 1

h
; 0

�� 2

+
�

max
� un

i +1 � un
i

h
; 0

�� 2

; (1.88)

where h is the pixel size, � is the time step size, andun
i denotes a discrete

approximation of u(ih; n� ):
Level set methods possess two advantages over classical set-theoretic schemes

for dilation/erosion [25, 360, 218, 66]:

(a) They give excellent results for non-digitally scalablestructuring elements
whose shapes cannot be represented correctly on a discrete grid, for instance
discs or ellipses.

(b) The time t plays the role of a continuous scale parameter. Therefore, the
size of a structuring element need not be multiples of the pixel size, and it
is possible to get results with sub-pixel accuracy.
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However, they reveal also two disadvantages:

(a) They are slower than set-theoretic morphological schemes.

(b) Dissipative e�ects such as blurring of discontinuitiesoccur.

To address the �rst problem, speed-up techniques for shape evolution have been
proposed which use only points close to the curve at every time step [8, 435,
373]. Blurring of discontinuities can be minimized by applying shock-capturing
techniques such as high-order ENO15 schemes [395, 385].

1.5.8 Applications

Continuous-scale morphology has been applied to shape-from-shading problems,
gridless image halftoning, distance transformations, andskeletonization. Applica-
tions outside the �eld of image processing and computer vision include for instance
shape o�sets in CAD and path planning in robotics. Overviewsand suitable ref-
erences can be found in [233, 276].

1.6 Curvature-based morphological processes

Besides providing a useful reinterpretation of classic continuous-scale morphology,
the PDE approach has led to the discovery of new morphological operators. These
processes are curvature-based, and { although they cannot be written in conserva-
tion form { they reveal interesting relations to di�usion processes. Two important
representatives of this class are mean curvature motion andits a�ne invariant
counterpart. In this subsection we shall discuss these PDEs, possible generaliza-
tions, numerical aspects, and applications.

1.6.1 Mean-curvature �ltering

In order to motivate our �rst curvature-based morphological PDE, let us recall
that the linear di�usion equation (1.9) can be rewritten as

@tu = @�� u + @�� u; (1.89)

where the unit vectors� and � are parallel and perpendicular tor u, respectively.
The �rst term on the right-hand side of (1.89) describes smoothing along the

owlines, while the second one smoothes along isophotes. When we want to smooth

15ENO meansessentially non-oscillatory. By adapting the stencil for derivative approximations
to the local smoothness of the solution, ENO schemes obtain both high-order accuracy in smooth
regions and sharp shock transitions [183].
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the image anisotropically along its isophotes, we can neglect the �rst term and end
up with the problem

@tu = @�� u; (1.90)

u(x; 0) = f (x): (1.91)

By straightforward calculations one veri�es that (1.90) can also be written as

@tu =
u2

x2
ux1x1 � 2ux1ux2ux1x2 + u2

x1
ux2x2

u2
x1

+ u2
x2

(1.92)

= � u �
1

jr uj2
hr u; Hess(u)r ui (1.93)

= jr uj curv(u): (1.94)

Since curv(u)=div
�

r u
jr uj

�
is the curvature ofu (mean curvature for dimensions�

3), equation (1.94) is named(mean) curvature motion (MCM). The corresponding
curve evolution

@tC(p; t) = � (p; t) � n(p; t) (1.95)

shows that (1.90) propagates isophotes in inner normal direction with a velocity
that is given by their curvature � = det( Cp ;Cpp )

jCp j3 :
Processes of this type have �rst been studied by Brakke in 1978 [54]. They

arise in 
ame propagation, crystal growth, the derivation of minimal surfaces, grid
generation, and many other applications; see [372, 374] andthe references therein
for an overview. The importance of MCM in image processing became only recently
clear: As nicely explained in a paper by Guichard and Morel [173], mean curvature
motion can be regarded as the limit process when classic morphological operators
such as median �ltering are iteratively applied.

Figure 5.5 (c) and 5.11 (a) present examples for mean curvature �ltering. Equa-
tion (1.95) is also calledgeometric heat equationor Euclidean shortening 
ow. The
subsequent discussions shall clarify these names.

Intrinsic heat 
ow

Interestingly, there exists a further connection between linear di�usion and motion
by curvature. Let v(p; t) denote theEuclidean arc-lengthof C(p; t); i.e.

v(p; t) :=
pZ

0

jC� (�; t )j d�; (1.96)

where C� := @� C: The Euclidean arc-length is characterized byjCv j = 1. It is
invariant under Euclidean transformations, i.e. mappings

x ! Rx + b (1.97)
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where R 2 IR2� 2 denotes a rotation matrix and b2 IR2 is a translation vector.
Since it is well-known from di�erential geometry (see e.g. [71], p. 14) that

� (p; t) � n(p; t) = @vvC(p; t); (1.98)

we recognize that curvature motion can be regarded as Euclidean invariant di�u-
sion of isophotes:

@tC(p; t) = @vvC(p; t): (1.99)

This geometric heat equationis intrinsic, since it is independent of the curve para-
metrization. However, the reader should be aware of the factthat { although this
equation looks like a linear one-dimensional heat equation{ it is in fact nonlinear,
since the arc-lengthv is again a function of the curve.

Theoretical results

For the evolution of a smooth curve under its curvature, it has been shown in
[188, 151, 169] that a smooth solution exists for some �nite time interval [0; T).
A convex curve remains convex, a nonconvex one becomes convex and, for t ! T,
the curve shrinks to acircular point, i.e. a point with a circle as limiting shape.
Moreover, since under all 
owsCt = Cqq the Euclidean arc-length parametrization
q(p) := v(p) is the fastest way to shrink the Euclidean perimeter

H
jCpj dp, equation

(1.99) is calledEuclidean shortening 
ow[150]. The time for shrinking a circle of
radius � to a point is given by

T = 1
2 � 2: (1.100)

In analogy to the dilation/erosion case it can be shown that,for an initial image
f 2 BUC(IR 2), equation (1.90) has a unique viscosity solution which isL1 -stable
and satis�es a maximum{minimum principle [12].

Scale-space interpretation

A shape scale-space interpretation for curve evolution under Euclidean heat 
ow is
studied by Kimia and Siddiqi [227]. It is based on results of Evans and Spruck [129].
They establish the semigroup property as architectural quality, and smoothing
properties follow from the fact that the total curvature decreases. Moreover, the
number of extrema and in
ection points of the curvature is nonincreasing.

As an image evolution, MCM belongs to the class of morphological scale-spaces
which satisfy the general axioms of Alvarez, Guichard, Lions and Morel [12], that
have been mentioned in 1.5.5.

When studying the evolution of isophotes under MCM, it can beshown that,
if one isophote is enclosed by another, this ordering is preserved [129, 227]. Such a
shape inclusion principleimplies in connection with (1.100) that it takes the time
T = 1

2 � 2 to remove all isophotes within a circle of radius� . This shows that the
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relation between temporal and spatial scale for MCM is the same as for linear
di�usion �ltering (cf. (1.14)).

Moreover, two level sets cannot move closer to one another than they were
initially [129, 227]. Hence, contrast cannot be enhanced. This property is charac-
teristic for all scale-spaces of the Alvarez{Guichard{Lions{Morel axiomatic and
distinguishes them from nonlinear di�usion �lters.

1.6.2 A�ne invariant �ltering

Motivation

Although Euclidean invariant smoothing methods are su�cient in many applica-
tions, there exist certain problems which also require invariance with respect to
a�ne transformations. A (full) a�ne transformation is a mapping

x ! Ax + b (1.101)

whereb2 IR2 denotes a translation vector and the matrixA 2 IR2� 2 is invertible.
A�ne transformations arise as shape distortions of planar objects when being
observed from a large distance under di�erent angles.

A�ne invariant intrinsic di�usion

In analogy to the Euclidean invariant heat 
ow, Sapiro and Tannenbaum [362,
363] constructed an a�ne invariant 
ow by replacing the Euclidean arc-length
v(p; t) in (1.99) by an \arc-length" s(p; t) that is invariant with respect to a�ne
transformations with det(A) = 1.

Such an a�ne arc-length was proposed by Blaschke [44, pp. 12{15] in 1923. It
is characterized by det(Cs; Css)=1 ; and it can be calculated as

s(p; t) :=
pZ

0

�
det

�
C� (�; t ); C�� (�; t )

�� 1
3 d�: (1.102)

By virtue of

@ssC(p; t) =
�
� (p; t)

� 1
3 � n(p; t) (1.103)

we obtain the a�ne invariant heat 
ow

@tC(p; t) =
�
� (p; t)

� 1
3 � n(p; t); (1.104)

C(p;0) = C0(p): (1.105)
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A�ne invariant image evolution

When regarding the curve C(p; t) as a level-line of an imageu(x; t ); we end up
with the evolution equation

@tu = jr uj
�
curv(u)

� 1
3 (1.106)

=
�
u2

x2
ux1x1 � 2ux1ux2ux1x2 + u2

x1
ux2x2

� 1
3 (1.107)

= jr uj
2
3 u

1
3
�� ; (1.108)

where� is the direction perpendicular tor u. The temporal evolution of an image
under such an evolution resembles mean curvature motion; see Fig. 5.6(a).

Besides the namea�ne invariant heat 
ow , this equation is also calleda�ne
shortening 
ow, a�ne morphological scale-space (AMSS), and fundamental equa-
tion in image processing.

This image evolution equation has been discovered independently of and si-
multaneously with the curve evolution approach of Sapiro and Tannenbaum by
Alvarez, Guichard, Lions and Morel [12] via an axiomatic scale-space approach.
After having mentioned some theoretical results, we shall brie
y sketch this rea-
soning below.

Theoretical results

The curve evolution properties of a�ne invariant heat 
ow can be shown to be the
same as in the Euclidean invariant case, with three exceptions [363]:

(a) Closed curves shrink to points with an ellipse as limiting shape (elliptical
points).

(b) The name a�ne shortening 
ow re
ects the fact that, under all 
ows Ct =
Cqq; the a�ne arc-length parametrization q(p) := s(p) is the fastest way to
shrink the a�ne perimeter

L(t) :=
I �

det
�
Cp(p; t); Cpp(p; t)

�� 1
3 dp: (1.109)

(c) The time for shrinking a circle of radius� to a point is

T = 3
4 �

4
3 : (1.110)

For the image evolution equation (1.106) we have the same results as for MCM
and dilation/erosion concerning well-posedness of a viscosity solution which satis-
�es a maximum{minimum principle [12].
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Scale-space properties

Alvarez, Guichard, Lions and Morel [12] proved that (1.106)is unique (up to tem-
poral rescalings) when imposing on the scale-space axioms for (1.82) an additional
a�ne invariance axiom :

For every invertible A 2 IR2� 2 and for all t � 0; there exists a rescaled
time t0(t; A ) � 0; such that

Tt (Af ) = A(Tt0f ) 8 f 2 BUC(IR 2): (1.111)

For this reason they call the AMSS equation alsofundamental equation in image
analysis. Simpli�cations of this axiomatic and related axioms for shape scale-spaces
can be found in [16].

The scale-space reasoning of Sapiro and Tannenbaum investigates properties
of the curve evolution, see [362] and the references therein. Based on results of
[229, 24] they point out that the Euclidean absolute curvature decreases as well
as the number of extrema and in
ection points of curvature. Moreover, a shape
inclusion principle holds.

1.6.3 Generalizations

In order to analyse planar shapes in a way that does not dependon their location in
IR3, one requires a multiscale analysis which is invariant under a general projective
mapping

(x1; x2)> !
� a11x1 + a21x2 + a31

a13x1 + a23x2 + a33
;

a12x1 + a22x2 + a32

a13x1 + a23x2 + a33

� >

(1.112)

with A = ( aij ) 2 IR3� 3 and detA = 1. Research in this direction has been carried
out by Faugeras and Keriven [130, 131, 133], Bruckstein and Shaked [62], Olver
et al. [314], and Dibos [112, 113]. It turns out that intrinsic heat-equation-like
formulations for the projective group are more complicatedthan the Euclidean
and a�ne invariant ones, and that there is some evidence thatthey do not reveal
the same smoothing scale-space properties [314]. A study ofheat 
ows which are
invariant under subgroups of the projective group can be found in [314, 113].

An intrinsic heat 
ow for images painted on surfaces has beeninvestigated by
Kimmel [232]. It is invariant to the bending (isometric mapping) of the surface.
This geodesic curvature 
owand other evolutions, both for scalar and vector-valued
images, can be regarded as steepest descent methods of energy functionals which
have been proposed by Polyakov in the context of string theory [235].

Euclidean and a�ne invariant curve evolutions can also be modi�ed in order
to obtain area- or length-preserving equations [188, 150, 352, 366].
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Recently it has been suggested to modify AMSS such that any evolution at T-
or X-junctions of isophotes is inhibited [75]. Such a �ltering intends to simplify
the image while preserving its \semantical atoms" in the sense of Kanizsa [219].

Generalizations of MCM or AMSS to 3-D images are investigated in [91, 78, 298,
316]. In this case two principal curvatures occur. Since they can have di�erent sign,
the question arises of how to combine them to a process which simpli�es arbitrary
surfaces without creating singularities. In contrast to the 2-D situation, topological
changes such as the splitting of conconvex structures may occur. This problem is
reminescent of the creation of new extrema in di�usion scale-spaces when going
from 1-D to 2-D.

A�ne scale-space axiomatics for image sequences (movies) have been estab-
lished in [12, 287, 288], and possibilities to generalize the axiomatic of Alvarez,
Guichard, Lions and Morel to colour images are discussed in [82].

1.6.4 Numerical aspects

Due to the equivalence between curve evolution and morphological image pro-
cessing PDEs, we have three main classes of numerical methods: curve evolution
schemes, set-theoretic morphological schemes and approximation schemes for the
Eulerian formulation. A comparison of di�erent methods of these classes can be
found in [95].

Curve evolution schemes are investigated by Mokhtarian andMackworth [291],
Bruckstein et al. [61], Cohignac et al. [95], Merriman et al.[285], Ruuth [347], and
Moisan [289]. In [61] discrete analogues of MCM and AMSS for the evolution of
planar polygons are introduced. In complete analogy to the behaviour of the con-
tinuous equations, convergence to polygones, whose corners belong to circles and
ellipses, respectively, is established. Related discretecurve evolutions are analysed
in [135, 359]. Curve evolution schemes can reveal perfect a�ne invariance.

Convergent set-theoretic morphological schemes for MCM and AMSS have been
proposed by Catt�e et al. [80, 79]. On the one hand, they are very fast and they
are entirely invariant under monotone grey-scale transformations, on the other
hand, it is di�cult to �nd consistent approximations on a pix el grid which have
good rotational invariance. This is essentially the same tradeo� as for circular
structuring elements in classical set-theoretic morphology, cf. 1.5.7.

Most direct approximations of morphological image evolution equations are
based on the Osher{Sethian schemes [319, 372, 374]. In the case of MCM or AMSS,
this leads to an explicit �nite di�erence method which approximates the spatial
derivatives by central di�erences. Di�erent variants of these schemes have been
proposed in order to get better rotational invariance, higher stability or less dissi-
pative e�ects [10, 15, 95, 267, 362]. A comparative evaluation of these approaches
has been carried out by Lucido et al. [267]. Niessen et al. [305, 304] approximate
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the spatial derivatives by Gaussian derivatives which are calculated in the Fourier
domain.

Concerning stability one observes that all these explicit schemes can violate a
discrete maximum{minimum principle and require small timesteps to be experi-
mentally stable. For AMSS an additional constraint appears: the behaviour of this
equation is highly nonlocal, since a�ne invariance impliesthat circles are equiva-
lent to ellipses of any arbitrary eccentricity. If one wantsto have a good numerical
approximation of a�ne invariance, one has to decrease the temporal step size sig-
ni�cantly below the step size of experimental stability [16, 218]. Using Gaussian
derivatives for MCM or AMSS permits larger time steps for large kernels [304], but
their calculation in the Fourier domain is computationallyexpensive and aliasing
may lead to oscillatory solutions, cf. 1.2.3.

One way to achieve unconditionalL1 -stability for MCM is to approximate
u�� by suitable linear combinations of one-dimensional second-order derivatives
along grid directions and to apply an implicit �nite di�eren ce scheme [95, 13, 146].
Schemes of this type, however, renounce consistency with the original equation as
well as rotational invariance: round shapes evolve into polygonal structures.

A consistent semi-implicit approximation of MCM which discretizes the �rst-
order spatial derivatives explicitly and the second-orderderivatives implicitly has
been proposed by Alvarez [10]. In order to solve the resulting linear system of
equations he applies symmetric Gau�{Seidel iterations.

Nicolet and Sp•uhler [301] investigate a consistent fully implicit scheme for MCM
leading to a nonlinear system of equations. It is solved by means of nonlinear Gau�{
Seidel iterations. Comparing it with the explicit scheme they report a tradeo�
between the larger time step size and the higher computational e�ort per step.

An inherent problem of all �nite di�erence schemes for morphological image
evolutions are their dissipative e�ects which create additional blurring of discon-
tinuities. As a remedy, one can decompose the image into binary level sets, map
them into Lipschitz-continuous images by applying a distance transformation, and
run a �nite di�erence method on them. Afterwards one extracts the processed level
sets as the zero-level sets of the evolved images, and assembles the �nal image by
superimposing all evolved level sets [75]. The natural price one has to pay for the
excellent results is a fairly high computational e�ort.

A software package which contains implementations of MCM, AMSS and many
other modern techniques such as wavelets, Mumford-Shah segmentation, and ac-
tive contour models (cf. 1.6.6) is available under the nameMegaWave2.16

16MegaWave2has been developed by Jacques Froment and Sylvain Parrino, CEREMADE,
University Paris IX, 75775 Paris Cedex 16, France. More information can be found under
http://www.ceremade.dauphine.fr.
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1.6.5 Applications

The special invariances of AMSS are useful for shape recognition tasks [12, 96, 97,
132], for corner detection [15], and for texture discrimination [265, 16]. MCM and
AMSS have also been applied to denoising [305, 304] and blob detection [157, 301]
in medical images and to terrain matching [268]. The potential of MCM for shape
segmentation [290] has even been used for classifying chrysanthemum leaves [1].

If one aims to use these equations for image restoration one usually modi�es
them by multiplying them with a term that reduces smoothing at high-contrast
edges [13, 364, 365, 304]; see also Fig. 5.6 (b). Adapting them to tasks such as tex-
ture enhancement requires more sophisticated and more global feature descriptors
than the gradient, for instance an analysis by means of Gaborfunctions [72, 234].
Introducing a reaction term as in [102] allows to attract thesolution to speci�ed
grey values which can be used as quantization levels [11]. Another modi�cation
results from omitting the factor jr uj in the mean curvature motion (1.94), see e.g.
[126, 127]. This corresponds to nonlinear di�usion �lters and a restoration method
by total variation minimization [345] which shall be described in 1.7.2.

In order to improve images, MCM or AMSS have also been combined with other
processes such as linear di�usion [13], shock �ltering ([14], cf. 1.7.1) or global PDEs
for histogramme enhancement [358].

Malladi and Sethian [272] propose to replace MCM by a technique in which
the motion of level curves is based on either min(�; 0) or max(�; 0), depending on
the average grey value within a certain neighbourhood. Thisso-calledmin{max

ow produces a restored image as steady-state solution and reveals good denoising
properties. Well-posedness results are not known up to now,since the theory of
viscosity solutions is no longer applicable.

All these preceding modi�cations are at the expense of renouncing the mor-
phological invariance of the genuine operators (and also a�ne invariance in the
case of [364, 365, 304], unless an \a�ne invariant gradient"[231, 315] is used). If
one wants to stay within the morphological framework one cancombine di�erent
morphological processes, for instance MCM and dilation/erosion. This leads to a
process which is useful for analysing components of shape [228, 230, 383, 384, 453],
and which is calledentropy scale-spaceor reaction{di�usion scale-space.

Recently Steiner et al. proposed a method for caricature-like shape exaggera-
tion [394]. They evolved the boundary curve by means of a backward Euclidean
shortening 
ow with a stabilizing bias term as in (1.56).

It is interesting to note that, already in 1965, Gabor { the inventor of optical
holography and the so-called Gabor functions { proposed a deblurring algorithm
based on combining MCM with backward smoothing along 
owlines [149, 260].
This long-time forgotten method is similar to the Perona{Malik process (1.36) for
large image gradients.
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1.6.6 Active contour models

One of the main applications of curve evolution ideas appears in the context of
active contour models (deformable models). 2-D versions are also calledsnakes,
while 3-D active models are sometimes namedactive surfacesor active blobs. Ac-
tive contour models can be used to search image features in aninteractive way.
Especially for assisting the segmentation of medical images they have become very
popular [282]: The expert user gives a good initial guess of an interesting contour
(organ, tumour, ...), which will be carried the rest of the way by some energy
minimization. Apart from these practical merits, snake models incorporate many
ideas ranging from energy minimization over curve evolution to the Perona{Malik
�lter and di�usion{reaction models. It is therefore not surprising that they play an
important role in several generalization and uni�cation attempts [356, 380, 452].

Explicit snakes

Kass, Witkin and Terzopoulos proposed the �rst active contour model in a journal
paper in 1988 [221]. Their snakes can be thought of as an energy-minimizing spline,
which is attracted by image features such as edges. For this reason, the energy
functional consists of two parts: an internal energy fraction which controls the
smoothness of the result, and an external energy term attracting the result to
salient image features.

Such a snake is represented by a curveC(s) = ( x1(s); x2(s))> which minimizes
the functional

E(C(s)) =
I

C(s)

�
�
2 jCs(s)j2 + �

2 jCss(s)j2 � 
 jr f (C(s)) j2
�

ds: (1.113)

The �rst summand is a membrane term causing the curve to shrink, the second
one is a rigidity term which encourages a straight contour, and the third term
pushes the contour to high gradients of the imagef . We observe that terms 1
and 2 describe the internal energy, while the third one represents the external
(image) energy. The nonnegative parameters� , � and 
 serve as weights of these
expressions. Since this model makes direct use of the snake contour, it is also called
an explicit model.

Minimizing the functional (1.113) by steepest descent gives

@C
@t

= �C ss � �C ssss � 
 r (jr f j2); (1.114)

which can be approximated by �nite di�erences. A 3-D versionof such an active
contour model is presented in [401].

Usually, the result will depend on the choice of the initial curve and a good
segmentation requires an initial curve which is close to the�nal segment. The main
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disadvantage of the preceding model is its topological rigidity: a classical explicit
snake cannot split in order to segment several objects simultaneously17. In practice,
it is also sometimes not easy to �nd a good balance between theparameters� , �
and 
 .

Implicit snakes

In 1993 some of the inherent di�culties of explicit snakes have been solved by
replacing them by a so-called implicit model. It was discovered by Caselles, Catt�e,
Coll and Dibos [73], and later on by Malladi, Sethian and Vemuri [273].

The idea behind implicit snakes is to embed the initial curveC0(s) as a zero
level curve into a function u0 : IR2 ! IR, for instance by using the distance
transformation. Then u0 is evolved under a PDE which includes knowledge about
the original imagef :

@tu = g(jr f � j2) jr uj

 

div

 
r u
jr uj

!

+ �

!

: (1.115)

This evolution is stopped at some timeT, when the process does hardly alter
anymore, and the �nal contour C is extracted as the zero level curve ofu(x; T ).

The terms in (1.115) have the following meaning:

� jr uj div (r u=jr uj) is the curvature term of MCM which smoothes level sets;
see (1.94).

� � jr uj describes motion in normal direction, i.e. dilation or erosion depending
on the sign of� . This so-calledballoon force[93] is required for pushing a
level set into concave regions, a compensation for the property of MCM to
create convex regions.

� g is a stopping function such as the Perona{Malik di�usivity (1.32): it be-
comes small for largejr f � j = jr K � � f j. Hence, it slows down the snake as
soon as it approaches signi�cant edges of the original imagef .

For this model Caselles et al. could prove well-posedness inthe viscosity sense
[73]. Whitaker and Chen developed similar implicit active contour models for 3-D
images [436, 435], and Caselles and Coll investigated related approaches for image
sequences [74].

An advantage of implicit snake models is their topological 
exibility: The con-
tour may split. This allows simultaneous segmentation of multiple objects. More-
over, they use essentially only one remaining parameter, the balloon force� . On

17Recently McInerley and Terzopoulos have proposed modi�ed explicit deformable models
which allow topological changes [281, 283].
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the other hand, the process does not really stop at the desired result, it only slows
down, and it is di�cult to interpret implicit snakes in terms of energy minimiza-
tion. In order to address the initialization problem, Tek and Kimia use implicit
active contours starting from randomly chosen seed points,both in 2-D [399] and
in 3-D [400]. They name this techniquereaction{di�usion bubbles.

Geodesic snakes

Geodesic snakesmake a synthesis of explicit and implicit snake ideas. They have
been proposed simultaneously by Caselles, Kimmel and Sapiro [76] and by Kichenas-
samy, Kumar, Olver, Tannenbaum and Yezzi [226]. These snakes replace the con-
tour energy (1.113) by

E(C) =
I

C(s)

�
�
2 jCs(s)j2 � 
 g (jr f � (C)j2)

�
ds (1.116)

whereg denotes again a Perona{Malik di�usivity of type (1.32). Under some addi-
tional assumptions they derive that minimizing (1.116) is equivalent to searching

min
C

I

C(s)

g
�
jr f � (C(s)) j2

�
jCs(s)j ds: (1.117)

This is nothing else than �nding a curve of minimal distance(geodesic)with respect
to some image-induced metric. Embedding the initial curve as a level set of some
image u0 and applying a descent method to the corresponding Euler-Lagrange
equation leads to the image evolution PDE

@tu = jr uj div

 

g(jr f � j2)
r u

jr uj

!

: (1.118)

This active contour model is parameter-free, but often a speed term�g (jr f � j2)jr uj
is added to achieve faster and more stable attraction to edges. A theoretical analysis
of geodesic snakes concerning existence, uniqueness and stability of a viscosity
solution can be found in [76, 226], and extensions to 3-D images are studied in [77,
226, 271]. Recently also an a�ne invariant analogue to geodesic active contours has
been proposed [315]. Techniques which can be related to geodesic active contours
have also been used for solving 3-D vision problems such as stereo [134] and motion
analysis [322].

Self-snakes

The properties of geodesic snakes induced Sapiro to use a related technique for
image enhancement [357]: he replacedg(jr f � j2) in (1.118) by g(jr u� j2). Then the
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snake becomes aself-snakeno longer underlying external image forces. For� = 0
this gives

@tu = jr uj div

 

g(jr uj2)
r u

jr uj

!

(1.119)

= g(jr uj2) u�� + r >
�
g(jr uj2)

�
r u (1.120)

with � ? r u. Although this equation cannot be cast in divergence form, we observe
striking similarities with the Perona{Malik process from Section 1.3.1: the latter
can be written as

@tu = g(jr uj2) � u + r >
�
g(jr uj2)

�
r u: (1.121)

Thus, it cannot be excluded that a self-snake without spatial regularization reveals
the same ill-posedness problems as the Perona{Malik �lter [356]. For � > 0, how-
ever, Chen, Vemuri and Wong [89] established existence and stability of a unique
viscosity solution to a modi�ed self-snake process. Their model contains a reaction
term which inhibits smoothing at edges and keeps the �lteredimageu close to the
original imagef ; cf. [380]. The restored image is given by the steady-state of

@tu = jr uj div

 

g(jr u� j2)
r u

jr uj

!

+ � jr uj (f � u) ( � > 0): (1.122)

The temporal evolution of a regularized self-snake withoutreaction term is de-
picted in Fig. 5.6(c). Generalizations of self-snakes to vector-valued images [357,
361] can be obtained using Di Zenzo's �rst fundamental form for colour images
[114]; see also [414, 422] for related ideas.

1.7 Total variation methods

Inspired by observations from 
uid dynamics where thetotal variation (TV)

TV(u) :=
Z




jr uj dx (1.123)

plays an important role for shock calculations, one may ask if it is possible to apply
related ideas to image processing. This would be useful to restore discontinuities
such as edges.

Below we shall focus on two important TV-based image restoration techniques
which have been pioneered by Osher and Rudin: TV-preservingmethods and tech-
niques which are TV-minimizing subject to certain constraints.18

18Another image enhancement method that is close in spirit is due to Eidelman, Grossmann
and Friedman [125]. It maps the image grey values to gas dynamical parameters and solves the
compressible Euler equations using shock-capturing totalvariation diminishing (TVD) techniques
based on Godunov's method.
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1.7.1 TV-preserving methods

In 1990 Osher and Rudin have proposed to restore blurred images byshock �ltering
[317]. These �lters calculate the restored image as the steady-state solution of the
problem

@tu = �jr uj F (L (u)); (1.124)

u(x; 0) = f (x): (1.125)

Here, sgn(F (u)) = sgn(u), and L (u) is a second-order elliptic operator whose zero-
crossings correspond to edges, e.g. the LaplacianL (u) = � u or the second-order
directional derivative L (u)= u�� with � kr u.

By means of our knowledge from morphological processes, we recognize that
this �lter aims to produce a 
ow �eld that is directed from the interior of a region
towards its edges where it develops shocks. Thus, the goal isto obtain a piecewise
constant steady-state solution with discontinuities onlyat the edges of the initial
image.

It has been shown that a one-dimensional version of this �lter preserves the
total variation and satis�es a maximum{minimum principle, both in the continuous
and discrete case. For the two-dimensional case not many theoretical results are
available except for a discrete maximum{minimum principle.

Recently van den Boomgaard [52] pointed out that the 1-D version of (1.124)
with F (u) := sgn(u) arises as the PDE formulation of a classical image enhance-
ment algorithm by Kramer and Bruckner [243]. Kramer and Bruckner proved in
1975 that their N -dimensional discrete scheme converges after a �nite number of
iterations to a state where each point is a local extremum.

Osher and Rudin have also proposed another TV-preserving deblurring tech-
nique [318]. It solves the linear di�usion equation backwards in time under the
regularizing constraint that the total variation remains constant. This stabiliza-
tion can be realized by keeping local extrema �xed during thewhole evolution.

From a practical point of view, TV-preserving methods su�erfrom the problem
that 
uctuations due to noise do also create shocks. For thisreason, Alvarez and
Mazorra [14] replace the operatorL (u) = u�� in (1.124) by a Gaussian-smoothed
version L (K � � u) = K � � u�� and supplement the resulting equation with a noise-
eliminating mean curvature process. They prove that their semi-implicit �nite-
di�erence scheme has a unique solution which satis�es a maximum{minimum prin-
ciple.

1.7.2 TV-minimizing methods

Total variation is good for quantifying the simplicity of an image since it mea-
sures oscillations without unduly punishing discontinuities. For this reason, blocky
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images (consisting only of a few almost piecewise constant segments) reveal very
small total variation.

In order to restore noisy blocky images, Rudin, Osher and Fatemi [345] have
proposed to minimize the total variation under constraintswhich re
ect assump-
tions about noise.19

To �x ideas, let us study an example. Given an imagef with additive noise of
zero mean and known variance� 2, we seek a restorationu satisfying

min
u

Z




jr uj dx (1.126)

subject to
Z




(u� f )2 dx = � 2; (1.127)

Z




u dx =
Z




f dx: (1.128)

In order to solve this constrained variational problem, PDEmethods can be
applied: A solution of (1.126){(1.128) veri�es necessarily the Euler equation

div

 
r u

jr uj

!

� � � � (u� f ) = 0 (1.129)

with homogeneous Neumann boundary conditions. The (unknown) Lagrange mul-
tipliers � and � have to be determined in such a way that the constraints are
ful�lled. Interestingly, (1.129) looks similar to the steady-state equation of the
di�usion{reaction equation (1.56), but { in contrast to TV a pproaches { equa-
tion (1.56) is not intended to satisfy the noise constraint exactly [346]. Moreover,
the divergence term in (1.129) is identical with the curvature, which relates TV-
minimizing techniques to MCM.

In [345] a gradient descent method is proposed to solve (1.129). It uses an
explicit �nite di�erence scheme with central and one-sidedspatial di�erences and
adapts the Lagrange multiplier by means of the gradient projection method of
Rosen.

One may also reformulate the constrained TV minimization asan uncon-
strained problem [83]: The penalized least square problem

min
u

 
1
2

ku� f k2
L2(
) + �

Z




jr uj dx

!

(1.130)

is equivalent to the constrained TV minimization, if � is related to the Lagrange
multiplier � via � = 1

� .

19Related ideas have also been developed by Geman and Reynolds[153].
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In recent years, problems of type (1.130) have attracted much interest from
mathematicians working on inverse problems, optimization, or numerical analysis
[2, 84, 85, 87, 115, 117, 118, 204, 205, 253, 409]. To overcomethe problem that
the total variation integral contains the nondi�erentiable argumentjr uj, one ap-
plies regularization strategies or techniques from nonsmooth optimization. Much
research is done in order to �nd e�cient numerical methods for which convergence
can be established.

TV-minimizing methods have been generalized in di�erent ways:

� The constrained TV-minimization idea is frequently adapted to other con-
straints such as blur, noise with blur, or other types of noise [262, 344, 346,
116, 253, 410, 83]. Lions et al. [262] and Dobson and Santosa [115] have
shown the existence of BV(
)-solutions for problems of thistype. Recently,
Chambolle and Lions [83] have extended the existence proof to noncompact
operators (which comprises also the situation without blur), and they have
established uniqueness.

� The tendency of TV-minimizing to create piecewise constantstructures can
cause undesired e�ects such as the creation of staircases atsigmoid-like edges
[116, 83]. As a remedy, it has been proposed to minimize the L1-norm of
expressions containing also higher-order derivatives [344, 83]. Another pos-
sibility is to consider the constrained minimization of

B(u) :=
Z




jr uj p(jr uj) dx; (1.131)

wherep(jr uj) decreases from 2 to 1, asjr uj ranges from 0 to1 ; see [46].

� TV-minimizing methods have also been used for estimating discontinuous
blurring kernels such as motion or out-of-focus blur from a degraded image.
This leads to TV-based blind deconvolution algorithms [86].

� They have been applied to colour images [45], where the generalized TV
norm is chosen as thel2-norm of the TV norms of the separate channels.

� Strong and Chan have identi�ed the parameter� in (1.130) as a scale para-
meter [396]. By adapting� to the local image structure, they establish re-
lations between TV-minimizing methods and nonlinear di�usion techniques
[397].

Total variation methods have been applied to restoring images of military rele-
vance [345, 346, 262, 253], to improving material from criminal and civil investiga-
tions as court evidence [344], and to enhancing pictures from confocal microscopy
[409] and tomography [115, 396]. They are useful for enhancing reconstruction al-
gorithms for inverse scattering problems [37], and the ideaof L1-norm minimization
has also led to improved optic 
ow algorithms [245].
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1.8 Conclusions and further scope of the book

Although we have seen that there exists a large variety of PDE-based scale-space
and image restoration methods which o�er many advantages, we have also become
aware of some limitations. They shall serve as a motivation for the theory which
will be explored in the subsequent chapters.

Linear di�usion and morphological scale-spaces are well-posed and have a solid
axiomatic foundation. On the other hand, for some applications, they possess the
undesirable property that they do not permit contrast enhancement and that they
may blur and delocalize structures.

Pure restoration methods such as di�usion{reaction equations or TV-based
techniques do allow contrast enhancement and lead to stablestructures but can
su�er from theoretical or practical problems, for instanceunsolved well-posedness
questions or the search for e�cient minimizers of nonconvexor nondi�erentiable
functionals. Moreover, most image-enhancing PDE methods focus on edge detec-
tion and segmentation problems. Other interesting image restoration topics have
found less attention.

For both scale-space and restoration methods many questions concerning their
discrete realizations are still open: discrete scale-space results are frequently miss-
ing, minimization algorithms can get trapped in a poor localminimum, or the use
of explicit schemes causes restrictive step size limitations.

The goal of the subsequent chapters is to develop a theory fornonlinear aniso-
tropic di�usion �lters which addresses some of the abovementioned shortcomings.
In particular, we shall see that anisotropic nonlinear di�usion processes can share
many advantages of the scale-space and the image enhancement world. A scale-
space interpretation is presented which does not exclude contrast enhancement,
and well-posedness results are established. Both scale-space and well-posedness
properties carry over from the continuous to the semidiscrete and discrete setting.
The latter comprises for instance semi-implicit techniques for which unconditional
stability in the L1 -norm is proved. The general framework, for which the results
hold, includes also linear and isotropic nonlinear di�usion �lters. Finally, speci�c
anisotropic models are presented which permit applications beyond segmentation
and edge enhancement tasks, for instance enhancement of coherent 
ow-like struc-
tures in textures.
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Chapter 2

Continuous di�usion �ltering

This chapter presents a general continuous model for anisotropic di�usion �lters,
analyses its theoretical properties and gives a scale-space interpretation. To this
end, we adapt the di�usion process to the structure tensor, awell-known tool
for analysing local orientation. Under fairly weak assumptions on the class of �l-
ters, it is possible to establish well-posedness and regularity results and to prove a
maximum{minimum principle. Since the proof does not require any monotony as-
sumption it applies also to contrast-enhancing di�usion processes. After sketching
invariances of the resulting scale-space, we focus on analysing its smoothing prop-
erties. We shall see that, besides the extremum principle, alarge class of associated
Lyapunov functionals plays an important role in this context [414, 415].

2.1 Basic �lter structure

Let us consider a rectangular image domain 
 := (0; a1) � (0; a2) with boundary
� := @
 and let an image be represented by a mappingf 2 L1 (
). The class
of anisotropic di�usion �lters we are concerned with is represented by the initial
boundary value problem

@tu = div ( D r u) on 
 � (0; 1 ); (2.1)

u(x; 0) = f (x) on 
 ; (2.2)

hDr u; ni = 0 on � � (0; 1 ): (2.3)

Hereby,n denotes the outer normal andh:; :i the Euclidean scalar product on IR2.
In order to adapt the di�usion tensor D 2 IR2� 2 to the local image structure, one
would usually let it depend on the edge estimatorr u� (cf. 1.3.3), where

u� (x; t ) := ( K � � ~u(:; t)) ( x) ( � > 0) (2.4)

and ~u denotes an extension ofu from 
 to IR 2, which may be obtained by mirroring
at � (cf. [81]).

55
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However, we shall choose a more general structure descriptor which comprises
the edge detectorr u� , but also allows to extract more information. This will be
presented next.

2.2 The structure tensor

In order to identify features such as corners or to measure the local coherence of
structures, we need methods which take into account how the orientation of the
(smoothed) gradient changes within the vicinity of any investigated point.

The structure tensor{ also calledinterest operator, scatter matrix or (windowed
second) moment tensor{ is an important representative of this class. Matrices of
this type are useful for many di�erent tasks, for instance for analysing 
ow-like
textures [340, 31], corners and T-junctions [145, 182, 310,309], shape cues [256,
pp. 349{382] and spatio{temporal image sequences [209, pp.147{153], [168, pp.
219{258]. Related approaches can also be found in [39, 40, 220]. Let us focus on
some aspects which are of importance in our case.

In order to study orientations instead of directions, we have to identify gra-
dients which di�er only by their sign: they share the same orientation, but point
in opposite directions. To this end, we reconsider the vector-valued structure de-
scriptor r u� within a matrix framework. The matrix J0 resulting from the tensor
product

J0(r u� ) := r u� 
 r u� := r u� r uT
� (2.5)

has an orthonormal basis of eigenvectorsv1, v2 with v1 k r u� and v2 ? r u� .
The corresponding eigenvaluesjr u� j2 and 0 give just the contrast (the squared
gradient) in the eigendirections.

Averaging this orientation information can be accomplished by convolving
J0(r u� ) componentwise with a GaussianK � . This gives the structure tensor

J� (r u� ) := K � � (r u� 
 r u� ) ( � � 0): (2.6)

It is not hard to verify that the symmetric matrix J� =
�

j 11
j 12

j 12
j 22

�
is positive semidef-

inite and possesses orthonormal eigenvectorsv1, v2 with

v1 k

0

@
2j 12

j 22 � j 11 +
q

(j 11� j 22)2 + 4j 2
12

1

A : (2.7)

The corresponding eigenvalues� 1 and � 2 are given by

� 1;2 =
1
2

�

j 11+ j 22 �
q

(j 11� j 22)2 + 4j 2
12

�

; (2.8)

where the + sign belongs to� 1. As they integrate the variation of the grey values
within a neighbourhood of sizeO(� ), they describe the average contrast in the
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eigendirections. Thus, theintegration scale� should re
ect the characteristic win-
dow size over which the orientation is to be analysed. Presmoothing in order to
obtain r u� makes the structure tensor insensitive to noise and irrelevant details
of scales smaller thanO(� ). The parameter � is called local scaleor noise scale.

By virtue of � 1 � � 2 � 0; we observe thatv1 is the orientation with the highest
grey value 
uctuations, and v2 gives the preferred local orientation, thecoherence
direction. Furthermore, � 1 and � 2 can be used as descriptors of local structure:
Constant areas are characterized by� 1 = � 2 = 0, straight edges give� 1 � � 2 = 0,
corners can be identi�ed by � 1 � � 2 � 0; and the expression

(� 1 � � 2)2 = ( j 11� j 22)2 + 4j 2
12 (2.9)

becomes large for anisotropic structures. It is a measure ofthe local coherence.
An example which illustrates the advantages of the structure tensor for analysing

coherent patterns can be found in Figure 5.10 (d); see Section 5.2.

2.3 Theoretical results

In order to discuss well-posedness results, let us �rst recall some useful notations.
Let H1(
) be the Sobolev space of functionsu(x) 2 L2(
) with all distributional
derivatives of �rst order being in L2(
). We equip H 1(
) with the norm

kukH1(
) :=

 

kuk2
L2(
) +

2X

i =1

k@x i uk2
L2(
)

! 1=2

(2.10)

and identify it with its dual space. Let L2(0; T; H1(
)) be the space of functions
u, strongly measurable on [0; T] with range in H1(
) (for the Lebesgue measure
dt on [0; T]) such that

kukL2(0;T ;H1(
)) :=

0

@
TZ

0

ku(t)k2
H1(
) dt

1

A

1=2

< 1 : (2.11)

In a similar way, C([0; T]; L2(
)) is de�ned as the space of continuous functions
u : [0; T] ! L2(
) supplemented with the norm

kukC([0 ;T ];L 2(
)) := max
[0;T ]

ku(t)kL2(
) : (2.12)

As usual, we denote by Cp(X; Y ) the set of Cp-mappings fromX to Y.
Now we can give a precise formulation of the problem we are concerned with.

We need the following prerequisites:
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Assume that f 2 L1 (
), � � 0, and �; T > 0.
Let a:=ess inf



f , b := ess sup



f , and consider the problem

@t u = div ( D(J� (r u� )) r u) on 
 � (0; T];

u(x; 0) = f (x) on 
 ;

hD(J� (r u� ))r u; ni = 0 on � � (0; T];

where the di�usion tensor D = ( dij ) satis�es the following
properties:

(C1) Smoothness:
D 2 C1 (IR 2� 2; IR2� 2).

(C2) Symmetry:
d12(J )= d21(J ) for all symmetric matricesJ 2 IR2� 2.

(C3) Uniform positive de�niteness:
For all w2 L1 (
 ; IR2) with jw(x)j � K on �
, there
exists a positive lower bound� (K ) for the eigenvalues
of D(J� (w)).

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(Pc)

Under these assumptions the following theorem, which generalizes and extends
results from [81, 414], can be proved.

Theorem 1 (Well-posedness, 1 regularity, extremum principle)
The problem (Pc) has a unique solutionu(x; t ) in the distributional sense which
satis�es

u 2 C([0; T]; L2(
)) \ L2(0; T; H1(
)) ; (2.13)

@tu 2 L2(0; T; H1(
)) : (2.14)

Moreover, u2 C1 ( �
 � (0; T]): This solution depends continuously onf with respect
to k : kL2(
) ; and it ful�ls the extremum principle

a � u(x; t ) � b on 
 � (0; T]: (2.15)

1For a complete well-posedness proof one also has to establish stability with respect to per-
turbations of the di�usion equation. This topic will not be a ddressed here.
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Proof:

(a) Existence, uniqueness and regularity
Existence, uniqueness and regularity are straightforwardanisotropic exten-
sions of the proof for the isotropic case studied by Catt�e, Lions, Morel and
Coll [81]. Therefore, we just sketch the basic ideas of this proof.

Existence can be proved using Schauder's �xed point theorem. One considers
the solution U(w) of a distributional linear version of (Pc) where D depends
on some functionw instead ofu. Then one shows thatU is a weakly contin-
uous mapping from a nonempty, convex and weakly compact subset W0 of
W(0; T) :=

n
w 2 L2(0; T; H1(
)) ; dw

dt 2 L2(0; T; H1(
))
o

into itself. Since
W(0; T) is contained in L2(0; T; L2(
)), with compact inclusion, U reveals a
�xed point u 2 W0, i.e. u = U(u).

Smoothness follows from classical bootstrap arguments andthe general the-
ory of parabolic equations [246]. Sinceu(t) 2 H1(
) for all t > 0, one deduces
that u(t) 2 H2(
) for all t > 0. By iterating, one can establish thatu is a
strong solution of (Pc) and u 2 C1 ((0; T] � �
).

The basic idea of the uniqueness proof consists of using energy estimates for
the di�erence of two solutions, such that the Gronwall{Bellman inequality
can be applied. Then, uniqueness follows from the fact that both solutions
start with the same initial values.

Finally an iterative linear scheme is investigated, whose solution is shown to
converge in C([0; T]; L2(
)) to the strong solution of ( Pc).

(b) Extremum principle
In order to prove a maximum{minimum principle, we utilize Stampacchia's
truncation method (cf. [58], p. 211).

We restrict ourselves to proving only the maximum principle. The minimum
principle follows from the maximum principle when being applied to the
initial datum � f .
Let G 2 C1(IR) be a function with G(s) = 0 on ( �1 ; 0] and 0< G 0(s) � C
on (0; 1 ) for some constantC. Now, we de�ne

H (s) :=
sZ

0

G(� ) d�; s 2 IR;

' (t) :=
Z




H (u(x; t ) � b) dx; t 2 [0; T]:

By the Cauchy{Schwarz inequality, we have
Z




jG(u(x; t ) � b) @tu(x; t )j dx � C � ku(t) � bkL2(
) � k@tu(t)kL2(
)
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and by virtue of (2.13), (2.14) we know that the right-hand side of this
estimate exists. Therefore,' is di�erentiable for t > 0, and we get

d'
dt

=
Z




G(u� b) @tu dx

=
Z




G(u� b) div ( D(J� (r u� )) r u) dx

=
Z

�

G(u� b) hD(J� (r u� )) r u; ni
| {z }

=0

dS

�
Z




G0(u� b)
| {z }

� 0

hr u; D(J� (r u� )) r ui
| {z }

� 0

dx

� 0: (2.16)

By means ofH (s) � C
2 s2, we have

0 � ' (t) �
Z




H (u(x; t ) � f (x)) dx �
C
2

ku(t) � f k2
L2(
) : (2.17)

Sinceu 2 C([0; T]; L2(
)), the right-hand side of (2.17) tends to 0 = ' (0)
for t ! 0+ which proves the continuity of ' (t) in 0. Now from

' 2 C[0; T]; ' (0) = 0 ; ' � 0 on [0; T]

and (2.16), it follows that

' � 0 on [0; T]:

Hence, for allt 2 [0; T], we obtainu(x; t ) � b � 0 almost everywhere (a.e.) on

. Due to the smoothness of u fort > 0, we �nally end up with the assertion

u(x; t ) � b on �
 � (0; T]:

(c) Continuous dependence on the initial image
Let f; h 2 L1 (
) be two initial values and u, w the corresponding solutions.
In the same way as in the uniqueness proof in [81], one shows that there
exists some constantc > 0 such that

d
dt

�
ku(t) � w(t)k2

L2(
)

�
� c � kr u(t)k2

L2(
) � ku(t) � w(t)k2
L2(
) :

Applying the Gronwall{Bellman lemma [57, pp. 156{137] yields

ku(t) � w(t)k2
L2(
) � k f � hk2

L2 (
) � exp

0

@c �
tZ

0

kr u(s)k2
L2(
) ds

1

A :
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By means of the extremum principle we know thatu is bounded on�
 � [0; T].
Thus, r u� is also bounded, and prerequisite (C3) implies that there exists
some constant� = � (�; kf kL1 (
) ) > 0, such that

tZ

0

kr u(s)k2
L2(
) ds

�
TZ

0

kr u(s)k2
L2(
) ds

�
1
�

TZ

0

�
�
�
�
�
�

Z




hr u(x; s); D(J� (r u� (x; s))) r u(x; s)i dx

�
�
�
�
�
�

ds

=
1
�

TZ

0

�
�
�
�
�
�

Z




u(x; s) � div
�
D(J� (r u� (x; s))) r u(x; s)

�
dx

�
�
�
�
�
�

ds

�
1
�

TZ

0

ku(s)kL2(
) k@tu(s)kL2(
) ds

�
1
�

kukL2(0;T ;H1 (
)) k@tukL2(0;T ;H1(
)) :

By virtue of (2.13), (2.14), we know that the right-hand of this estimate
exists. Now, let � > 0 and choose

� := � � exp
� � c

2�
kukL2(0;T ;H1(
)) k@tukL2(0;T ;H1(
))

�

:

Then for kf � hkL2(
) < � , the preceding results imply

ku(t) � w(t)kL2(
) < � 8 t 2 [0; T];

which proves the continuous dependence on the initial data. 2

Remarks:

(a) We observe a strong smoothing e�ect which is characteristic for many dif-
fusion processes: under fairly weak assumptions on the initial image (f 2
L1 (
)) we obtain an in�nitely often di�erentiable solution fo r arbitrary small
positive times. More restrictive requirements { for instance f 2 BUC(IR 2)
in order to apply the theory of viscosity solutions { are not necessary in our
case.

(b) Moreover, our proof does not require any monotony assumption. This has the
advantage that contrast-enhancing processes are permitted as well. Chapter
5 will illustrate this by presenting examples where contrast is enhanced.
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(c) The continuous dependence of the solution on the initialimage has signif-
icant practical impact as it ensures stability with respectto perturbations
of the original image. This is of importance when considering stereo image
pairs, spatio-temporal image sequences or slices from medical CT or MRI
sequences, since we know that similar images remain similarafter �ltering. 2

(d) The extremum principle o�ers the practical advantage that, if we start for
instance with an image within the range [0; 255], we will never obtain results
with grey value such as 257. It is also closely related to smoothing scale-space
properties, as we shall see in 2.4.2.

(e) The well-posedness results are essentially based on thefact that the regu-
larization by convolution with a Gaussian allows to estimate kr u� kL1 (
) by
kukL1 (
) . This property is responsible for the uniform positive de�niteness
of the di�usion tensor.

2.4 Scale-space properties

Let us now investigate scale-space properties of the class (Pc) and juxtapose the re-
sults to other scale-spaces. To this end, we shall not focus on further investigations
of architectural requirements like recursivity, regularity and locality, as these qual-
ities do not distinguish nonlinear di�usion scale-spaces from other ones. We start
with brie
y discussing invariances. Afterwards, we turn toa more crucial task,
namely the question in which sense our evolution equation { which may allow con-
trast enhancement { can still be considered as a smoothing, information-reducing
image transformation.

2.4.1 Invariances

Let u(x; t ) be the unique solution of (Pc) and de�ne the scale-space operatorTt by

Tt f := u(t); t � 0; (2.18)

whereu(t) := u(:; t).
The properties we discuss now illustrate that an invarianceof Tt with respect to
some image transformationP is characterized by the fact thatTt and P commute.
Much of the terminology used below is borrowed from [12].

2This does not contradict contrast enhancement: In the case of two similar images, where
one leads to contrast enhancement and the other not, the regularization damps the enhancement
process in such a way that both images do not di�er much after �ltering.
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Grey level shift invariance

Since the di�usion tensor is only a function ofJ� (r u� ), but not of u, we may shift
the grey level range by an arbitrary constantC, and the �ltered images will also
be shifted by the same constant. Moreover, a constant function is not a�ected by
di�usion �ltering. Therefore, we have

Tt (0) = 0 ; (2.19)

Tt (f + C) = Tt (f ) + C 8 t � 0: (2.20)

Reverse contrast invariance

From D(J� (�r u� )) = D(J� (r u� )), it follows that

Tt (� f ) = � Tt (f ) 8 t � 0: (2.21)

This property is not ful�lled by classical morphological scale-space equations like
dilation and erosion. When reversing the contrast, the roleof dilation and erosion
has to be exchanged as well.

Average grey level invariance

Average grey level invariance is a further property in whichdi�usion scale-spaces
di�er from morphological scale-spaces. In general, the evolution PDEs of the latter
ones are not of divergence form and do not preserve the mean grey value. A con-
stant average grey level is essential for scale-space basedsegmentation algorithms
such as the hyperstack [307, 408]. It is also a desirable quality for applications
in medical imaging where grey values measure physical qualities of the depicted
object, for instance proton densities in MR images.

Proposition 1 (Conservation of average grey value).
The average grey level

� :=
1

j
 j

Z




f (x) dx (2.22)

is not a�ected by nonlinear di�usion �ltering:

1
j
 j

Z




Tt f dx = � 8 t > 0: (2.23)

Proof:
De�ne I (t) :=

R



u(x; t ) dx for all t � 0. Then the Cauchy{Schwarz inequality
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implies

jI (t) � I (0)j =

�
�
�
�
�
�

Z




�
u(x; t ) � f (x)

�
dx

�
�
�
�
�
�

� j 
 j1=2 ku(t) � f kL2(
) :

Sinceu 2 C([0; T]; L2(
)), the preceding inequality gives the continuity of I (t) in
0.
For t > 0, Theorem 1, the divergence theorem and the boundary conditions yield

dI
dt

=
Z




@tu dx =
Z

�

hD(J� (r u� ))r u; ni dS = 0:

Hence,I (t) must be constant for all t � 0. 2

Average grey level invariance may be described by commutingoperators, when
introducing an averaging operatorM : L1(
) ! L1(
) which maps f to a constant
image with the same mean grey level:

(Mf )(y) :=
1

j
 j

Z




f (x) dx 8 y 2 
 : (2.24)

Then Proposition 1 and grey level shift invariance imply that the order of M and
Tt can be exchanged:

M (Tt f ) = Tt (Mf ) 8 t � 0: (2.25)

When studying di�usion �ltering as a pure initial value prob lem in the domain
IR2, it also makes sense to investigate Euclidean transformations of an image. This
leads us to translation and isometry invariance.

Translation invariance

De�ne a translation � h by (� hf )(x) := f (x + h). Then di�usion �ltering ful�ls

Tt (� hf ) = � h(Tt f ) 8 t � 0: (2.26)

This is a consequence of the fact that the di�usion tensor depends onJ� (r u� )
solely, but not explicitly on x.

Isometry invariance

Let R 2 IR2� 2 be an orthogonal transformation. If we applyR to f by de�ning
Rf (x) := f (Rx), then the eigenvalues of the di�usion tensor are unalteredand
any eigenvectorv is transformed into Rv. Thus, it makes no di�erence whether
the orthogonal transformation is applied before or after di�usion �ltering:

Tt (Rf ) = R(Tt f ) 8 t � 0: (2.27)
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2.4.2 Information-reducing properties

Nonenhancement of local extrema

Koenderink [240] required that a scale-space evolution should not create new level
curves when increasing the scale parameter. If this is satis�ed, iso-intensity linking
through the scales is possible and a structure at a coarse scale can (in principle) be
traced back to the original image(causality). For this reason, he imposed that at
spatial extrema with nonvanishing determinant of the Hessian isophotes in scale-
space are upwards convex. He showed that this constraint canbe written as

sgn(@t u) = sgn(� u): (2.28)

A su�cient condition for the causality equation (2.28) to hold is requiring that
local extrema with positive or negative de�nite Hessians are not enhanced: an
extremum in � at time � satis�es @tu > 0 if � is a minimum, and @tu < 0 if �
is a maximum. This implication is easily seen: In the �rst case, for instance, the
eigenvalues� 1, � 2 of the Hessian Hess(u) are positive. Thus,

� u = trace(Hess(u)) = � 1 + � 2 > 0; (2.29)

giving immediately the causality requirement (2.28).
Nonenhancement of local extrema has �rst been used by Babaudet al. [30] in

the context of linear di�usion �ltering. However, it is also satis�ed by nonlinear
di�usion scale-spaces, as we shall see now.3

Theorem 2 (Nonenhancement of local extrema).
Let u be the unique solution of (Pc) and consider some� > 0. Suppose that� 2 

is a local extremum ofu(:; � ) with nonvanishing Hessian. Then,

@tu(�; � ) < 0; if � is a local maximum, (2.30)

@tu(�; � ) > 0; if � is a local minimum. (2.31)

Proof:
Let D(J� (r u� )) =: ( dij (J� (r u� ))). Then we have

@tu =
2X

i =1

2X

j =1

�
@x i dij (J� (r u� ))

�
@x j u +

2X

i =1

2X

j =1

dij (J� (r u� )) @x i x j u: (2.32)

Since r u(�; � ) = 0 and @x i dij (J� (r u� (�; � ))) is bounded, the �rst term of the
right-hand side of (2.32) vanishes in (�; � ).

3As in the linear di�usion case, nonenhancement of local extrema generally does not imply
that their number is nonincreasing, cf. 1.2.5 and [342].
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We know that the di�usion tensor D := D(J� (r u� (�; � ))) is positive de�nite.
Hence, there exists an orthogonal matrixS 2 IR2� 2 such that

ST DS = diag( � 1; � 2) =: �

with � 1, � 2 being the positive eigenvalues ofD.
Now, let us assume that (�; � ) is a local maximum whereH := Hess(u(�; � ))

and, thus, B := ( bij ) := ST HS are negative de�nite. Then we have

bii < 0 (i = 1; 2);

and by the invariance of the trace with respect to orthogonaltransformations it
follows that

@t u(�; � ) = trace ( DH )

= trace (ST DS ST HS)

= trace (� B )

=
2X

i =1

� i bii

< 0:

If � is a local minimum of u(x; � ), one proceeds in the same way utilizing the
positive de�niteness of the Hessian. 2

Nonenhancement of local extrema distinguishes anisotropic di�usion from clas-
sical contrast enhancing methods such as high-frequency emphasis [163, pp. 182{
183], which do violate this principle. Although possibly behaving like backward
di�usion across edges, nonlinear di�usion is always in the forward region at ex-
trema. This ensures its stability.

It should be noted that nonenhancement of local extrema is just one possibil-
ity to end up with Koenderink's causality requirement. Another way to establish
causality is via the extremum principle (2.15) following Hummel's reasoning; see
[189] for more details.

Lyapunov functionals and behaviour for t ! 1

Since scale-spaces are intended to subsequently simplify an image, it is desirable
that, for t ! 1 , we obtain the simplest possible image representation, namely a
constant image with the same average grey value as the original one. The following
theorem states that anisotropic di�usion �ltering always leads to a constant steady-
state. This is due to the class of Lyapunov functionals associated with the di�usion
process.
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Theorem 3 (Lyapunov functionals and behaviour for t ! 1 ).
Suppose thatu is the solution of (Pc) and let a, b, � and M be de�ned as in (Pc),
(2.22) and (2.24), respectively. Then the following properties are valid:

(a) (Lyapunov functionals)
For all r 2 C2[a; b] with r 00� 0 on [a; b], the function

V(t) := �( u(t)) :=
Z




r (u(x; t )) dx (2.33)

is a Lyapunov functional:

(i) �( u(t)) � �( Mf ) for all t � 0.

(ii) V 2 C[0; 1 ) \ C1(0; 1 ) and V 0(t) � 0 for all t > 0.

Moreover, if r 00> 0 on [a; b], then V(t) = �( u(t)) is a strict Lyapunov func-
tional:

(iii) �( u(t)) = �( Mf ) ()

(
u(t) = Mf on �
 (if t > 0)
u(t) = Mf a.e. on 
 (if t = 0)

(iv) If t > 0, then V 0(t) = 0 if and only if u(t) = Mf on �
 .

(v) V(0) = V(T) for T > 0 ()

(
f = Mf a.e. on 
 and
u(t) = Mf on �
 � (0; T]

(b) (Convergence)

(i) lim
t !1

ku(t) � Mf kLp (
) = 0 for p 2 [1; 1 ).

(ii) In the 1D case, the convergencelim
t !1

u(x; t ) = � is uniform on �
 .

Proof:

(a) (i) Since r 2 C2[a; b] with r 00 � 0 on [a; b], we know that r is convex on
[a; b]. Using the average grey level invariance and Jensen's inequality we
obtain, for all t � 0,

�( Mf ) =
Z




r

0

@ 1
j
 j

Z




u(x; t ) dx

1

A dy

�
Z




0

@ 1
j
 j

Z




r (u(x; t )) dx

1

A dy

=
Z




r (u(x; t )) dx

= �( u(t)) : (2.34)
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(ii) Let us start by proving the continuity of V(t) in 0. Thanks to the
maximum{minimum principle, we may choose a constant

L := max
s2 [a;b]

jr 0(s)j

such that for all t > 0, the Lipschitz condition

jr (u(x; t )) � r (f (x)) j � L ju(x; t ) � f (x)j

is veri�ed a.e. on 
. From this and the Cauchy{Schwarz inequality, we
get

jV(t) � V(0)j � j 
 j1=2 kr (u(t)) � r (f )kL2(
)

� j 
 j1=2 L ku(t) � f kL2(
) ;

and by virtue of u 2 C([0; T]; L2(
)), the limit t ! 0+ gives the an-
nounced continuity in 0.
By Theorem 1 and the boundedness ofr 0 on [a; b], we know that V is
di�erentiable for t > 0 and V 0(t) =

R

 r 0(u) ut dx. Thus, the divergence

theorem yields

V 0(t) =
Z




r 0(u) div ( D(J� (r u� ))r u) dx

=
Z

�

r 0(u) hD(J� (r u� ))r u; ni
| {z }

=0

dS

�
Z




r 00(u)
| {z }

� 0

hr u; D(J� (r u� ))r ui
| {z }

� 0

dx

� 0:

(iii) Let �( u(t)) = �( Mf ).
If t > 0, then u(t) is continuous in �
. Let us now show that equality in
the estimate (2.34) implies thatu(t) = const. on �
. To this end, assume
that u is not constant on �
. Then, by the continuity of u, there exists
a partition 
 = 
 1 [ 
 2 with j
 1j; j
 2j 2 (0; j
 j) and

� :=
1

j
 1j

Z


 1

u dx 6=
1

j
 2j

Z


 2

u dx =: �:

From r 00> 0 on [a; b] it follows that r is strictly convex on [a; b] and

r

0

@ 1
j
 j

Z




u dx

1

A = r

 
j
 1j
j
 j

� +
j
 2j
j
 j

�

!
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<
j
 1j
j
 j

r (� ) +
j
 1j
j
 j

r (� )

�
1

j
 j

Z


 1

r (u) dx +
1

j
 j

Z


 2

r (u) dx

=
1

j
 j

Z




r (u) dx:

If we utilize this result in the estimate (2.34) we observe that, for t> 0,
�( u(t)) = �( Mf ) implies that u(t) = const. on �
. Thanks to the
average grey value invariance we �nally obtainu(t) = Mf on �
.

So let us turn to the caset = 0. From (i) and (ii), we conclude that
�( u(� )) = �( Mf ) for all � > 0. Thus, we haveu(� ) = Mf for all � > 0.
For � > 0, the Cauchy{Schwarz inequality gives

Z




ju(x; � ) � � j dx � j 
 j1=2 ku(� ) � Mf kL2 (
) = 0:

Sinceu 2 C([0; T]; L2(
)), the limit � ! 0+ �nally yields u(0) = Mf
a.e. on 
.
Conversely, it is obvious thatu(t) = Mf (a.e.) on 
 implies �( u(t)) =
�( Mf ).

(iv) Let t > 0 and V 0(t) = 0. Then from

0 = V 0(t) = �
Z




r 00(u(x; t ))
| {z }

> 0

hr u(x; t ); D(J� (r u� (x; t ))) r u(x; t )i dx

and the smoothness ofu we obtain

hr u; D(J� (r u� ))r ui = 0 on �
 :

By the uniform boundedness ofD, there exists some constant� > 0,
such that

� jr uj2 � hr u; D(J� (r u� ))r ui on �
 � (0; 1 ):

Thus, we haver u(x; t ) = 0 a.e. on 
. Due to the continuity of r u,
this yields u(x; t ) = const. for all x 2 
, and the average grey level
invariance �nally gives u(x; t ) = � on 
.

Conversely, letu(x; t ) = � on 
. Then,

V 0(t) = �
Z




r 00(u) hr u; D(J� (r u� ))r ui dx = 0:
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(v) Suppose thatV(T) = V(0). SinceV is decreasing, we have

V(t) = const. on [0; T].

Let � > 0. Then for any t 2 [�; T ], we haveV 0(t) = 0, and part (iv)
implies that u(t) = Mf on 
. Now, the Cauchy{Schwarz inequality
gives Z




jf � Mf j dx � j 
 j1=2 kf � u(t)kL2(
) :

As u 2 C([0; T]; L2(
)), the limit t ! 0+ yields f = Mf a.e. on 
.

Conversely, ifu(t) = Mf (a.e.) on 
 holds for all t 2 [0; T], it is evident
that V(0) = V(T).

(b) (i) By the grey level shift invariance we know thatv := u� Mf satis�es the
di�usion equation as well. We multiply this equation by v, integrate,
and use the divergence theorem to obtain

Z




vvt dx = �
Z




hr v; D(J� (r v� ))r vi dx:

Sincer v� is bounded, we �nd some� > 0 such that

1
2

d
dt

(kvk2
L2(
) ) � � � kr vk2

L2(
) :

For t > 0, there exists somex0 with v(x0) = 0. Therefore, Poincar�e's
inequality (cf. [9, p. 122]) may be applied giving

kvk2
L2(
) � C0 kr vk2

L2(
)

with some constantC0 = C0(
) > 0. This yields

d
dt

kvk2
L2(
) � � 2� C 0 kvk2

L2(
)

and hence the exponential decay ofkvkL2(
) to 0.

By the maximum principle, we know that kv(t)kL1 (
) is bounded by
kf � Mf kL1 (
) . Thus, for q 2 IN, q � 2, we get

kv(t)kq
L q(
) � k f � Mf kq� 2

L1 (
) � kv(t)k2
L2(
) ! 0;

and H•older's inequality gives, for 1� p < q < 1 ,

kv(t)kL p (
) � j 
 j(1=p)� (1=q) � kv(t)kL q(
) ! 0:

This proves the assertion.
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(ii) To prove uniform convergence in the one-dimensional setting, we can
generalize and adapt methods from [202] to our case.

Let 
 = (0 ; a). From part (a) we know that V(t) :=
aR

0
u2(x; t ) dx is

nonincreasing and bounded from below. Thus, the sequence (V(i )) i 2 IN

converges.

SinceV 2 C[0; 1 ) \ C1(0; 1 ) the mean value theorem implies

9 t i 2 (i; i +1) : V 0(t i ) = V(i + 1) � V(i ):

Thus, (t i ) i 2 IN ! 1 and from the convergence of (V(i )) i 2 IN it follows
that

V 0(t i ) ! 0: (2.35)

Thanks to the uniform positive de�niteness ofD there exists some� > 0
such that, for t > 0,

V 0(t) = � 2
aZ

0

u2
x D(J� (@xu� )) dx

� � 2�
aZ

0

u2
x dx

� 0: (2.36)

Equations (2.35) and (2.36) yield

kux(t i )kL2 (
) ! 0:

Hence,u(t i ) is a bounded sequence in H1(0; a). By virtue of the Rellich{
Kondrachov theorem [7, p. 144] we know that the embedding from
H1(0; a) into C0;� [0; a], the space of H•older-continuous functions on [0; a]
[7, pp. 9{12], is compact for� 2 (0; 1

2). Therefore, there exists a subse-
quence (t i j ) ! 1 and some �u with

u(t i j ) ! �u in C0;� [0; a]:

This also givesu(t i j ) ! �u in L2(0; a). Since we already know from (b)(i)
that u(t i j ) ! Mf in L2(0; a), it follows that �u = Mf . Hence,

lim
j !1

ku(t i j ) � Mf kL1 (
) = 0: (2.37)

Part (a) tells us that ku(t)� Mf kp
Lp (
) is a Lyapunov function forp � 2.

Thus,
ku(t) � Mf kL1 (
) = lim

p!1
ku(t) � Mf kLp (
)
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is also nonincreasing. Therefore, lim
t !1

ku(t) � Mf kL1 (
) exists and from

(2.37) we conclude that

lim
t !1

ku(t) � Mf kL1 (
) = 0:

The smoothness ofu establishes �nally that the convergence

lim
t !1

u(x; t ) = �

is uniform on �
. 2

Since the class (Pc) does not forbid contrast enhancement it admits processes
where forward di�usion has to compete with backward di�usion. Theorem 3 is
of importance as it states that the regularization by convolving with K � tames
the backward di�usion in such a way that forward di�usion wins in the long run.
Moreover, the competition evolves in a certain direction all the time: although
backward di�usion may be locally superior, the global result { denoted by the
Lyapunov functional { becomes permanently better for forward di�usion.

Let us have a closer look at what might be the meaning of this global result in
the context of image processing. Considering the Lyapunov functions associated
with r (s) := jsjp, r (s) := ( s� � )2n and r (s) := s ln s, respectively, the preceding
theorem gives the following corollary.

Corollary 1 (Special Lyapunov functionals).
Let u be the solution of (Pc) and a and � be de�ned as in (Pc) and (2.22). Then
the following functions are decreasing fort 2 [0; 1 ):

(a) ku(t)kLp (
) for all p � 2.

(b) M2n [u(t)] :=
1

j
 j

Z




(u(x; t ) � � )2n dx for all n 2 IN.

(c) H [u(t)] :=
Z




u(x; t ) ln(u(x; t )) dx, if a > 0.

Corollary 1 o�ers multiple possibilities of how to interpret nonlinear anisotropic
di�usion �ltering as a smoothing transformation.

As a special case of (a) it follows that the energyku(t)k2
L2(
) is reduced by

di�usion.
Part (b) gives a probabilistic interpretation of anisotropic di�usion �ltering.

Consider the intensity in an imagef as a random variableZ f with distribution
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Ff (z), i.e. Ff (z) is the probability that an arbitrary grey value Z f of f does not
exceedz. By the average grey level invariance,� is equal to the expected value

EZ u(t) :=
Z

IR

z dFu(t)(z); (2.38)

and it follows that M2n [u(t)] is just the even central moment
Z

IR

�
z� EZ u(t)

� 2n
dFu(t) (z): (2.39)

The second central moment (the variance) characterizes thespread of the intensity
about its mean. It is a common tool for constructing measuresfor the relative
smoothness of the intensity distribution. The fourth moment is frequently used to
describe the relative 
atness of the grey value distribution. Higher moments are
more di�cult to interpret, although they do provide importa nt information for
tasks like texture discrimination [163, pp. 414{415]. All decreasing even moments
demonstrate that the image becomes smoother during di�usion �ltering. Hence,
local e�ects such as edge enhancement, which object to increase central moments,
are overcompensated by smoothing in other areas.

If we choose another probabilistic model of images, then part (c) characterizes
the information-theoretical side of our scale-space. Provided the initial image f is
strictly positive on 
, we may regard it also as a two-dimensional density.4 Then,

S[u(t)] := �
Z




u(x; t ) ln(u(x; t )) dx (2.40)

is called theentropyof u(t), a measure of uncertainty and missing information [63].
Since anisotropic di�usion �lters increase the entropy thecorresponding scale-space
embeds the genuine imagef into a family of subsequently likelier versions of it
which contain less information. Moreover, fort ! 1 , the process reaches the state
with the lowest possible information, namely a constant image. This information-
reducing property indicates that anisotropic di�usion might be generally useful in
the context of image compression. In particular, it helps toexplain the success of
nonlinear di�usion �ltering as a preprocessing step for subsampling as observed in
[144]. The interpretation of the entropy in terms of Lyapunov functionals carries
also over to generalized entropies; see [390] for more details.

From all the previous considerations, we recognize that, inspite of possible
contrast-enhancing properties, anisotropic di�usion does really simplify the ori-
ginal image in a steady way.

Let us �nally point out another interpretation of the Lyapun ov functionals. In
a classic scale-space representation, the timet plays the role of the scale para-
meter. By increasingt, one transforms the image from a local to a more global

4Without loss of generality we omit the normalization.
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representation. We have seen in Chapter 1 that, for linear di�usion scale-spaces
and morphological scale-spaces, it is possible to associate with the evolution time
a corresponding spatial scale.

In the nonlinear di�usion case, however, the situation is more complicated.
Since the smoothing is nonuniform, one can only de�ne an average measure for
the globality of the representation. This can be achieved bytaking some Lyapunov
function �( u(t)) and investigating the expression

	( u(t)) :=
�( f ) � �( u(t))
�( f ) � �( Mf )

: (2.41)

We observe that 	( t) increases from 0 to 1. It gives the average globality ofu(t) and
its value can be used to measure the distance ofu(t) from the initial state f and the
�nal state Mf . Prescribing a certain value for 	 provides us with an a-posteriori
criterion for the stopping time of the nonlinear di�usion process. Experiments in
this direction can be found in [431, 308].



Chapter 3

Semidiscrete di�usion �ltering

The goal of this chapter is to study a semidiscrete frameworkfor di�usion scale-
spaces where the image is sampled on a �nite grid and the scaleparameter is
continuous. This leads to a system of nonlinear ordinary di�erential equations
(ODEs). We shall investigate conditions under which one canestablish similar
properties as in the continuous setting concerning well-posedness, extremum prin-
ciples, average grey level invariance, Lyapunov functions, and convergence to a
constant steady-state. Afterwards we shall discuss whether it is possible to obtain
such �lters from spatial discretizations of the continuousmodels that have been
investigated in Chapter 2. We will see that there exists a �nite stencil on which
a di�erence approximation of the spatial derivatives are inaccordance with the
semidiscrete scale-space framework.

3.1 The general model

A discrete image can be regarded as a vectorf 2 IRN , N � 2, whose components
f j , j = 1,...,N represent the grey values at each pixel. We denote the index set
f 1; :::; Ng by J . In order to specify the requirements for our semidiscrete �lter
class we �rst recall a useful de�nition of irreducible matrices [407, pp. 18{20].

De�nition 1 (Irreducibility). A matrix A = ( aij ) 2 IRN � N is called irreducible
if for any i; j 2 J there exist k0,...,kr 2 J with k0 = i and kr = j such that
akp kp+1 6= 0 for p = 0,..., r � 1.

The semidiscrete problem class (Ps) we are concerned with is de�ned in the
following way:

75
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Let f 2 IRN . Find a function u 2 C1([0; 1 ); IRN ) which satis�es an
initial value problem of type

du
dt

= A(u) u;

u(0) = f;

whereA = ( aij ) has the following properties:

(S1) Lipschitz-continuity of A 2 C(IR N ; IRN � N ) for every bounded
subset of IRN ,

(S2) symmetry: aij (u) = aj i (u) 8 i; j 2 J; 8 u 2 IRN ,

(S3) vanishing row sums:
P

j 2 J aij (u) = 0 8 i 2 J; 8 u 2 IRN ,

(S4) nonnegative o�-diagonals: aij (u) � 0 8 i 6= j; 8 u 2 IRN ,

(S5) irreducibility for all u 2 IRN .

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(Ps)

Not all of these requirements are necessary for every theoretical result below.
(S1) is needed for well-posedness, the proof of a maximum{minimum principle
involves (S3) and (S4), while average grey value invarianceuses (S2) and (S3).
The existence of Lyapunov functions can be established by means of (S2){(S4),
and strict Lyapunov functions and the convergence to a constant steady-state
require (S5) in addition to (S2){(S4).

This indicates that these properties reveal some interesting parallels to the
continuous setting from Chapter 2: In both cases we need smoothness assumptions
to ensure well-posedness; (S2) and (S3) correspond to the speci�c structure of the
divergence expression with a symmetric di�usion tensorD, while (S4) and (S5)
play a similar role as the nonnegativity of the eigenvalues of D and its uniform
positive de�niteness, respectively.

3.2 Theoretical results

Before we can establish scale-space results, it is of importance to ensure the ex-
istence of a unique solution. This is done in the theorem below which also states
the continuous dependence of the solution and a maximum{minimum principle.
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Theorem 4 (Well-posedness, extremum principle).
For every T > 0 the problem (Ps) has a unique solutionu(t) 2 C1([0; T]; IRN ).
This solution depends continuously on the initial value andthe right-hand side of
the ODE system, and it satis�es the extremum principle

a � ui (t) � b 8 i 2 J; 8 t 2 [0; T]; (3.1)

where

a := min
j 2 J

f j ; (3.2)

b := max
j 2 J

f j : (3.3)

Proof:

(a) Local existence and uniqueness

Local existence and uniqueness are proved by showing that our problem
satis�es the requirements of the Picard{Lindel•of theorem[432, p. 59].

Let t0 := 0 and � > 0. Evidently, � (t; u) :=  (u) := A(u) u is continuous on

B0 := [0; T] �
n

u 2 IRN
�
�
� kuk1 � k f k1 + �

o
;

since it is a composition of continuous functions. Moreover, by the compact-
ness ofB0 there exists somec > 0 with

k� (t; u)k1 � c 8 (t; u) 2 B0:

In order to prove existence and uniqueness of a solution of (Ps) in

R0 :=
n

(t; u)
�
�
� t 2 [t0; t0+min( �

c ; T)]; ku� f k1 � �
o

� B0

we have to show that� (t; u) satis�es a global Lipschitz condition onR0 with
respect tou. However, this follows directly from the fact thatA is Lipschitz-
continuous onf u 2 IRN j ku� f k1 � � g.

(b) Maximum{minimum principle

We prove only the maximum principle, since the proof for the minimum
principle is analogous.

Assume that the problem (Ps) has a unique solution on [0; � ]. First we show
that the derivative of the largest component ofu(t) is nonpositive for every
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t 2 [0; � ]. Let uk(#) := max
j 2 J

uj (#) for some arbitrary # 2 [0; � ]. If we keep

this k �xed we obtain, for t = #,

duk

dt
=

X

j 2 J

akj (u) uj

= akk (u) uk +
X

j 2 J nf kg

akj (u)
| {z }

� 0

uj|{z}
� uk

� uk �
X

j 2 J

akj (u)

(S4)
= 0: (3.4)

Let us now prove that this implies a maximum principle (cf. [201]).
Let " > 0 and set

u" (t) := u(t) �

0

B
B
@

"t
...
"t

1

C
C
A :

Moreover, let P := f p2 J j u"p (0) = max
j 2 J

u"j (0)g. Then, by (3.4),

 
du"p

dt

!

(0) =

 
dup

dt

!

(0)
| {z }

� 0

� " < 0 8 p 2 P: (3.5)

By means of
max
i 2 J nP

u"i (0) < max
j 2 J

u"j (0);

and the continuity of u there exists somet1 2 (0; � ) such that

max
i 2 J nP

u"i (t) < max
j 2 J

u"j (0) 8 t 2 [0; t1): (3.6)

Next, let us consider somep 2 P. Due to (3.5) and the smoothness ofu we
may �nd a #p 2 (0; � ) with

 
du"p

dt

!

(t) < 0 8 t 2 [0; #p):

Thus, we have
u"p (t) < u "p (0) 8 t 2 (0; #p)

and, for t2 := min
p2 P

#p, it follows that

max
p2 P

u"p (t) < max
j 2 J

u"j (0) 8 t 2 (0; t2): (3.7)
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Hence, fort0 := min( t1; t2), the estimates (3.6) and (3.7) give

max
j 2 J

u"j (t) < max
j 2 J

u"j (0) 8 t 2 (0; t0): (3.8)

Now we prove that this estimate can be extended to the caset 2 (0; � ). To
this end, assume the opposite is true. Then, by virtue of the intermediate
value theorem, there exists somet3 which is the smallest time in (0; � ) such
that

max
j 2 J

u"j (t3) = max
j 2 J

u"j (0):

Let u"k := max
j 2 J

u"j (t3). Then the minimality of t3 yields

u"k (t) < u "k (t3) 8 t 2 (0; t3); (3.9)

and inequality (3.4) gives
 

du"k

dt

!

(t3) =

 
duk

dt

!

(t3)
| {z }

� 0

� " < 0:

Due to the continuity of du
dt there exists somet4 2 (0; t3) with

 
du"k

dt

!

(t) < 0 8 t 2 (t4; t3]: (3.10)

The mean value theorem, however, implies that we �nd at5 2 (t4; t3) with
 

du"k

dt

!

(t5) =
u"k (t3) � u"k (t4)

t3 � t4

(3:9)
> 0;

which contradicts (3.10). Hence, (3.8) must be valid on the entire interval
(0; � ).

Together with u = lim
" ! 0

u" and the continuity of u this yields the announced
maximum principle

max
j 2 J

uj (t) � max
j 2 J

uj (0) 8 t 2 [0; � ]:

(c) Global existence and uniqueness

Global existence and uniqueness follow from local existence and uniqueness
when being combined with the extremum principle.

Using the notations and results from (a), we know that the problem (Ps) has
a unique solutionu(t) for t 2 [t0; t0 + min( �

c ; T)].
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Now let t1 := t0 + min( �
c ; T), g := u(t1), and consider the problem

du
dt

= A(u) u;

u(t1) = g:

Clearly, � (t; u) = A(u)u is continuous on

B1 := [0; T] �
n

u 2 IRN
�
�
� kuk1 � k gk1 + �

o
;

and by the extremum principle we know thatB1 � B0. Hence,

k� (t; u)k1 � c 8 (t; u) 2 B1:

with the samec as in (a). Using the same considerations as in (a) one shows
that � is Lipschitz-continuous on

R1 :=
n

(t; u)
�
�
� t 2 [t1; t1+min( �

c ; T)]; ku� gk1 � �
o
:

Hence, the considered problem has a unique solution on [t1; t1 + min( �
c ; T)].

Therefore, (Ps) reveals a unique solution on [0; min( 2�
c ; T)], and, by iterating

this reasoning, the existence of a unique solution can be extended to the
entire interval [0; T]. As a consequence, the extremum principle is valid on
[0; T] as well.

(d) Continuous dependence

Let u(t) be the solution of

du
dt

= � (t; u);

u(0) = f

for t 2 [0; T] and � (u; t) =  (u) = A(u)u. In order to show that u(t) depends
continuously on the initial data and the right-hand side of the ODE system,
it is su�cient to prove that � (t; u) is continuous, and that there exists some
� > 0 such that � (t; u) satis�es a global Lipschitz condition on

S� :=
n

(t; v)
�
�
� t 2 [0; T]; kv� uk1 � �

o
:

with respect to its second argument. In this case the resultsin [412, p. 93]
ensure that for every" > 0 there exists a� > 0 such that the solution ~u of
the perturbed problem

d~u
dt

= ~� (t; ~u);

~u(0) = ~f
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with continuous ~� and

k ~f � f k1 < �;

k~� (t; v) � � (t; v)k1 < � for kv � uk1 < �

exists in [0; T] and satis�es the inequality

k~u(t) � u(t)k1 < ":

Similar to the the local existence and uniqueness proof, theglobal Lipschitz
condition on S� follows direcly from the fact that A is Lipschitz-continuous
on f v 2 IRN j kv� uk1 � � g. 2

3.3 Scale-space properties

It is evident that properties such as grey level shift invariance or reverse contrast
invariance are automatically satis�ed by every consistentsemidiscrete approxima-
tion of the continuous �lter class (Pc). On the other hand, translation invariance
only makes sense for translations in grid direction with multiples of the grid size,
and isometry invariance is satis�ed for consistent schemesup to an discretization
error. So let us focus on average grey level invariance now.

Proposition 2 (Conservation of average grey value).
The average grey level

� :=
1
N

X

j 2 J

f j (3.11)

is not a�ected by the semidiscrete di�usion �lter:

1
N

X

j 2 J

uj (t) = � 8 t � 0: (3.12)

Proof:
By virtue of (S2) and (S3) we have

P

j 2 J
ajk (u) = 0 for all k 2 J . Thus, for t � 0,

X

j 2 J

duj

dt
=

X

j 2 J

X

k2 J

ajk (u) uk =
X

k2 J

� X

j 2 J

ajk (u)
�
uk = 0;

which shows that
P

j 2 J
uj (t) is constant on [0; 1 ) and concludes the proof. 2

This property is in complete accordance with the result for the continuous �lter
class.
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Similar to the continuous setting, it is possible to �nd a large class of Lyapunov
functions which establish smoothing scale-space properties and ensure that the
image tends to a constant steady-state with the same averagegrey level as the
initial image.

Theorem 5 (Lyapunov functions and behaviour for t ! 1 ).
Let u(t) be the solution of (Ps), let a, b, and � be de�ned as in (3.2), (3.3), and
(3.11), respectively, and letc := ( �; �; :::; � )> 2 IRN .
Then the following properties are valid:

(a) (Lyapunov functions)
For all r 2 C1[a; b] with increasing r 0 on [a; b], the function

V(t) := �( u(t)) :=
X

i 2 J

r (ui (t))

is a Lyapunov function:

(i) �( u) � �( c) for all t � 0.

(ii) V 2 C1[0; 1 ) and V 0(t) � 0 for all t � 0.

Moreover, if r 0 is strictly increasing on [a; b], then V(t) = �( u(t)) is a strict
Lyapunov function:

(iii) �( u) = �( c) () u = c

(iv) V 0(t) = 0 () u = c

(b) (Convergence)
lim
t !1

u(t) = c.

Proof:

(a) (i) Since r 0 is increasing on [a; b] we know that r is convex on [a; b]. Average
grey level invariance and this convexity yield, for allt � 0,

�( c) =
NX

i =1

r

0

@
NX

j =1

1
N

uj

1

A

�
NX

i =1

0

@ 1
N

NX

j =1

r (uj )

1

A

=
NX

j =1

r (uj )

= �( u): (3.13)
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(ii) Since u 2 C1([0; 1 ); IRN ) and r 2 C1[a; b], it follows that V 2 C1[0; 1 ).

Using the prerequisites (S2) and (S3) we get

V 0(t) =
NX

i =1

dui

dt
r 0(ui )

(S3)
=

NX

i =1

NX

j =1

aij (u) (uj � ui ) r 0(ui )

=
NX

i =1

0

@
NX

j = i +1

+
i � 1X

j =1

1

A aij (u) (uj � ui ) r 0(ui )

=
NX

i =1

N � iX

k=1

ai;i + k(u) (ui + k � ui ) r 0(ui )

+
NX

i =1

N � iX

k=1

ai + k;i (u) (ui � ui + k) r 0(ui + k)

(S2)
=

NX

i =1

N � iX

k=1

ai;i + k(u) (ui + k � ui )
�
r 0(ui ) � r 0(ui + k)

�
: (3.14)

Sincer 0 is increasing, we always have

(ui + k � ui )
�
r 0(ui ) � r 0(ui + k)

�
� 0:

With this and (S4), equation (3.14) implies thatV 0(t) � 0 for t � 0.

(iii) Let us �rst prove that equality in the estimate (3.13) i mplies that all
components ofu are equal.

To this end, suppose thatui 0 := min
i

ui < max
j

uj =: uj 0 and let

� :=
NX

j =1
j 6= j 0

1
N uj

1 � 1
N

:

Then, � <u j 0 . Sincer 0 is strictly increasing on [a; b], we know that r is
strictly convex. Hence, we get

r

 NX

i =1

1
N

uj

!

= r
� 1

N
uj 0 +

�

1�
1
N

�

�
�

<
1
N

r (uj 0 ) +
�

1�
1
N

�

r (� )

�
1
N

r (uj 0 ) +
NX

j =1
j 6= j 0

1
N

r (uj )

=
NX

j =1

1
N

r (uj ):
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This shows that equality in (3.13) implies thatu1 = ::: = uN . By virtue
of the grey level shift invariance we conclude thatu = c.

Conversely, it is trivial that �( u) = �( c) for u = c.

(iv) Let V 0(t) = 0. From (3.14) we have

0 = V 0(t) =
NX

i =1

N � iX

k=1

ai;i + k(u) (ui + k � ui )
�
r 0(ui ) � r 0(ui + k)

�

| {z }
� 0

;

and by virtue of the symmetry ofA(u) it follows that

aij (u) (uj � ui )
�
r 0(ui ) � r 0(uj )

�
= 0 8 i; j 2 J: (3.15)

Now consider two arbitraryi0; j 0 2 J . The irreducibility of A(u) implies
that there exist k0,...,kr 2 J with k0 = i0, kr = j 0, and

akp kp+1 (u) 6= 0; p = 0; :::; r � 1:

As r 0 is strictly increasing we have, forp = 0,...,r � 1,

(ukp � ukp+1 )
�
r 0(ukp+1 ) � r 0(ukp )

�
= 0 () ukp = ukp+1 :

From this and (3.15) we get

ui 0 = uk0 = uk1 = ::: = ukr = uj 0 :

Since i0 and j 0 are arbitrary, we obtain ui = const. for all i 2 J ,
and the average grey level invariance givesu = c. This proves the �rst
implication.

Conversely, letui = const. for all i 2 J . Then from the representation
(3.14) we immediately conclude thatV 0(t) = 0.

(b) The convergence proof is based on classical Lyapunov reasonings, see e.g.
[180] for an introduction to these techniques.

Consider the Lyapunov functionV(t) := �( u(t)) := ju(t) � cj2, which results
from the choicer (s) := ( s� � )2. SinceV(t) is decreasing and bounded from
below by 0, we know that lim

t !1
V(t) =: � exists and� � 0.

Now assume that� > 0.

Sinceju(t) � cj is bounded from above by� := jf � cj we have

ju(t) � cj � � 8 t � 0: (3.16)

By virtue of �( x) = jx � cj2 we know that, for � 2 (0;
p

� ),

�( x) < � 8 x 2 IRN ; jx � cj < �:
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Let w.l.o.g. � < � . Since �( u(t)) � � we conclude that

ju(t) � cj � � 8 t � 0: (3.17)

So from (3.16) and (3.17) we have

u(t) 2 f x 2 IRN j � � j x � cj � � g =: S 8 t � 0:

By (a)(ii),(iv), the compactness of S, and� > 0 there exists someM > 0
such that

V 0(t) � � M 8 t � 0:

Therefore, it follows

V(t) = V(0) +
Z t

0
V 0(� ) d� � V(0) � tM

which implies lim
t !1

V(t) = �1 and, thus, contradicts (a)(i).

Hence the assumption� > � is wrong and we must have� = � .

According to (a)(iii) this yields lim
t !1

u(t) = c. 2

As in the continuous case, we can consider the Lyapunov functions associated
with r (s) := jsjp, r (s) := ( s� � )2n and r (s) := s ln s, respectively, and obtain the
following corollary.

Corollary 2 (Special Lyapunov functions).
Let u be the solution of (Ps) and a and � be de�ned as in (3.2) and (3.11). Then
the following functions are decreasing fort 2 [0; 1 ):

(a) ku(t)kp for all p � 2.

(b) M2n [u(t)] := 1
N

NP

j =1
(uj (t) � � )2n for all n 2 IN.

(c) H [u(t)] :=
NP

j =1
uj (t) ln(uj (t)) , if a > 0.

Since all p-norms (p � 2) and all central moments are decreasing, while the
discrete entropy

S[u(t)] := �
NX

j =1

uj (t) ln(uj (t)) (3.18)

is increasing with respect tot, we observe that the semidiscrete setting reveals
smoothing scale-space properties which are closely related to the continuous case.
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3.4 Relation to continuous models

In this section we investigate whether it is possible to use spatial discretizations of
the continuous �lter class (Pc) in order to construct semidiscrete di�usion models
satisfying (S1){(S5). First we shall verify that this is easily done for isotropic
models. In the anisotropic case, however, the mixed derivative terms make it more
di�cult to ensure nonnegative o�-diagonal elements. A constructive existence proof
is presented showing that for a su�ciently large stencil it is always possible to �nd
such a nonnegative discretization. This concept is illustrated by investigating the
situation on a (3� 3)-stencil in detail.

3.4.1 Isotropic case

Let the rectangle 
 = (0 ; a1) � (0; a2) be discretized by a grid ofN = n1 � n2 pixels
such that a pixel (i; j ) with 1 � i � n1 and 1� j � n2 represents the location (x i ; yj )
where

x i := ( i � 1
2) h1; (3.19)

yj := ( j � 1
2) h2; (3.20)

and the grid sizesh1, h2 are given byh1 := a1=n1 and h2 := a2=n2, respectively.
These pixels can be numbered by means of an arbitrary bijection

p : f 1; :::; n1g � f 1; :::; n2g ! f 1; :::; Ng: (3.21)

Thus, pixel (i; j ) is represented by a single indexp(i; j ).
Let us now verify that a standard FD space discretization of an isotropic variant

of (Pc) leads to a semidiscrete �lter satisfying the requirements(S1){(S5). To
this end, we may replace the di�usion tensorD(J� (r u� )) by some scalar-valued
function g(J� (r u� )). The structure tensor requires the calculations of convolutions
with r K � and K � , respectively. In the spatially discrete case this comes down to
speci�c vector{matrix multiplications. For this reason, we may approximate the
structure tensor by some matrixH (u) = ( hij (u)) where H 2 C1 (IR N ; IR2� 2).

Next, consider some pixelk = p(i; j ). Then a consistent spatial discretization of
the isotropic di�usion equation with homogeneous Neumann boundary conditions
can be written as

duk

dt
=

2X

n=1

X

l2N n (k)

gl + gk

2h2
l

(ul � uk); (3.22)

whereNn (k) consists of the one or two neighbours of pixelk along then-th coor-
dinate axis (boundary pixels have only one neighbour) andgk := g((H (u))k).

In vector{matrix notation (3.22) becomes

du
dt

= A(u) u; (3.23)
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where the matrix A(u) = ( akl (u))kl is given by

akl :=

8
>>>><

>>>>:

gk + gl
2h2

n
(l 2 N n(k)) ;

�
2P

n=1

P

l2N n (k)

gk + gl
2h2

n
(l = k);

0 (else):

(3.24)

Let us now verify that (S1){(S5) are ful�lled.

SinceH 2 C1 (IR N ; IR2� 2) and g 2 C1 (IR 2� 2), we haveA 2 C1 (IR N ; IRN � N ).
This proves (S1).

The symmetry ofA follows directly from (3.24) and the symmetry of the neigh-
bourhood relation:

l 2 N n (k) () k 2 N n (l):

By the construction of A it is also evident that all row sums vanish, i.e. (S3)
is satis�ed. Moreover, sinceg is positive, it follows that akl � 0 for all k 6= l and,
thus, (S4) holds.

In order to show that A is irreducible, let us consider two arbitrary pixelsk and
l. Then we have to �nd k0,...,kr 2 J with k0 = k and kr = l such that akqkq+1 6= 0
for q = 0,...,r � 1. If k = l, we already know from (3.24) thatakk < 0. In this case
we have the trivial path k = k0 = kr = l. For k 6= l, we may choose any arbitrary
path k0,...,kr , such that kq and kq+1 are neighbours forq = 0,...,r � 1. Then,

akqkq+1 =
gkq + gkq+1

2h2
n

> 0

for somen 2 f 1; 2g. This proves (S5).

Remarks:

(a) We observe that (S1){(S5) are properties which are validfor all arbitrary
pixel numberings.

(b) The �lter class ( Pc) is not the only family which leads to semidiscrete �l-
ters satisfying (S1){(S5). Interestingly, a semidiscreteversion of the Perona{
Malik �lter { which is to a certain degree ill-posed in the continuous setting
(cf. 1.3.1) { also satis�es (S1){(S5) and, thus, reveals allthe discussed well-
posedness and scale-space properties [425]. This is due to the fact that the
extremum principle limits the modulus of discrete gradientapproximations.
Hence, the spatial discretization implicitly causes a regularization. These
results are also in accordance with a recent paper by Pollak et al. [332].
They study an image evolution under an ODE system with a discontinuous
right hand side, which has some interesting relations to thelimit case of a
semidiscrete Perona{Malik model. They also report stable behaviour of their
process.
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3.4.2 Anisotropic case

If one wishes to transfer the results from the isotropic caseto the general aniso-
tropic setting the main di�culty arises from the fact that, d ue to the mixed deriva-
tive expressions, it is not obvious how to ensure (S4), the nonnegativity of all o�-
diagonal elements ofA(u). The theorem below states that this is always possible
for a su�ciently large stencil.

Theorem 6 (Existence of a nonnegative discretization).
Let D 2 IR2� 2 be symmetric positive de�nite with a spectral condition number
� . Then there exists somem(� ) 2 IN such thatdiv (D r u) reveals a second-order
nonnegative FD discretization on a(2m+1) � (2m+1) -stencil.

Proof:
Let us consider somem 2 IN and the corresponding (2m+1) � (2m+1)-stencil. The

\boundary pixels" of this stencil de�ne 4m principal orientations � i 2 (� �
2 ; �

2 ],
i = � 2m+1; :::; 2m according to

� i :=

8
>>><

>>>:

arctan
�

ih 2
mh 1

�
(ji j � m);

arccot
�

(2m� i )h1

mh 2

�
(m < i � 2m);

arccot
�

(i � 2m)h1

mh 2

�
(� 2m + 1 � i < � m):

Now let Jm := f 1; :::; 2m� 1g and de�ne a partition of (� �
2 ; �

2 ] into 4m� 2 subin-
tervals I i , ji j2 Jm :

(� �
2 ; �

2 ] =
� 1[

i = � 2m+1

(� i ; � i +1 ]
| {z }

=: I i

[
2m� 1[

i =1

(� i � 1; � i ]| {z }
=: I i

;

where

� i :=

8
>>>>>>><

>>>>>>>:

0 (i = 0) ;
1
2 arctan

�
2

cot � i � tan � i +1

�
(i 2 f 1; :::; 2m� 2g; � i + � i +1 < �

2 );
�
4 (i 2 f 1; :::; 2m� 2g; � i + � i +1 = �

2 );
�
2 + 1

2 arctan
�

2
cot � i � tan � i +1

�
(i 2 f 1; :::; 2m� 2g; � i + � i +1 > �

2 );
�
2 (i = 2m� 1);

and
� i := � � � i (i 2 f� 2m+1; :::; � 1g):

It is not hard to verify that � i 2 I i for ji j2 Jm .
Let � 1 � � 2 > 0 be the eigenvalues ofD with corresponding eigenvectors

(cos ; sin )> and (� sin ; cos )> , where  2 (� �
2 ; �

2 ]. Now we show that for
a suitable m there exists a stencil direction� k , jkj 2 Jm such that the splitting

div (D r u) = @e� 0

�
� 0 @e� 0

u
�

+ @e� k

�
� k @e� k

u
�

+ @e� 2m

�
� 2m @e� 2m

u
�

(3.25)
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with e� i := (cos � i ; sin � i )> reveals nonnegative \directional di�usivities" � 0, � k ,
� 2m along the stencil orientations� 0, � k , � 2m . This can be done by proving the
following properties:

(a) Let  2 I k and D =
�

a
b

b
c

�
. Then a nonnegative splitting of type (3.25) is

possible if
min

�
a � b cot � k ; c � b tan � k

�
� 0: (3.26)

(b) Inequality (3.26) is satis�ed for

� 1

� 2
� min

�
cot(� k � � k) tan � k ; cot(� k � � k) cot � k

�
=: � k;m (3.27)

with

� k :=

(
� k (jkj 2 f 1; :::; 2m� 2g);
1
2(� k + � k) ( jkj = 2m� 1);

� k :=

(
1
2 � k (jkj = 1) ;
� k� 1 (jkj 2 f 2; :::; 2m� 1g):

(c) lim
m!1

�
min

j i j2 Jm
� i;m

�
= 1 :

Once these assertions are proved a nonnegative second-order discretization of (3.25)
arises in a natural way, as we shall see at the end of this chapter. So let us now
verify (a){(c).

(a) In order to use subsequent indices, let' 0 := 0, ' 1 := � k where  2 I k , and
' 2 := �

2 . Furthermore, let 
 0 := � 0, 
 1 := � k , and 
 2 := � 2m . Then (3.25)
requires that

div

  
a b
b c

!

r u

!

=
2X

i =0

@
@e' i

 


 i
@u

@e' i

!

=
@

@x

2X

i =0

cos' i

�

 i (ux cos' i + uy sin ' i )

�

+
@
@y

2X

i =0

sin' i

�

 i (ux cos' i + uy sin ' i )

�

= div

0

B
B
@

0

B
B
@

2P

i =0

 i cos2' i

2P

i =0

 i sin' i cos' i

2P

i =0

 i sin' i cos' i

2P

i =0

 i sin2' i

1

C
C
A r u

1

C
C
A :

By comparing the coe�cients and using the de�nition of ' 0, ' 1 and ' 2 we
obtain the linear system

0

B
@

1 cos2� k 0
0 sin� k cos� k 0
0 sin2� k 1

1

C
A

0

B
@


 0


 1


 2

1

C
A =

0

B
@

a
b
c

1

C
A
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which has the unique solution


 0 = a � b cot � k ; (3.28)


 1 =
b

sin� k cos� k
; (3.29)


 2 = c � b tan � k : (3.30)

From the structure of the eigenvalues and eigenvectors ofD it is easily seen
that

b= ( � 1 � � 2) sin  cos :

Now, � 1 � � 2 � 0, and since ; � k 2 I k we conclude that and � k belong to
the same quadrant. Thus,
 1 is always nonnegative. In order to satisfy the
nonnegativity of 
 0 and 
 2 we need that

min
�
a � b cot � k ; c � b tan � k

�
� 0:

(b) Let � 1
� 2

� � k;m and consider the case 0< � k < �
2 . By de�ning

B(' ) := cos2' � sin ' cos' cot � k ;

C(' ) := sin 2' + sin ' cos' cot � k

we get

� 1

� 2
� cot(� k � � k) tan � k = �

C(� k)
B (� k)

= min
' 2 (� k ;� k )

 

�
C(' )
B (' )

!

:

SinceB(' ) < 0 on (� k ; �
2 ) we have

� 1B(' ) + � 2C(' ) � 0 8 ' 2 (� k ; � k): (3.31)

Because of

B(' ) � 0 8 ' 2 [� �
2 ; � k ];

C(' ) � 0 8 ' 2 [0; �
2 ];

and the continuity of B(' ) and C(' ) we may extend (3.31) to the entire
interval I k = ( � k� 1; � k ]. In particular, since  2 I k , we have

0 � � 1B( ) + � 2C( )

= ( � 1 cos2 + � 2 sin2 ) � (� 1 � � 2) sin  cos cot � k :

By the representation
 

a b
b c

!

=

 
cos � sin 
sin cos 

!  
� 1 0
0 � 2

!  
cos sin 

� sin cos 

!

=

 
� 1 cos2 + � 2 sin2 (� 1 � � 2) sin  cos 
(� 1 � � 2) sin  cos � 1 sin2 + � 2 cos2 

!
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we recognize that this is just the desired condition

a � b cot � k � 0: (3.32)

For the case� �
2 < � k < 0 a similar reasoning can be applied leading also to

(3.32).

In an analogous way one veri�es that

� 1

� 2
� cot(� k � � k) cot � k =) c � b tan � k � 0:

(c) Let us �rst consider the case 1� i � 2m� 2. Then, � i = � i , and the de�nition
of � i implies that

cot � i � tan � i = cot � i � tan � i +1 :

Solving for cot� i and tan� i , respectively, yields

cot � i =
1
2

�

cot � i � tan � i +1 +
q

(cot � i � tan � i +1 )2 + 4
�

;

tan � i =
1
2

�

� cot � i + tan � i +1 +
q

(cot � i � tan � i +1 )2 + 4
�

:

By means of these results we obtain

cot(� i � � i ) tan � i =
cot � i + tan � i

cot � i � cot � i
= 1 +

2
r

(cot � i +tan � i +1 )2

(cot � i � tan � i +1 )2+4 � 1
:

Let us now assume that 1� i � m� 1. Then we have

tan � i +1 =
(i + 1) h2

mh1
;

cot � i =
mh1

ih 2
:

This gives

(cot � i + tan � i +1 )2

(cot � i � tan � i +1 )2 + 4
=

1

1 � 4m2 i�
m2 h 1

h 2
+ i (i +1) h 2

h 1

� 2

=:
1

1 � gm (i )
=: f m (i ):

For m > 1
2

h2
h1

the function gm (x) is bounded and attains its global maximum
in

xm := � 1
6 + 1

6

r

1 + 12 m2 h2
1

h2
2
:
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Thus, for 1 � i � m� 1,

gm (i ) � gm (xm ) ! 0+ for m ! 1 ;

which yields

f m (i ) �
1

1 � gm (xm )
! 1+ for m ! 1 :

This gives

min
1� i � m� 1

�
cot(� i � � i ) tan � i

�
� 1 +

2
q

f m (xm ) � 1
! 1 for m ! 1 :

For m � i � 2m� 2 similar calculations show that by means of

tan � i +1 =
mh2

(2m� i � 1) h1
;

cot � i =
(2m� i ) h1

mh2

one obtains

min
m� i � 2m� 2

�
cot(� i � � i ) tan � i

�
! 1 for m ! 1 :

For i = 2m� 1 we have

cot
�
� 2m� 1 � � 2m� 1

�
tan � 2m� 1 = cot

 
�
4

�
� 2m� 1

2

!

tan

 
�
4

+
� 2m� 1

2

!

= tan 2

 
�
4

+
� 2m� 1

2

!

! 1 for m ! 1 :

It is not hard to verify that for � 2m + 1 � i � � 1 the preceding results
carry over. Hence,

lim
m!1

 

min
j i j2 Jm

�
cot(� i � � i ) tan � i

�
!

= 1 : (3.33)

Now, in a similar way as above, one establishes that

lim
m!1

 

min
j i j2 Jm

�
cot(� i � � i ) cot � i

�
!

= 1 : (3.34)

From (3.33) and (3.34) we �nally end up with the assertion

lim
m!1

�
min

j i j2 Jm

� i;m

�
= 1 :

2
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Remarks:

(a) We observe that the preceding existence proof is constructive. Moreover,
only three directions are su�cient to guarantee a nonnegative directional
splitting. Thus, unlessm is very small, most of the stencil coe�cients can be
set to zero.

(b) Especially for largem, a (2m+1)� (2m+1)-stencil reveals much more directions
than those 4m that are induced by the 8m \boundary pixels". Therefore,
even if we use only 3 directions, we may expect to �nd stricterestimates
than those given in the proof. These estimates might be improved further by
admitting more than 3 directions.

(c) For a speci�ed di�usion tensor function D it is possible to give a-priori es-
timates for the required stencil size: using the extremum principle it is not
hard to show that

jr u� (x; t )j = j(r K � � u)(x; t )j �
4kf kL1 (
)p

2� �
on �
 � (0; 1 );

where the notations from Chapter 2 have been used. Thanks to the uniform
positive de�niteness ofD there exists an upper limit for the spectral condition
number of D. This condition limit can be used to �x a suitable stencil size.

(d) The existence of a nonnegative directional splitting distinguishes the �lter
class (Pc) from morphological anisotropic equations such as mean curvature
motion. In this case it has been proved that it is impossible to �nd a nonneg-
ative directional splitting on a �nite stencil [13]. As a remedy, Crandall and
Lions [104] propose to study a convergent sequence of regularizations which
can be approximated on a �nite stencil.

Let us now illustrate the ideas in the proof of Theorem 6 by applying them
to a practical example: We want to �nd a nonnegative spatial discretization of
div (Dr u) on a (3� 3)-stencil, where

D =

 
a
b

b
c

!

and a, b and c may be functions ofJ� (r u� ).
Sincem = 1 we have a partition of (� �

2 ; �
2 ] into 4m� 2 = 2 subintervals:

(� �
2 ; �

2 ] = ( � �
2 ; 0] [ (0; �

2 ] =: I � 1 [ I 1:



94 CHAPTER 3. SEMIDISCRETE DIFFUSION FILTERING

I � 1 and I 1 belong to the grid angles

� � 1 = arctan

 

�
h2

h1

!

;

� 1 = arctan

 
h2

h1

!

=: �:

First we focus on the case 2 I 1 where (cos ; sin ) denotes the eigenvector to
the larger eigenvalue� 1 of D. With the notations from the proof of Theorem 6 we
obtain

� 1 =
�
2

;

� 1 =
� 1 + � 1

2
=

�
4

+
�
2

;

� 1 =
�
2

:

Therefore, we get

cot(� 1 � � 1) tan � 1 = cot

 
�
4

�
�
2

!

tan

 
�
4

+
�
2

!

=
1 + sin �
1 � sin�

;

cot(� 1 � � 1) cot � 1 = cot 2

 
�
2

!

=
1 + cos�
1 � cos�

;

which restricts the upper condition number for a nonnegative discretization with
 2 I 1 to

� 1;1 := min

 
1 + sin �
1 � sin�

;
1 + cos�
1 � cos�

!

: (3.35)

Thanks to the symmetry we obtain the same condition restriction for  2 I � 1.
These bounds on the condition number attain their maximal value for h1 = h2. In
this case� = �

4 gives

� 1;1 = � � 1;1 =
1 + 1

2

p
2

1 � 1
2

p
2

= 3 + 2
p

2 � 5:8284: (3.36)

By virtue of (3.28){(3.30) we obtain as expressions for the directional di�usivities

� � 1 =
�
jbj � b

�
�

h2
1 + h2

2

2h1h2
;

� 0 = a � j bj �
h1

h2
;

� 1 =
�
jbj + b

�
�

h2
1 + h2

2

2h1h2
;

� 2 = c � j bj �
h2

h1
:
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This induces in a natural way the following second-order discretization for div (Dr u):

jbi � 1;j +1 j� bi � 1;j +1

4h1h2

+ jbi;j j� bi;j

4h1h2

ci;j +1 + ci;j

2h2
2

� jbi;j +1 j+ jbi;j j
2h1h2

jbi +1 ;j +1 j+ bi +1 ;j +1

4h1h2

+ jbi;j j+ bi;j

4h1h2

ai � 1;j + ai;j

2h2
1

� jbi � 1;j j+ jbi;j j
2h1h2

� ai � 1;j +2 ai;j + ai +1 ;j

2h2
1

� jbi � 1;j +1 j� bi � 1;j +1 + jbi +1 ;j +1 j+ bi +1 ;j +1

4h1h2

� jbi � 1;j � 1 j+ bi � 1;j � 1+ jbi +1 ;j � 1 j� bi +1 ;j � 1

4h1h2

+ jbi � 1;j j+ jbi +1 ;j j+ jbi;j � 1 j+ jbi;j +1 j+2 jbi;j j
2h1h2

� ci;j � 1+2 ci;j + ci;j +1

2h2
2

ai +1 ;j + ai;j

2h2
1

� jbi +1 ;j j+ jbi;j j
2h1h2

jbi � 1;j � 1 j+ bi � 1;j � 1

4h1h2

+ jbi;j j+ bi;j

4h1h2

ci;j � 1+ ci;j

2h2
2

� jbi;j � 1 j+ jbi;j j
2h1h2

jbi +1 ;j � 1 j� bi +1 ;j � 1

4h1h2

+ jbi;j j� bi;j

4h1h2

All nonvanishing entries of thep-th row of A(u) are represented in this stencil,
wherep(i; j ) is the index of some inner pixel (i; j ). Thus, for instance, the upper
left stencil entry gives the element (p(i; j ); p(i � 1; j +1)) of A(u). The other nota-
tions should be clear from the context as well, e.g.bi;j denotes a �nite di�erence
approximation of b(J� (r u� )) at some grid point (x i ; yj ).

The problem of �nding nonnegative di�erence approximations to elliptic expres-
sions with mixed derivatives has a long history; see e.g. [294, 120, 170]. Usually it
is studied for the expression

a(x; y) @xx u + 2b(x; y) @xy u + c(x; y) @yyu:

The approach presented here extends these results to

@x

�
a(x; y) @xu

�
+ @x

�
b(x; y) @yu

�
+ @y

�
b(x; y) @xu

�
+ @y

�
c(x; y) @yu

�

and establishes the relation between the condition number of
�

a
b

b
c

�
and the non-

negativity of the di�erence operator. Recently Kocan described an interesting al-
ternative to obtain upper bounds for the stencil size as a function of the condition
number [238]. His derivation is based on the diophantine problem of approximating
irrationals by rational numbers.
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Chapter 4

Discrete di�usion �ltering

This chapter presents a discrete class of di�usion processes for which one can estab-
lish similar properties as in the semidiscrete case concerning existence, uniqueness,
continuous dependence of the solution on the initial image,maximum-minimum
principle, average grey level invariance, Lyapunov sequences and convergence to a
constant steady-state. We shall see that this class comprises � -semi-implicit dis-
cretizations of the semidiscrete �lter class (Ps) as well as certain variants of them
which are based on an additive operator splitting.

4.1 The general model

As in Chapter 3 we regard a discrete image as a vectorf 2 IRN , N � 2, and denote
the index setf 1; :::; Ng by J . We consider the following discrete �lter class (Pd):

Let f 2 IRN . Calculate a sequence (u(k))k2 IN 0 of processed versions
of f by means of

u(0) = f;

u(k+1) = Q(u(k)) u(k) ; 8 k 2 IN0;

whereQ = ( qij ) has the following properties:

(D1) continuity in its argument: Q 2 C(IR N ; IRN � N ),

(D2) symmetry: qij (v) = qj i (v) 8 i; j 2 J; 8 v 2 IRN ,

(D3) unit row sum:
P

j 2 J qij (v) = 1 8 i 2 J; 8 v 2 IRN ,

(D4) nonnegativity: qij (v) � 0 8 i; j 2 J; 8 v 2 IRN ,

(D5) irreducibility for all v 2 IRN ,

(D6) positive diagonal: qii (v) > 0 8 i 2 J; 8 v 2 IRN .

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(Pd)

97
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Remarks:

(a) Although the basic idea behind scale-spaces is to have a continuous scale
parameter, it is evident that fully discrete results are of importance since, in
practice, scale-space evolutions are evaluated exclusively at a �nite number
of scales.

(b) The requirements (D1){(D5) have a similar meaning as their semidiscrete
counterparts (S1){(S5). Indeed, (D1) immediately gives well-posedness re-
sults, while the proof of the extremum principle requires (D3) and (D4),
and average grey value invariance is based on (D2) and (D3). The existence
of Lyapunov sequences is a consequence of (D2){(D4), strictLyapunov se-
quences need (D5) and (D6) in addition to (D2){(D4), and the convergence
to a constant steady-state utilizes (D2){(D5).

(c) Nonnegative matricesQ = ( qij ) 2 IRN � N satisfying
P

j 2 J qij = 1 for all i 2 J
are also calledstochastic matrices. Moreover, if Q is stochastic and

P
i 2 J qij =

1 for all j 2 J , then Q is doubly stochastic. This indicates that our discrete
di�usion processes are related to the theory of Markov chains [370, 223].

4.2 Theoretical results

It is obvious that for a �xed �lter belonging to the class (Pd) every initial image
f 2 IRN generates a unique sequence (u(k))k2 IN 0 . Moreover, by means of (D1) we
know that, for every �nite k, u(k) depends continuously onf . Therefore, let us now
prove a maximum{minimum principle.

Proposition 3 (Extremum principle).
Let f 2 IRN and let (u(k))k2 IN 0 be the sequence of �ltered images according to (Pd).
Then,

a � u(k)
i � b 8 i 2 J; 8 k 2 IN0; (4.1)

where

a := min
j 2 J

f j ; (4.2)

b := max
j 2 J

f j : (4.3)

Proof:
The maximum{minimum principle follows directly from the fact that, for all i 2 J
and k 2 IN0, the following inequalities hold:

(i) u(k+1)
i =

P

j 2 J
qij (u(k))u(k)

j

(D 4)
� max

m2 J
u(k)

m
P

j 2 J
qij (u(k))

(D 3)
= max

m2 J
u(k)

m :
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(ii) u(k+1)
i =

P

j 2 J
qij (u(k))u(k)

j

(D 4)
� min

m2 J
u(k)

m
P

j 2 J
qij (u(k))

(D 3)
= min

m2 J
u(k)

m :

2

4.3 Scale-space properties

All statements from Chapter 3 with respect to invariances are valid in the discrete
framework as well. Below we focus on proving average grey level invariance.

Proposition 4 (Conservation of average grey value).
The average grey level

� :=
1
N

X

j 2 J

f j (4.4)

is not a�ected by the discrete di�usion �lter:

1
N

X

j 2 J

u(k)
j = � 8 k 2 IN0: (4.5)

Proof:
By virtue of (D2) and (D3) we have

P
i 2 J qij (u(k))=1 for all j 2 J and k 2 IN0. This

so-calledredistribution property [164] ensures that, for allk 2 IN0,
X

i 2 J

u(k+1)
i =

X

i 2 J

X

j 2 J

qij (u(k))u(k)
j =

X

j 2 J

� X

i 2 J

qij (u(k))
�
u(k)

j =
X

j 2 J

u(k)
j ;

which proves the proposition. 2

As one might expect, the class (Pd) allows an interpretation as a transformation
which is smoothing in terms of Lyapunov sequences. These functions ensure that
u(k) converges to a constant image ask ! 1 . However, we need less regularity
than in the semidiscrete case: The convex functionr , which generates the Lyapunov
sequences, needs only to be continuous, but no more di�erentiable.

Theorem 7 (Lyapunov sequences and behaviour for k ! 1 ).
Assume that(u(k))k2 IN 0 satis�es the requirements of (Pd), let a, b, and � be de�ned
as in (4.2), (4.3), and (4.4), respectively, and letc := ( �; �; :::; � )> 2 IRN .
Then the following properties are ful�lled:

(a) (Lyapunov sequences)
For all convexr 2 C[a; b] the sequence

V (k) := �( u(k)) :=
X

i 2 J

r (u(k)
i ); k 2 IN0

is a Lyapunov sequence:
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(i) �( u(k)) � �( c) 8 k 2 IN0

(ii) V (k+1) � V (k) � 0 8 k 2 IN0

Moreover, if r is strictly convex, thenV (k) = �( u(k)) is a strict Lyapunov
sequence:

(iii) �( u(k)) = �( c) () u(k) = c

(iv) V (k+1) � V (k) = 0 () u(k) = c

(b) (Convergence)
lim

k!1
u(k) = c.

Proof:

(a) (i) Average grey level invariance and the convexity ofr give

�( c) =
NX

i =1

r

0

@
NX

j =1

1
N

u(k)
j

1

A

�
NX

i =1

0

@ 1
N

NX

j =1

r (u(k)
j )

1

A

=
NX

j =1

r (u(k)
j )

= �( u(k)): (4.6)

(ii) For i; j 2 J we de�ne

aij (u(k)) :=

(
qij (u(k)) � 1 (i = j )
qij (u(k)) ( i 6= j ):

(4.7)

Using the convexity ofr , the preceding de�nition, and the prerequisites
(D2) and (D3) we obtain

V (k+1) � V (k) =
NX

i =1

0

@r

0

@
NX

j =1

qij (u(k)) u(k)
j

1

A � r (u(k)
i )

1

A

conv.

�
NX

i =1

0

@
NX

j =1

qij (u(k)) r (u(k)
j ) � r (u(k)

i )

1

A

(4:7)
=

NX

i =1

NX

j =1

aij (u(k)) r (u(k)
j )

(D 3)
=

NX

i =1

NX

j =1

aij (u(k))
�
r (u(k)

j ) � r (u(k)
i )

�
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=
NX

i =1

N � iX

m=1

ai + m;i (u(k))
�
r (u(k)

i ) � r (u(k)
i + m )

�

+
NX

i =1

N � iX

m=1

ai;i + m (u(k))
�
r (u(k)

i + m ) � r (u(k)
i )

�

(D 2)
= 0: (4.8)

(iii) This part of the proof can be shown in exactly the same manner as in
the semidiscrete case (Chapter 3, Theorem 5): Equality in the estimate
(4.6) holds due to the strict convexity ofr if and only if u(k) = c.

(iv) In order to verify the �rst implication, let us start wit h a proof that
V (k+1) = V (k) implies u(k)

1 = ::: = u(k)
N . To this end, assume thatu(k) is

not constant:

u(k)
i 0

:= min
i 2 J

u(k)
i < max

j 2 J
u(k)

j =: u(k)
j 0

:

Then, by the irreducibility of Q(u(k)), we �nd l0; :::; lr 2 J with l0 = i0,
l r = j 0 and qlp lp+1 6= 0 for p = 0; :::; r � 1. Hence, there exists some
p0 2 f 0; :::; r � 1g such that n := lp0 , m := lp0+1 , qnm (u(k)) 6= 0, and
u(k)

m 6= u(k)
n . Moreover, the nonnegativity ofQ(u(k)) gives qnm (u(k)) > 0,

and by (D6) we haveqnn (u(k)) > 0. Together with the strict convexity
of r these properties lead to

r

0

@
NX

j =1

qnj (u(k)) u(k)
j

1

A

= r

0

B
@

NX

j =1
j 6= n;m

qnj (u(k)) u(k)
j + qnn (u(k)) u(k)

n + qnm (u(k)) u(k)
m

1

C
A

<
NX

j =1
j 6= n;m

qnj (u(k)) r (u(k)
j ) + qnn (u(k)) r (u(k)

n ) + qnm (u(k)) r (u(k)
m )

=
NX

j =1

qnj (u(k)) r (u(k)
j ):

If we combine this with the results in (4.8), we obtain

V (k+1) � V (k) =
NX

i =1
i 6= n

0

@r

0

@
NX

j =1

qij (u(k)) u(k)
j

1

A � r (u(k)
i )

1

A

+ r

0

@
NX

j =1

qnj (u(k)) u(k)
j

1

A � r (u(k)
n )
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<
NX

i =1

0

@
NX

j =1

qij (u(k)) r (u(k)
j ) � r (u(k)

i )

1

A

(4:8)
= 0:

This establishes thatV (k+1) = V (k) implies u(k)
1 = ::: = u(k)

N . Then, by
virtue of the grey value invariance, we conclude thatu(k) = c.

Conversely, letu(k) = c. By means of prerequisite (D3) we obtain

V (k+1) � V (k) =
NX

i =1

r

0

@
NX

j =1

qij (u(k))�

1

A �
NX

i =1

r (� ) = 0 :

(c) In order to prove convergence to a constant steady-state, we can argue exactly
in the same way as in the semidiscrete case if we replace Lyapunov functions
by Lyapunov sequences and integrals by sums. See Chapter 3, Theorem 5 for
more details. 2

In analogy to the semidiscrete case the preceding theorem comprises many
Lyapunov functions which demonstrate the information-reducing qualities of our
�lter class. Choosing the convex functionsr (s) := jsjp, r (s) := ( s � � )2n and
r (s) := s ln s, we immediately obtain the following corollary.

Corollary 3 (Special Lyapunov sequences).
Let (u(k))k2 IN 0 be a di�usion sequence according to (Pd), and let a and � be de�ned
as in (4.2) and (4.4). Then the following functions are decreasing in k:

(a) ku(k)kp for all p � 1.

(b) M2n [u(k) ] := 1
N

NP

j =1
(u(k)

j � � )2n for all n 2 IN.

(c) H [u(k) ] :=
NP

j =1
u(k)

j ln(u(k)
j ), if a > 0.

An interpretation of these results in terms of decreasing energy, decreasing
central moments and increasing entropy is evident.

4.4 Relation to semidiscrete models

4.4.1 Semi-implicit schemes

Let us now investigate in which sense our discrete �lter class covers in a natural
way time discretizations of semidiscrete �lters. To this end, we regardu(k) as an
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approximation of the solution u of (Ps) at time t = k� , where � denotes the time
step size. We consider a �nite di�erence scheme with two timelevels where the
operator A { which depends nonlinearly onu { is evaluated in an explicit way,
while the linear remainder is discretized in an� -implicit manner. Such schemes
are called� -semi-implicit. They reveal the advantage that the linear implicit part
ensures good stability properties, while the explicit evaluation of the nonlinear
terms avoids the necessity to solve nonlinear systems of equations. The theorem
below states that this class of schemes is covered by the discrete framework, for
which we have established scale-space results.

Theorem 8 (Scale-space interpretation for � -semi-implicit schemes).
Let � 2 [0; 1], � > 0, and let A = ( aij ) : IR N ! IRN � N satisfy the requirements
(S1){(S5) of section 3.1. Then the� -semi-implicit scheme

u(k+1) � u(k)

�
= A(u(k))

�
�u (k+1) + (1 � � )u(k)

�
(4.9)

ful�ls the prerequisites (D1){(D6) for discrete di�usion m odels provided that

� �
1

(1� � ) max
i 2 J

jaii (u(k))j
(4.10)

for � 2 (0; 1). In the explicit case(� =0) the properties (D1){(D6) hold for

� <
1

max
i 2 J

jaii (u(k))j
; (4.11)

and the semi-implicit case(� =1) satis�es (D1){(D6) unconditionally.

Proof: Let

B(u(k)) := ( bij (u(k))) := I � ��A (u(k));

C(u(k)) := ( cij (u(k))) := I + (1 � � )�A (u(k));

where I 2 IRN denotes the unit matrix. Since (4.9) can be written as

B(u(k)) u(k+1) = C(u(k)) u(k)

we �rst have to show that B(u(k)) is invertible for all u(k) 2 IRN . Henceforth, the
argument u(k) is suppressed frequently since the considerations below are valid for
all u(k) 2 IRN .

If � = 0, then B = I and hence invertible. Now assume that� > 0. Then B is
strictly diagonally dominant, since

bii = 1 � ��a ii
(S3)
= 1 + ��

X

j 2 J
j 6= i

aij > ��
X

j 2 J
j 6= i

aij
(S4)
=

X

j 2 J
j 6= i

jbij j 8 i 2 J:



104 CHAPTER 4. DISCRETE DIFFUSION FILTERING

This also shows thatbii > 0 for all i 2 J , and by the structure of the o�-diagonal
elements ofB we observe that the irreducibility ofA implies the irreducibility of
B . Thanks to the fact that B is irreducibly diagonally dominant, bij � 0 for all
i 6= j , and bii > 0 for all i 2 J , we know from [407, p. 85] thatB � 1 =: H =: ( hij )
exists andhij > 0 for all i; j 2 J . Thus, Q := ( qij ) := B � 1C exists and by (S1) it
follows that Q 2 C(IRN ; IRN � N ). This proves (D1).

The requirement (D2) is not hard to satisfy: SinceB � 1 and C are symmetric
and reveal the same set of eigenvectors { namely those ofA { it follows that
Q = B � 1C is symmetric as well.

Let us now verify (D3). By means of (S3) we obtain
X

j 2 J

bij = 1 =
X

j 2 J

cij 8 i 2 J: (4.12)

Let v := (1 ; :::; 1)> 2 IRN . Then (4.12) is equivalent to

Bv = v = Cv; (4.13)

and the invertibility of B gives

v = B � 1v = Hv: (4.14)

Therefore, from

Qv = HCv
(4:13)
= Hv

(4:14)
= v

we conclude that
P

j 2 J
qij = 1 for all i 2 J . This proves (D3).

In order to show that (D4) is ful�lled, we �rst check the nonnegativity of C.
For i 6= j we have

cij = (1 � � )�a ij

(S4)
� 0:

The diagonal entries yield

cii = 1 + (1 � � )�a ii :

If � = 1 we havecii = 1 for all i 2 J . For 0 � � < 1, however, nonnegativity ofC
is not automatically guaranteed: Using (S3){(S5) we obtain

aii
(S3)
= �

X

j 2 J
j 6= i

aij
(S4);(S5)

< 0 8 i 2 J: (4.15)

Hence,C(u(k)) is nonnegative if

� �
1

(1� � ) max
i 2 J

jaii (u(k))j
=: � � (u(k)):
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SinceH is nonnegative, we know that the nonnegativity ofC implies the nonneg-
ativity of Q= HC .

Now we want to prove (D5). If � = 1, then C = I , and by the positivity of H
we haveqij > 0 for all i; j 2 J . Thus, Q is irreducible.

Next let us consider the case 0< � < 1 and � � � � (u(k)). Then we know that
C is nonnegative. Using this information, the positivity ofH , the symmetry ofC,
and (4:12) we obtain

qij =
X

k2 J

hik ckj � min
k2 J

hik
| {z }

> 0

�
X

k2 J

ckj

| {z }
=1

> 0 8 i; j 2 J;

which establishes the irreducibility ofQ.
Finally, for � = 0, we have Q = C. For i; j 2 J with i 6= j we know that

aij (u(k)) > 0 implies cij (u(k)) > 0. Now for

� <
1

max
i 2 J

jaii (u(k))j

it follows that cii (u(k)) > 0 for all i 2 J and, thus, the irreducibility of A(u(k))
carries over toQ(u(k)).

In all the abovementioned cases the time step size restrictions for ensuring irre-
ducibility imply that all diagonal elements of Q(u(k)) are positive. This establishes
(D6). 2

Remarks:

(a) We have seen that the discrete �lter class (Pd) { although at �rst glance
looking like a pure explicit discretization { covers the� -semi-implicit case as
well. Explicit two-level schemes are comprised by the choice � =0. Equation
(4.11) shows that they reveal the most prohibitive time stepsize restrictions.

(b) The conditions (4.10) and (4.11) can be satis�ed by meansof an a-priori
estimate. Since the semi-implicit scheme ful�ls (D1){(D6)we know by The-
orem 3 that the solution obeys an extremum principle. This means that u(k)

belongs to the compact setf v 2 IRN
�
�
� kvk1 � k f k1 g for all k 2 IN0. By

A 2 C(IR N ; IRN � N ) it follows that

K f := max
n

jaii (v)j
�
�
� i 2 J; v 2 IRN ; kvk1 � k f k1

o

exists, and (4.15) shows thatK f > 0. Thus, choosing

� �
1

(1� � ) K f
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ensures that (4.10) is always satis�ed, and

� <
1

K f

guarantees that (4.11) holds.

(c) If �> 0, a large linear system of equations has to be solved. Its system matrix
is symmetric, diagonally dominant, and positive de�nite. Usually, it is also
sparse: For instance, if it results from a �nite di�erence discretization on a
(2p+1) � (2p+1)-stencil it contains at most 4p2+4p+1 nonvanishing entries
per row. One should not expect, however, that in thei -th row these entries
can be found within the positions [i; i � 2p2� 2p] to [i; i +2p2+2p]. In general,
the matrix reveals a much larger bandwidth.

Applying standard direct algorithms such as Gaussian elimination would
destroy the zeros within the band and would lead to an immensestorage and
computation e�ort. Modi�cations in order to reduce these problems [122] are
quite di�cult to implement.

Iterative algorithms appear to be better suited. Classicalmethods such as
Gau�{Seidel or SOR [447] are easy to code, they do not need additional
storage, and their convergence can be guaranteed for the special structure of
A. Unfortunately, they converge rather slowly. Faster iterative methods such
as preconditioned conjugate gradient algorithms [348] need signi�cantly more
storage, which can become prohibitive for large images. A typical problem of
iterative methods is that their convergence slows down for larger� , since this
increases the condition number of the system matrix. Multigrid methods [59,
179] are one possibility to circumvent these di�culties; another possibility
will be studied in Section 4.4.2.

(d) For � = 1 we obtain semi-implicit schemes which do not su�er from time
step size restrictions. In spite of the fact that the nonlinearity is discretized
in an explicit way they are absolutely stable in the maximum norm, and
they inherit the scale-space properties from the semidiscrete setting regard-
less of the step size. Compared to explicit schemes, this advantage usually
overcompensates for the additional e�ort of resolving a linear system.

(e) By the explicit discretization of the nonlinear operator A it follows that all
schemes in the preceding theorem are of �rst order in time. This should not
give rise to concern, since in image processing one is in general more inter-
ested in maintaining qualitative properties such as maximum principles or
invariances rather than having an accurate approximation of the continu-
ous equation. However, if one insists in second-order schemes, one may for
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instance use the predictor{corrector approach by Douglas and Jones [121]:

u(k+1 =2) � u(k)

�=2
= A(u(k)) u(k+1 =2);

u(k+1) � u(k)

�
= A(u(k+1 =2))

�
1
2u(k+1) + 1

2u(k)
�
:

This scheme satis�es the properties (D1){(D6) for� � 2=K f .

(f) The assumptions (S1){(S5) are su�cient conditions for the � -semi-implicit
scheme to ful�l (D1){(D6), but they are not necessary. Nonnegativity of
Q(u(k)) may also be achieved using spatial discretizations whereA(u(k)) has
negative o�-diagonal elements (see [55] for examples).

4.4.2 AOS schemes

We have seen that, for� > 0, the preceding� -semi-implicit schemes require to
solve a linear system with the system matrix (I � ��A (u(k))). Since this can be
numerically expensive, it would be nice to have an e�cient alternative. Suppose
we know a splitting

A(u(k)) =
mX

l=1

A l (u(k)); (4.16)

such that the m linear systems with system matrices (I � m��A l (u(k))), l = 1,...,m
can be solved more e�ciently. Then it is advantageous to study instead of the� -
semi-implicit scheme

u(k+1) =
�
I � ��

mX

l=1

A l (u(k))
� � 1 �

I + (1 � � )�
mX

l=1

A l (u(k))
�

u(k) (4.17)

its additive operator splitting (AOS)variant [424]

u(k+1) =
1
m

mX

l=1

�
I � �m�A l (u(k))

� � 1 �
I + (1 � � )m�A l (u(k))

�
u(k) : (4.18)

By means of a Taylor expansion one can verify that, although both schemes are not
identical, they have the same approximation order in space and time. Hence, from
a numerical viewpoint, they are both consistent approximations to the semidiscrete
ODE system from (Ps).

The following theorem clari�es the conditions under which AOS schemes create
discrete scale-spaces.
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Theorem 9 (Scale-space interpretation for AOS schemes).
Let � 2 (0; 1], � > 0, and let A l = ( aij l ) ij : IRN ! IRN � N , l = 1,...,m satisfy the
requirements (S1){(S4) of section 3.1. Moreover, assume that A(u) =

P m
l=1 A l (u)

is irreducible for all u 2 IRN , and that for eachA l there exists a permutation
matrix Pl 2 IRN � N such thatPlA lPT

l is block diagonal and irreducible within each
block. Then the following holds:

For � 2 (0; 1), the AOS scheme (4.18) ful�ls the prerequisites (D1){(D6) of
discrete di�usion scale-spaces provided that

� <
1

(1� � ) m max
i;l

jaiil (u(k))j
: (4.19)

In the semi-implicit case (� = 1) , the properties (D1){(D6) are unconditionally
satis�ed.

Proof: The reasoning is similar to the proof of Theorem 8. Let

B l (u(k)) := ( bij l (u(k))) ij := I � �m�A l (u(k));

Cl (u(k)) := ( cij l (u(k))) ij := I + (1 � � )m�A l (u(k)):

B l is invertible because of its strict diagonal dominance:

biil
(S3)
= 1 + �m�

X

j 2 J
j 6= i

aij l > �m�
X

j 2 J
j 6= i

aij l
(S4)
=

X

j 2 J
j 6= i

jbij l j 8 i 2 J:

SinceA l (u) is continuous in u by virtue of (S1), it follows that

Q(u) :=
1
m

mX

l=1

B � 1
l (u) Cl (u)

is also continuous inu. This proves (D1).

The symmetry property (D2) of Q results directly from the fact that B � 1
l and

Cl are symmetric and share their eigenvectors with those ofA l .

In the same way as in the proof of Theorem 8 one shows thatB � 1
l Cl has only

unit row sums for all l . Thus, the row sums ofQ are 1 as well, and (D3) is satis�ed.

To verify (D4), we utilize that B l is strictly diagonally dominant, biil > 0 for
all i , and bij l � 0 for i 6= j . Under these circumstances it follows from [284, p. 192]
that H l := B � 1

l is nonnegative in all components. Thus, a su�cient condition for
proving (D4) is to ensure thatCl is nonnegative for alll . For i 6= j we have

cij l = (1 � � )m�a ij l

(S4)
� 0:
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The diagonal entries yield

ciil = 1 + (1 � � )m�a iil :

If � = 1 we have cii = 1 for all i 2 J . For 0 < � < 1, however, nonnegativity of
C is not automatically guaranteed: SinceA l satis�es (S3) and (S4), we know that
aiil � 0, for all i . Moreover, by (4.15) it follows that for everyi there exists anl
with aiil < 0. Thus, requiring

� <
1

(1� � ) m max
i;l

jaiil (u(k))j
=: � � (u(k))

guarantees that
ciil > 0 8 i 2 J; 8 l = 1; :::; m: (4.20)

Next we prove (D5), the irreducibility of Q. Suppose thatai 0 j 0 6= 0 for some
i0; j 0 2 J . Then there exists anl0 2 f 1; :::; mg such that ai 0 j 0 l0 6= 0. Denoting B � 1

l

by H l = ( hij l ) ij , we show now thatai 0 j 0 l0 6= 0 implies hi 0 j 0 l0 > 0.
This can be seen as follows: There exist permutation matrices Pl , l = 1; :::; m

such that PlB l PT
l is block diagonal. Each block is irreducible and strictly diagonally

dominant with a positive diagonal and nonpositive o�-diagonals. Thus, a theorem
by Varga [407, p. 85] ensures that the inverse of each block contains only positive
elements. As a consequence,ai 0 j 0 l0 6= 0 implies hi 0 j 0 l0 > 0.

Together with (4.20) this yields

qi 0 j 0 =
1
m

0

B
@

X

(l;n )6=( l0 ;j 0)

hi 0nl| {z }
� 0

cnj 0 l
| {z }

� 0

+ hi 0 j 0 l0| {z }
> 0

cj 0 j 0 l0| {z }
> 0

1

C
A > 0:

Recapitulating, this means that, for� < � � (u(k)),

ai 0 j 0 6= 0 =) qi 0 j 0 > 0: (4.21)

Thus, the irreducibility of A carries over toQ, and (D5) is proved.

Moreover, (4.21) also proves (D6): By virtue of (4.15) we have aii < 0 for all
i 2 J . Therefore,Q must have a positive diagonal. 2

Remarks:

(a) In analogy to the unsplit � -semi-implicit schemes, the case� = 1 is especially
interesting, because no time step size restriction occurs.Again, it is also
possible to construct a predictor{corrector scheme of Douglas{Jones type
[121] within the AOS framework:

u(k+1 =2) =
1
m

mX

l=1

�
I � 1

2m�A l (u(k))
� � 1

u(k) ;

u(k+1) =
1
m

mX

l=1

�
I � 1

2m�A l (u(k+1 =2))
� � 1 �

I + 1
2m�A l (u(k+1 =2))

�
u(k) :
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It satis�es (D1){(D6) for � < 2=K f , whereK f is determined by the a-priori
estimate

K f := m max
n
jaiil (v)j

�
�
� i 2 J; l 2 f 1; :::; mg; v 2 IRN ; kvk1 � k f k1

o
:

However, the AOS{Douglas{Jones scheme is only �rst order accurate in time.

(b) The fact that AOS schemes use anadditive splitting ensures that all coordi-
nate axes are treated in exactly the same manner. This is in contrast to the
various conventional splitting techniques from the literature [120, 277, 286,
354, 442]. They aremultiplicative splittings. A typical representative is

u(k+1) =
mY

l=1

�
I � �A l (u(k))

� � 1
u(k) :

Since in the general nonlinear case the split operatorsA l , l = 1,..., m do not
commute, the result of multiplicative splittings will depend on the order of
the operators. In practice, this means that these schemes produce di�erent
results if the image is rotated by 90 degrees. Moreover, mostmultiplicative
splittings lead to a nonsymmetric matrixQ(u(k)). This violates requirement
(D2) for discrete scale-spaces.

(c) The result u(k+1) of an AOS scheme can be regarded as the average ofm
�lters of type

v(k+1)
l :=

�
I � �m�A l (u(k))

� � 1 �
I + (1 � � )m�A l (u(k))

�
u(k) (l = 1; :::; m):

Sincev(k+1)
l , l = 1,...,m can be calculated independently from each other, it

is possible to distribute their computation to di�erent processors of a parallel
machine.

(d) AOS schemes with� = 1 have been presented in [424, 430] as e�cient dis-
cretizations of the isotropic nonlinear di�usion �lter of Catt�e et al. [81]. In
Section 1.3.2 we have seen that this �lter is based on the PDE

@tu = div ( g(jr u� j2) r u):

In this case, a natural operator splittingA =
P m

l=1 A l results from a decom-
position of the divergence expression into one-dimensional terms of type

@x l (g(jr u� j2) @x l u) ( l = 1; :::; m):

This separation is very e�cient: There exist permutation matrices Pl (pixel
orderings) such thatPlA lPT

l is block diagonal and each block is diagonally
dominant and tridiagonal. Hence, the corresponding linearsystems can be
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solved in linear e�ort by means of a simple Gaussian algorithm. The resulting
forward substitution and backward elimination can be regarded as a recursive
�lter.

A parallel implementation assigning these tridiagonal subsystems to di�erent
processors is described in [431]. The denoising of a medical3-D ultrasound
data set with 138� 208� 138 voxels on an SGI Power Challenge XL with
eight 195 MHz R10000 processors was possible in less than 1 minute.

(e) The idea to base AOS schemes on decompositions into one-dimensional op-
erators can also be generalized to anisotropic di�usion �lters: Consider for
instance the discretization on a (3� 3)-stencil at the end of Section 3.4.2. If
it ful�ls (S1){(S5), then a splitting of such a 2-D �lter into 4 one-dimensional
di�usion processes acting along the 4 stencil directions satis�es all prerequi-
sites of Theorem 9.
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Chapter 5

Examples and applications

The scale-space theory from Chapters 2{4 also covers methods such as linear or
nonlinear isotropic di�usion �ltering, for which many inte resting applications have
already been mentioned in Chapter 1. Therefore, the goal of the present chapter is
to show that a generalization to anisotropic models with di�usion tensors depend-
ing on the structure tensor o�ers novel properties and application �elds. Thus, we
focus mainly on these anisotropic techniques and juxtaposethe results to other
methods. In order to demonstrate the 
exibility of anisotropic di�usion �ltering,
we shall pursue two di�erent objectives:

� smoothing with simultaneous edge-enhancement,

� smoothing with enhancement of coherent 
ow-like textures.

All calculations for di�usion �ltering are performed using semi-implicit FD
schemes with time steps �t 2 [2; 5]. In order to compare anisotropic di�usion to
other methods, morphological scale-spaces and modi�cations of them have been
discretized as well. For MCM and AMSS this is achieved by means of explicit FD
schemes (cf. 1.6.4) with �t := 0:1 and � t := 0:01, respectively. Dilation with a 
at
structuring element is approximated by an Osher-Sethian scheme of type (1.88)
with � t := 0:5, and dilation with a quadratic structuring function is performed
in a noniterative way using van den Boomgaard's algorithm from [51]. On an
HP 9000/889 workstation it takes less than 0.3 CPU seconds tocalculate one
nonlinear di�usion step for a 256� 256 image, and MCM, AMSS or dilation with
a disc require approximately 0.06 seconds per iteration. Typical dilations with a
quadratic structuring function take less than 0.3 seconds.

113
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5.1 Edge-enhancing di�usion

5.1.1 Filter design

In accordance with the notations in 2.2, let� 1, � 2 with � 1 � � 2 be the eigenvalues
of the structure tensorJ� , and v1, v2 the corresponding orthonormal eigenvectors.
Since the di�usion tensor should re
ect the local image structure it ought to be
chosen in such a way that it reveals the same set of eigenvectors v1, v2 asJ� . The
choice of the corresponding eigenvalues� 1, � 2 depends on the desired goal of the
�lter.

If one wants to smooth preferably within each region and aimsto inhibit dif-
fusion across edges, then one can reduce the di�usivity� 1 perpendicular to edges
the more the higher the contrast� 1 is, see 1.3.3 and [415]. This behaviour may be
accomplished by the following choice (m 2 IN, Cm > 0, � > 0):

� 1(� 1) := g(� 1); (5.1)

� 2 := 1 (5.2)

with

g(s) :=

8
<

:

1 (s � 0)
1 � exp

�
� Cm

(s=� )m

�
(s > 0):

(5.3)

This exponentially decreasing function is chosen in order to ful�l the smoothness
requirement stated in (Pc), cf. 2.3. Sincer u� remains bounded on 
� [0; 1 ) and
� 1 = jr u� j2, we know that the uniform positive de�niteness ofD is automatically
satis�ed by this �lter.

The constant Cm is calculated in such a way that the 
ux �( s) = sg(s) is
increasing fors 2 [0; � ] and decreasing fors 2 (�; 1 ). Thus, the preceding �lter
strategy can be regarded as an anisotropic regularization of the Perona{Malik
model.

The choicem := 4 (which implies C4 = 3:31488) gives visually good results
and is used exclusively in the examples below. Since in this section we are only
interested in edge-enhancing di�usion we may set the integration scale � of the
structure tensor equal to 0. Applications which require nonvanishing integration
scales shall be studied in section 5.2.

5.1.2 Applications

Figure 5.1 illustrates that anisotropic di�usion �ltering is still capable of possessing
the contrast-enhancing properties of the Perona{Malik �lter (provided the regu-
larization parameter � is not too large). It depicts the temporal evolution of a
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Figure 5.1: Anisotropic di�usion �ltering of a Gaussian-type function,

 = (0 ; 256)2, � = 3:6, � = 2. From top left to bottom right: t = 0,
125, 625, 3125, 15625, 78125.
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Gaussian-like function and its isolines.1 It can be observed that two regions with
almost constant grey value evolve which are separated by a fairly steep edge. Edge
enhancement is caused by the fact that, due to the rapidly decreasing di�usivity,
smoothing within each region is strongly preferred to di�usion between the two
adjacent regions. The edge location remains stable over a very long time interval.
This indicates that, in practice, the determination of a suitable stopping time is
not a critical problem. After the process of contrast enhancement is concluded, the
steepness of edges decreases very slowly until the gradientreaches a value where no
backward di�usion is possible anymore. Then the image converges quickly towards
a constant image.

Let us now compare the denoising properties of di�erent di�usion �lters. Figure
5.2(a) consists of a triangle and a rectangle with 70 % of all pixels being completely
degraded by noise. This image is taken from the software package MegaWave.
Test images of this type have been used to study the behaviourof �lters such
as [13, 15, 16, 99, 102]. In Fig. 5.2(b) we observe that lineardi�usion �ltering
is capable of removing all noise, but we have to pay a price: the image becomes
completely blurred. Besides the fact that edges get smoothed so that they are
harder to identify, the correspondence problem appears: edges become dislocated.
Thus, once they are identi�ed at a coarse scale, they have to be traced back in
order to �nd their true location, a theoretically and practically rather di�cult
problem.

Fig. 5.2(c) shows the e�ect when applying the isotropic nonlinear di�usion
equation [81]

@tu = div ( g(jr u� j2)r u) (5.4)

with g as in (5.3). Since edges are hardly a�ected by this process, nonlinear
isotropic di�usion does not lead to correspondence problems which are charac-
teristic for linear �ltering. On the other hand, the drastically reduced di�usivity
at edges is also responsible for the drawback that noise at edges is preserved.

Figure 5.2(d) demonstrates that nonlinear anisotropic �ltering shares the ad-
vantages of both methods. It combines the good noise eliminating properties of
linear di�usion with the stable edge structure of nonlinearisotropic �ltering. Due
to the permitted smoothing along edges, however, corners get more rounded than
in the nonlinear isotropic case.

The scale-space behaviour of di�erent PDE-based methods isjuxtaposed in
Figures 5.3{5.6, where an MRI slice of a human head is processed [414, 423].

1Except for Figs. 5.1, 5.3{5.6, where contrast enhancement is to be demonstrated, all images
in the present work are depicted in such a way that the lowest value is black and the highest one
appears white. They reveal a range within the interval [0; 255] and all pixels have unit length in
both directions.
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Figure 5.2: Restoration properties of di�usion �lters. (a) Top Left:
Test image, 
 = (0 ; 128)2. (b) Top Right: Linear di�usion, t = 80.
(c) Bottom Left: Nonlinear isotropic di�usion, � = 3:5, � = 3,
t = 80. (d) Bottom Right: Nonlinear anisotropic di�usion, � = 3:5,
� = 3, t = 80.

Again we observe that linear di�usion (Fig. 5.3(a)) does notonly blur all struc-
tures in an equal amount but also dislocates them more and more with increasing
scale.

A �rst step to reduce these problems is to adapt the di�usivity to the gradient
of the initial image f [147]. Fig. 5.3(b) shows the evolution under

@tu = div ( g(jr f j2) r u); (5.5)
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where a di�usivity of type [88]

g(jr f j2) :=
1

q
1 + jr f j2=� 2

(� > 0): (5.6)

is used. Compared with homogeneous linear di�usion, edges remain better localized
and their blurring is reduced. On the other hand, for larget the �ltered image
reveals some artifacts which re
ect the di�erential structure of the initial image.

A natural idea to reduce the artifacts of inhomogeneous linear di�usion �ltering
would be to introduce a feedback in the process by adapting the di�usivity g to
the gradient of the actual imageu(x; t ) instead of the original imagef (x). This
leads to the nonlinear di�usion equation [326]

@tu = div ( g(jr uj2) r u): (5.7)

Figure 5.3(c) shows how such a nonlinear feedback is useful to increase the edge
localization in a signi�cant way: Structures remain well-localized as long as they
can be recognized. Also blurring at edges is reduced very much. The absolute
contrast at edges, however, becomes smaller.

The latter problem can be avoided using a di�usivity which decreases faster
than (5.6) and leads to a nonmonotone 
ux function. This is illustrated in Figure
5.4(a) where the regularized isotropic nonlinear di�usion�lter (5.4) with the di�u-
sivity (5.3) is applied. At the chin we observe that this equation is indeed capable
of enhancing edges. All structures are extremely well-localized and the results are
segmentation-like. On the other hand, also small structures exist over a long range
of scales if they di�er from their vicinity by a su�ciently la rge contrast. One can
try to make this �lter faster and more insensitive to small-size structures by in-
creasing the regularizing Gaussian kernel size� (cf. Fig. 5.4(b)), but this also leads
to stronger blurring of large structures, and it is no longerpossible to enhance the
contour of the entire head.

Anisotropic nonlinear di�usion (Fig. 5.4(c)) permits di�u sion along edges and
inhibits smoothing across them. As in Figure 5.2(d), this causes a stronger round-
ing of structures, which can be seen at the nose. A positive consequence of this
slight shrinking e�ect is the fact that small or elongated and thin structures are
better eliminated than in the isotropic case. Thus, we recognize that most of the
depicted \segments" coincide with semantically correct objects that one would ex-
pect at these scales. Finally the image turns into a silhouette of the head, before
it converges to a constant image.

The tendency to produce piecewise almost constant regions indicates that dif-
fusion scale-spaces with nonmonotone 
ux are ideal preprocessing tools for seg-
mentation. Unlike di�usion{reaction models aiming to yield onesegmentation-like
result for t ! 1 (cf. 1.4), the temporal evolution of these models generatesa
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completehierarchical family of segmentation-like images. The contrast-enhancing
quality distinguishes nonlinear di�usion �lters from most other scale-spaces. It
should be noted that contrast enhancement is a local phenomenon which cannot
be replaced by simple global rescalings of the grey value range. Therefore, it is
generally not possible to obtain similar segmentation-like results by just rescaling
the grey values from a scale-space which is only contrast-reducing.

The contrast and noise parameters� and � give the user the liberty to adapt
nonlinear di�usion scale-spaces to the desired purpose in order to reward inter-
esting features with a longer lifetime. Suitable values forthem should result in a
natural way from the speci�c problem. In this sense, the timet is rather a para-
meter of importance, with respect to the speci�ed task, thana descriptor of spatial
scale. The traditional opinion that the evolution parameter t of scale-spaces should
be related to the spatial scale re
ects the assumption that ascale-space analysis
should be uncommitted. Nonlinear di�usion �ltering renounces this requirement by
allowing to incorporate a-priori information (e.g. about the contrast of semantically
important structures) into the evolution process. The basic idea of scale-spaces,
however, is maintained: to provide a family of subsequentlysimpli�ed versions of
the original image, which gives a hierarchy of structures and allows to extract the
relevant information from a certain scale.

Besides these speci�c features of nonlinear di�usion scale-spaces it should be
mentioned that, due to the homogeneous Neumann boundary condition and the
divergence form, both linear and nonlinear di�usion �lters preserve the average
grey level of the image.

This is not true for the morphological �lters and their modi� cations which are
depicted in Fig. 5.5 and 5.6.

Figure 5.5(a) and (b) show the result under continuous-scale dilation with a 
at
disc-shaped structuring element and a quadratic structuring function, respectively.
From Section 1.5.3 and 1.5.6 we know that their evolution equations are given by

@tu = jr uj; (5.8)

for the disc, and by

@tu = jr uj2 (5.9)

for the quadratic structuring function. In both cases the number of local maxima
is decreasing, and maxima keep their location in scale-space until they disappear
[206, 207]. The fact that the maximum with the largest grey value will dominate
at the end shows that these processes can be sensitive to noise (maxima might
be caused by noise), and that they usually do not preserve theaverage grey level.
It is not very di�cult to guess the shape of the structuring function from the
scale-space evolution.
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Figure 5.3: Evolution of an MRI slice under di�erent PDEs.Top: Original im-
age, 
 = (0 ; 236)2. (a) Left Column: Linear di�usion, top to bottom: t = 0,
12:5, 50, 200.(b) Middle Column: Inhomogeneous linear di�usion (� = 8),
t = 0, 70, 200, 600.(c) Right Column: Nonlinear isotropic di�usion with the
Charbonnier di�usivity ( � = 3), t = 0, 70, 150, 400.
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Figure 5.4: Evolution of an MRI slice under di�erent PDEs.Top: Original image,

 = (0 ; 236)2. (a) Left Column: Isotropic nonlinear di�usion (� = 3, � =
1), t = 0, 25000, 500000, 7000000.(b) Middle Column: Isotropic nonlinear
di�usion ( � = 3, � = 4), t = 0, 40, 400, 1500.(c) Right Column: Edge-
enhancing anisotropic di�usion (� = 3, � = 1), t = 0, 250, 875, 3000.
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Figure 5.5: Evolution of an MRI slice under di�erent PDEs.Top: Original image,

 = (0 ; 236)2. (a) Left Column: Dilation with a disc, t = 0, 4, 10, 20. (b)
Middle Column: Dilation with a quadratic structuring function, t = 0, 0:25,
1, 4. (c) Right Column: Mean curvature motion, t = 0, 70, 275, 1275.
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Figure 5.6: Evolution of an MRI slice under di�erent PDEs.Top: Original image,

 = (0 ; 236)2. (a) Left Column: A�ne morphological scale-space,t = 0, 20,
50, 140.(b) Middle Column: Modi�ed mean curvature motion (� = 3, � = 1),
t = 0, 100, 350, 1500.(c) Right Column: Self-snakes (� = 3, � = 1), t = 0,
600, 5000, 40000.
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A completely di�erent morphological evolution is given by the mean curvature
motion (1.90) depicted in Fig. 5.5(c). Since MCM shrinks level lines with a ve-
locity that is proportional to their curvature, low-curved object boundaries are
less a�ected by this process, while high-curved structures(e.g. the nose) exhibit
roundings at an earlier stage. This also explains its excellent noise elimination
qualities. After some time, however, the head looks almost like a ball. This is in
accordance with the theory which predicts convergence of all closed level lines to
circular points.

A similar behaviour can be observed for the a�ne invariant morphological scale-
space (1.108) shown in Fig. 5.6(a). Since it takes the timeT = 3

4s
4
3 to remove

all isolines within a circle of radiuss { in contrast to T = 1
2s2 for MCM { we

see that, for a comparable elimination of small structure, the shrinking e�ect of
large structures is stronger for AMSS than for MCM. Thus, thecorrespondence
problem is more severe than for MCM. Nevertheless, the advantage of having a�ne
invariance may counterbalance the correspondence problemin certain applications.
Since the AMSS involves no additional parameters and o�ers more invariances
than other scale-spaces, it is ideal for uncommitted image analysis and shape
recognition. Both MCM and AMSS give signi�cantly sharper edges than linear
di�usion �ltering, but they are not designed to act contrast-enhancing.

One possibility to reduce the correspondence problem of morphological scale-
spaces is to attenuate the curve evolution at high-contrastedges. This is at the
expense of withdrawing morphology in terms of invariance under monotone grey-
scale transformations.

One possibility is to use the damping functionoutsidethe divergence expression.
Processes of this type are studied in [13, 364, 365, 304]. As asimple prototype for
this idea, let us investigate the modi�ed MCM

@tu = g(jr u� j2) jr uj div

 
r u
jr uj

!

(5.10)

with g(jr u� j2) as in (1.32). The corresponding evolution is depicted in Fig. 5.6(b).
We observe that structures remain much better localized than in the original MCM.
On the other hand, the experiments give evidence that this process is probably
not contrast-enhancing, see e.g. the chin. As a consequence, the results appear less
segmentation-like than those for nonlinear di�usion �ltering.

Using g(jr u� j2) inside the divergence expression leads to

@t u = jr uj div

 

g(jr u� j2)
r u
jr uj

!

: (5.11)

In Section 1.6.6 we have seen that processes of this type are called self-snakes
[357]. Since they di�er from isotropic nonlinear di�usion �lters by the jr uj terms
inside and outside the divergence expression, they will notpreserve the average
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Figure 5.7: Preprocessing of a fabric image. (a)Left: Fabric, 
 =
(0; 257)2. (b) Right: Anisotropic di�usion, � = 4, � = 2, t = 240.

grey value. The evolution in Fig. 5.6(c) indicates thatg(jr u� j2) gives similar edge-
enhancing e�ects as in a nonlinear di�usion �lter, but one can observe a stronger
tendency to create circular structures. This behaviour which resembles MCM is
not surprising if one compares (1.120) with (1.121).

Let us now study two applications of nonlinear di�usion �ltering in computer
aided quality control (CAQ): the grading of fabrics and woodsurfaces (see also
[413]).

The quality of a fabric is determined by two criteria, namelyclouds and stripes.
Clouds result from isotropic inhomogeneities of the density distribution, whereas
stripes are an anisotropic phenomenon caused by adjacent �bres pointing in the
same direction. Anisotropic di�usion �lters are capable ofvisualizing both quality-
relevant features simultaneously (Fig. 5.7). For a suitable parameter choice, they
perform isotropic smoothing at clouds and di�use in an anisotropic way along �-
bres in order to enhance them. However, if one wants to visualize both features
separately, one can use a fast pyramid algorithm based on linear di�usion �lter-
ing for the clouds [417], whereas stripes can be enhanced by aspecial nonlinear
di�usion �lter which is designed for closing interrupted lines and which shall be
discussed in Section 5.2.

For furniture production it is of importance to classify the quality of wood
surfaces. If one aims to automize this evaluation, one has toprocess the image in
such a way that quality relevant features become better visible und unimportant
structures disappear. Fig. 5.8(a) depicts a wood surface possessing one defect. To
visualize this defect, equation (5.4) can be applied with good success (Fig. 5.8(b)).
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Figure 5.8: Defect detection in wood. (a)Left: Wood surface, 
 =
(0; 256)2. (b) Right: Isotropic nonlinear di�usion, � = 4, � = 2,
t = 2000.

In [413] it is demonstrated how a modi�ed anisotropic di�usion process yields even
more accurate results with less roundings at the corners.

Fig. 5.9(a) gives an example for possible medical applications of nonlinear dif-
fusion �ltering as a preprocessing tool for segmentation (see also [415] for another
example). It depicts an MRI slice of the human head. For detecting Alzheimer's
disease one is interested in determining the ratio between the ventricle areas, which
are given by the two white longitudinal objects in the centre, and the entire head
area.

In order to make the diagnosis more objective and reliable, it is intended to
automize this feature extraction step by a segmentation algorithm. Figure 5.9(c)
shows a segmentation according to the following simpli�cation of the Mumford{
Shah functional (1.58):

E f (u; K ) =
Z




(u� f )2 dx + � jK j: (5.12)

It has been obtained by aMegaWaveprogramme using a hierarchical region grow-
ing algorithm due to Koep
er et al. [239]. As is seen in Fig. 5.9(d), one gets a better
segmentation when processing the original image slightly by means of nonlinear
di�usion �ltering (Fig. 5.9(b)) prior to segmenting it.
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Figure 5.9: Preprocessing of an MRI slice. (a)Top Left: Head, 
 =
(0; 256)2. (b) Top Right: Di�usion-�ltered, � = 5, � = 0:1, t =
2:5. (c) Bottom Left: Segmented original image,� = 8192. (d)
Bottom Right: Segmented �ltered image,� = 8192.

5.2 Coherence-enhancing di�usion

5.2.1 Filter design

In this section we shall investigate how the structure tensor information can be
used to design anisotropic di�usion scale-spaces which enhance the coherence of

ow-like textures [418]. This requires a nonvanishing integration scale� .

Let again � 1, � 2 with � 1 � � 2 be the eigenvalues ofJ� , and v1, v2 the cor-
responding orthonormal eigenvectors. As in 5.1 the di�usion tensor D(J� (r u� ))
ought to possess the same set of eigenvectors asJ� (r u� ).

If one wants to enhance coherent structures, one should smooth preferably
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Figure 5.10: Local orientation in a �ngerprint image. (a)Top Left:
Original �ngerprint, 
 = (0 ; 256)2. (b) Top Right: Orientation
of smoothed gradient,� = 0:5. (c) Bottom Left: Orientation of
smoothed gradient,� = 5. (d) Bottom Right: Structure tensor
orientation, � = 0:5, � = 4.

along the coherence directionv2 with a di�usivity � 2 which increases with respect
to the coherence (� 1 � � 2)2. This may be achieved by the following choice for the
eigenvalues of the di�usion tensor (C > 0, m 2 IN):

� 1 := �;

� 2 :=

8
<

:

� if � 1 = � 2,
� + (1 � � ) exp

�
� C

(� 1� � 2 )2m

�
else,

where the exponential function was chosen to ensure the smoothness ofD and the
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Figure 5.11: Anisotropic equations applied to the �ngerprint image.
(a) Left: Mean-curvature motion, t = 5. (b) Right: Coherence-
enhancing anisotropic di�usion,� = 0:5, � = 4, t = 20.

small positive parameter � 2 (0; 1) keepsD(J� (r u� )) uniformly positive de�nite. 2

All examples below are calculated usingC := 1, m := 1, and � := 0:001.

5.2.2 Applications

Figure 5.10 illustrates the advantages of local orientation analysis by means of
the structure tensor. In order to detect the local orientation of the �ngerprint
depicted in Fig. 5.10(a), the gradient orientation of a slightly smoothed image has
been calculated (Fig. 5.10(b)). Horizontally oriented structures appear black, while
vertical structures are represented in white. We observe very high 
uctuations in
the local orientation. When applying a larger smoothing kernel it is clear that
adjacent gradients having the same orientation but opposite direction cancel out.
Therefore, the results in (c) are much worse than in (b). The structure tensor,
however, averages the gradient orientation instead of its direction. This is the
reason for the reliable estimates of local orientation thatcan be obtained with this
method (Fig. 5.10(d)).

To illustrate how the result of anisotropic PDE methods depends on the direc-
tion in which they smooth, let us recall the example of mean curvature motion (cf.
1.6.1):

@t u = u�� = jr uj curv(u) (5.13)

with � being the direction perpendicular tor u. Since MCM smoothes by prop-
agating level lines in inner normal direction we recognize that its smoothing di-

2Evidently, �lters of this type are not regularizations of th e Perona{Malik process: the limit
� ! 0, � ! 0 leads to a linear di�usion process with constant di�usivit y � .
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Figure 5.12: Scale-space behaviour of coherence-enhancing di�usion
(� = 0:5, � = 2). (a) Top Left: Original fabric image, 
 = (0 ; 257)2.
(b) Top Right: t = 20. (c) Bottom Left: t = 120. (d) Bottom
Right: t = 640.

rection depends exclusively onr u. Thus, although this method is in a complete
anisotropic spirit, we should not expect it to be capable of closing interrupted
line-like structures. The results in Fig. 5.11(a) con�rm this impression.

The proposed anisotropic di�usion �lter, however, biases the di�usive 
ux to-
wards the coherence orientationv2 and is therefore well-suited for closing inter-
rupted lines in coherent 
ow-like textures, see Fig. 5.11(b). Due to its reduced
di�usivity at noncoherent structures, the locations of thesemantically important
singularities in the �ngerprint remain the same. This is an important prerequisite
that any image processing method has to satisfy if it is to be applied to �ngerprint
analysis.
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Figure 5.13: (a) Top: High resolution slipring CT scan of a femural bone,

 = (0 ; 300) � (0; 186). (b) Bottom Left: Filtered by coherence-enhancing
anisotropic di�usion, � = 0:5, � = 6, t = 16. (c) Bottom Right: Dito with
t =128.

Figure 5.12 depicts the scale-space behaviour of coherence-enhancing aniso-
tropic di�usion applied to the fabric image from Fig. 5.7. The temporal behaviour
of this di�usion �lter seems to be appropriate for visualizing coherent �bre agglom-
erations (stripes) at di�erent scales, a di�cult problem for the automatic grading
of nonwovens [299].

Figure 5.13 illustrates the potential of CED for medical applications. It depicts
a human bone. Its internal structure has a distinctive texture through the presence
of tiny elongated bony structural elements, thetrabeculae. There is evidence that
the trabecular formation is for a great deal determined by the external load. For
this reason the trabecular structure constitutes an important clinical parameter in
orthopedics. Examples are the control of recovery after surgical procedures, such
as the placement or removal of metal implants, quantifying the rate of progression
of rheumatism and osteoporosis, the determination of left-right deviations of sym-
metry in the load or establishing optimal load corrections by physiotherapy. From
Figure 5.13(b),(c) we observe that CED is capable of enhancing the trabecular
structures in order to ease their subsequent orientation analysis.
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Figure 5.14: Image restoration using coherence-enhancinganisotropic
di�usion. (a) Left: \Selfportrait" by van Gogh (Saint-R�emy, 1889;
Paris, Muse�e d'Orsay), 
 = (0 ; 215)� (0; 275). (b) Right: Filtered,
� = 0:5, � = 4, t = 6.

Let us now investigate the impact of coherence-enhancing di�usion on images,
which are not typical texture images, but still reveal a 
ow-like character. To this
end, we shall process impressionistic paintings by Vincentvan Gogh.

Fig. 5.14 shows the restoration properties of coherence-enhancing anisotropic
di�usion when being applied to a selfportrait of the artist [161]. We observe that
the di�usion �lter can close interrupted lines and enhance the 
ow-like character
which is typical for van Gogh paintings.

The next painting we are concerned with is called \Road with Cypress and
Star" [162, 429]. It is depicted in Fig. 5.15. In order to demonstrate the in
uence
of the integration scale� , all �lter parameters are �xed except for � . Fig. 5.15(b)
shows that a value for� which is too small does not lead to the visually dominant
coherence orientation and creates structures with a lot of undesired 
uctuations.
Increasing the value for� improves the image signi�cantly (Fig. 5.15(c)). Interest-
ingly, a further increasing of� does hardly alter this result (Fig. 5.15(d)), which
indicates that this van Gogh painting possesses a uniform \texture scale" re
ecting
the characteristic painting style of the artist.

In a last example the temporal evolution of 
ow-like images is illustrated by
virtue of the \Starry Night" painting in Fig. 5.16 [160, 419]. Due to the established



5.2. COHERENCE-ENHANCING DIFFUSION 133

Figure 5.15: Impact of the integration scale on coherence-enhancing
anisotropic di�usion ( � = 0:5, t = 8). (a) Top Left: \Road with
Cypress and Star" by van Gogh (Auvers-sur-Oise, 1890; Otterlo, Ri-
jksmuseum Kr•oller{M•uller), 
 = (0 ; 203)� (0; 290). (b) Top Right:
Filtered with � = 1. (c) Bottom Left: � = 4. (d) Bottom Right:
� = 6.
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Figure 5.16: Scale-space properties of coherence-enhancing anisotropic di�usion
(� = 0:5, � = 4). (a) Top Left: \Starry Night" by van Gogh (Saint-R�emy,
1889; New York, The Museum of Modern Art), 
 = (0 ; 255)� (0; 199). (b) Top
Right: t = 8. (c) Bottom Left: t = 64. (d) Bottom Right: t = 512.

scale-space properties, the image becomes gradually simpler in many aspects, be-
fore it �nally will tend to its simplest representation, a constant image with the
same average grey value as the original one. The 
ow-like character, however, is
maintained for a very long time.3

3Results for AMSS �ltering of this image can be found in [305].
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Conclusions and perspectives

While Chapter 1 has given a general overview of PDE-based smoothing and restora-
tion methods, the goal of Chapters 2{5 has been to present a scale-space framework
for nonlinear di�usion �ltering which does not require any monotony assump-
tion (comparison principle). We have seen that, besides thefact that many global
smoothing scale-space properties are maintained, new possibilities with respect to
image restoration appear.

Rather than deducing a unique equation from �rst principleswe have ana-
lysed well-posedness and scale-space properties of a general family of regularized
anisotropic di�usion �lters. Existence and uniqueness results, continuous depen-
dence of the solution on the initial image, maximum{minimumprinciples, invari-
ances, Lyapunov functionals, and convergence to a constantsteady-state have been
established.

The large class of Lyapunov functionals permits to regard these �lters in many
ways as simplifying, information-reducing transformations. These global smooth-
ing properties do not contradict seemingly opposite local e�ects such as edge en-
hancement. For this reason it is possible to design scale-spaces with restoration
properties giving segmentation-like results.

Prerequisites have been stated under which one can prove well-posedness and
scale-space results in the continuous, semidiscrete and discrete setting. Each of
these frameworks is self-contained and does not require theothers. On the other
hand, the prerequisites in all three settings reveal many similarities and, as a
consequence, representatives of the semidiscrete class can be obtained by suitable
spatial discretizations of the continuous class, while representatives of the discrete
class may arise from time discretizations of semidiscrete �lters.

The degree of freedom within the proposed class of �lters canbe used to tailor
the �lters towards speci�c restoration tasks. Therefore, these scale-spaces do not
need to be uncommitted; they give the user the liberty to incorporate a-priori
knowledge, for instance concerning size and contrast of especially interesting fea-
tures.

135
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The analysed class comprises linear di�usion �ltering and the nonlinear iso-
tropic model of Catt�e et al. [81] and Whitaker and Pizer [438], but also novel ap-
proaches have been proposed: The use of di�usion tensors instead of scalar-valued
di�usivities puts us in a position to design real anisotropic di�usion processes
which may reveal advantages at noisy edges. Last but not least, the fact that these
�lters are steered by the structure tensor instead of the regularized gradient allows
to adapt them to more sophisticated tasks such as the enhancement of coherent

ow-like structures.

In view of these results, anisotropic di�usion deserves to be regarded as much
more than an ad-hoc strategy for transforming a degraded image into a more
pleasant looking one. It is a 
exible and mathematically sound class of methods
which ties the advantages of two worlds: scale-space analysis and image restoration.

It is clear, however, that nonlinear di�usion �ltering is a young �eld which has
certainly not reached its �nal state yet. Thus, we can expecta lot of new results
in the near future. Some of its future developments, however, are likely to consist
of straightforward extensions of topics presented in this text:

� While the theory and the examples in the present book focus on2-D grey-
scale images, it is evident that most of its results can easily be generalized to
higher dimensions and vector-valued images. The need for such extensions
grows with the rapid progress in the development of faster computers, the
general availability of a�ordable colour scanners and printers, and the wish
to integrate information from di�erent channels. Some of the references in
Chapter 1 point in directions how this can be accomplished.

� The various possibilities to include semilocal or global information constitute
another future perspective. This could lead to speci�callytuned �lters for
topics such as perceptual grouping. Coherence-enhancing anisotropic di�u-
sion is only a �rst step in this direction. New �lter models might arise using
other structure descriptors than the (regularized) gradient or the structure
tensor. Interesting candidates could be wavelets, Gabor �lters, or steerable
�lters.

� In contrast to the linear di�usion case, the relation between structures at
di�erent scales has rarely been exploited in the nonlinear context. Although
this problem is less severe, since the avoidance of correspondence problems
was one of the key motivations to study nonlinear scale-spaces, it would cer-
tainly be useful to better understand the deep structure in nonlinear di�usion
processes. The scale-space stack of these �lters appears tobe well-suited to
extract semantically important information with respect to a speci�ed task.
This �eld o�ers a lot of challenging mathematical questions.
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� Most people working in computer vision do not have a speci�c knowledge
on numerical methods for PDEs. As a consequence, the most widely-used
numerical methods for nonlinear di�usion �ltering are still the simple, but
ine�cient explicit (Euler forward) schemes. Novel, more time-critical appli-
cation areas could be explored by applying implicit schemes, splitting and
multigrid techniques, or grid adaptation strategies. In this context it would be
helpful to have software packages, where di�erent nonlinear di�usion �lters
are implemented in an e�cient way, and which are easy to use for everyone.

� The price one has to pay for the 
exibility of nonlinear di�usion �ltering is
the speci�cation of some parameters. Since these parameters have a rather
natural meaning, this is not a very di�cult problem for someone with ex-
perience in computer vision. Somebody with another primaryinterest, for
instance a physician who wants to denoise ultrasound images, may be fright-
ened by this perspective. Thus, more research on �nding someguidelines
for automatic parameter determination for a task at hand would encourage
also people without a speci�c image processing background to apply nonlin-
ear di�usion �lters. Several useful suggestions for parameter adaptation can
already be found in [328, 36, 431, 270, 444].

� There are not yet many studies which explore the potential ofnonlinear dif-
fusion �ltering when being combined with other image processing techniques.
Especially combinations with concepts such as data compression, segmenta-
tion algorithms, tomographic reconstruction techniques,or neural networks
for learning a-priori information might lead to novel application areas for
these techniques.

Thus, there still remains a lot of work to be done. It would be nice if this book has
inspired its readers to contribute to the solution of some ofthe remaining open
problems.
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