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Preface

Partial di erential equations (PDEs) have led to an entire rew eld in image
processing and computer vision. Hundreds of publicationgve appeared in the last
decade, and PDE-based methods have played a central role averal conferences
and workshops.

The success of these techniques is not really surprisingyc® PDEs have proved
their usefulness in areas such as physics and engineerinigrsmes for a very long
time. In image processing and computer vision, they o er seval advantages:

Deep mathematical results with respect to well-posednesgeavailable, such
that stable algorithms can be found. PDE-based methods aren® of the
mathematically best-founded techniques in image procesgi

They allow a reinterpretation of several classical methodsder a novel uni-
fying framework. This includes many well-known techniquesuch as Gaussian
convolution, median lItering, dilation or erosion.

This understanding has also led to the discovery of new metti®. They
can o er more invariances than classical techniques, or aede novel ways
of shape simpli cation, structure preserving ltering, and enhancement of
coherent line-like structures.

The PDE formulation is genuinely continuous. Thus, their aproximations
aim to be independent of the underlying grid and may reveal gal rotational
invariance.

PDE-based image processing techniques are mainly used forosthing and
restoration purposes. Many evolution equations forestoring images can be de-
rived as gradient descent methods for minimizing a suitabknergy functional, and
the restored image is given by the steady-state of this proge Typical PDE tech-
niques for imagesmoothingregard the original image as initial state of a parabolic
(di usion-like) process, and extract Itered versions fran its temporal evolution.
The whole evolution can be regarded as a so-calledale-spacean embedding of
the original image into a family of subsequently simpler, nre global representa-
tions of it. Since this introduces a hierarchy into the imagstructures, one can use
a scale-space representation for extracting semanticallyjportant information.

One of the two goals of this book is to give an overview of theage-of-the-art of
PDE-based methods for image enhancement and smoothing. Bmagis is put on a
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uni ed description of the underlying ideas, theoretical reults, numerical approxi-
mations, generalizations and applications, but also histizal remarks and pointers
to open questions can be found. Although being concise, tlpart covers a broad
spectrum: it includes for instance an early Japanese scagace axiomatic, the
Mumford{Shah functional for image segmentation, continuas-scale morphology,
active contour models and shock lters. Many references aggven which point the
reader to useful original literature for a task at hand.

The second goal of this book is to present an in-depth treatmeof an interest-
ing class of parabolic equations which may bridge the gap beten scale-space and
restoration ideas: nonlinear di usion lIters. Methods of this type have been pro-
posed for the rst time by Perona and Malik in 1987 [326]. In ater to smooth an
image and to simultaneously enhance important features suas edges, they apply
a di usion process whose di usivity is steered by derivaties of the evolving image.
These lIters are di cult to analyse mathematically, as they may act locally like
a backward di usion process. This gives rise to well-posedss questions. On the
other hand, nonlinear di usion Iters are frequently applied with very impressive
results; so there appears the need for a theoretical founda.

We shall develop results in this direction by investigatinga general class of
nonlinear di usion processes. This class comprises linedirusion Iters as well as
spatial regularizations of the Perona{Malik process, buttialso allows processes
which replace the scalar di usivity by a di usion tensor. Thus, the di usive ux
does not have to be parallel to the grey value gradient: the térs may become
anisotropic. Anisotropic di usion lters can outperform isotropic ones with respect
to certain applications such as denoising of highly degradleedges or enhancing
coherent ow-like images by closing interrupted one-dimesional structures. In or-
der to establish well-posedness and scale-space properfer this class, we shall
investigate existence, uniqueness, stability, maximum{mimum principles, Lya-
punov functionals, and invariances. The proofs present mamatical results from
the nonlinear analysis of partial di erential equations.

Since digital images are always sampled on a pixel grid, itmecessary to know
if the results for the continuous framework carry over to thepractically relevant
discrete setting. These questions are an important topic dhe present book as
well. A general characterization of semidiscrete and fullgiscrete Iters, which
reveal similar properties as their continuous di usion conterparts, is presented. It
leads to a semidiscrete and fully discrete scale-space thefor nonlinear di usion
processes. Mathematically, this comes down to the study obnlinear systems of
ordinary di erential equations and the theory of nonnegatve matrices.

Organization of the book. Image processing and computer vision are inter-
disciplinary areas, where researchers, practitioners astudents may have a very
di erent scienti ¢ background and di ering intentions. As a consequence, | have
tried to keep this book as self-contained as possible, anditwlude various aspects
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such that it should contain interesting material for many raders. The prerequisites
are kept to a minimum and can be found in standard textbooks oimage process-
ing [163], matrix analysis [407], functional analysis [9,85 7], ordinary di erential
equations [56, 412], partial di erential equations [185]rad their numerical aspects
[293, 286]. The book is organized as follows:

Chapter 1 surveys the fundamental ideas behind PDE-based sothing and
restoration methods. This general overview sketches thetineoretical properties,
numerical methods, applications and generalizations. Thadiscussed methods in-
clude linear and nonlinear di usion ltering, coupled di u sion{reaction methods,
PDE analogues of classical morphological processes, Hledin and a ne invariant
curve evolutions, and total variation methods.

The subsequent three chapters explore a theoretical framenk for anisotropic
di usion ltering. Chapter 2 presents a general model for tle continuous setting
where the diusion tensor depends on the structure tensor rfierest operator,
second-moment matrix), a generalization of the Gaussiamgothed gradient al-
lowing a more sophisticated description of local image stture. Existence and
uniqueness are discussed, and stability and an extremum meiple are proved.
Scale-space properties are investigated with respect tovamiances and information-
reducing qualities resulting from associated Lyapunov fationals.

Chapter 3 establishes conditions under which comparable MWposedness and
scale-space results can be proved for the semidiscrete feavork. This case takes
into account the spatial discretization which is charactestic for digital images,
but it keeps the scale-space idea of using a continuous scpégameter. It leads
to nonlinear systems of ordinary di erential equations. Weshall investigate under
which conditions it is possible to get consistent approxintens of the continuous
anisotropic Iter class which satisfy the abovementionedaquirements.

In practice, scale-spaces can only be calculated for a niteumber of scales,
though. This corresponds to the fully discrete case which tseated in Chapter
4. The investigated discrete Iter class comes down to sohg linear systems of
equations which may arise from semi-implicit time discretations of the semidis-
crete lters. We shall see that many numerical schemes shatgpical features
with their semidiscrete counterparts, for instance well-psedness results, extremum
principles, Lyapunov functionals, and convergence to a cstant steady-state. This
chapter also shows how one can design e cient numerical meitls which are in
accordance with the fully discrete scale-space frameworkdawhich are based on
an additive operator splitting (AOS).

Chapter 5 is devoted to practical topics such as Iter desigrexamples and ap-
plications of anisotropic di usion ltering. Speci ¢ models are proposed which are
tailored towards smoothing with edge enhancement and muttale enhancement
of coherent structures. Their qualities are illustrated usg images arising from
computer aided quality control and medical applications, bt also ngerprint im-
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ages and impressionistic paintings shall be processed. Tiesults are juxtaposed
to related methods from Chapter 1.

Finally, Chapter 6 concludes the book by giving a summary andiscussing
possible future perspectives for nonlinear di usion Iteing.
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Chapter 1

Image smoothing and restoration
by PDEs

PDE-based methods appear in a large variety of image procegsand computer
vision areas ranging from shape-from-shading and histognene modi cation to
optic ow and stereo vision.

This chapter reviews their main application, namely the smathing and restora-
tion of images. It is written in an informal style and refers b a large amount of
original literature, where proofs and full mathematical d&ils can be found.

The goal is to make the reader sensitive to the similaritiesli erences, advan-
tages and shortcomings of these techniques, and to point abe main results and
open problems in this rapidly evolving area.

For each class of methods the basic ideas are explained anditttheoretical
background, numerical aspects, generalizations, and ajmaitions are discussed.
Many of these ideas are borrowed from physical phenomena lswas wave prop-
agation or transport of heat and mass. Nevertheless, alsosgdynamics, crack
propagation, grass re ow, the study of salinity pro les in oceanography, or mech-
anisms of the retina and the brain are closely related to sonoé these approaches.
Although a detailed discussion of these connections woul@ far beyond the scope
of this work, they are mentioned wherever they appear, in oed to allow the
interested reader to pursue these ideas. Also many histalaotes are added.

The outline of this chapter is as follows: We start with revieiing the physi-
cal ideas behind di usion processes. This helps us to bettanderstand the next
sections which are concerned with the properties of lineana@ nonlinear di usion
Iters in image processing. The subsequent study of image leemncement methods
of di usion{reaction type relates di usion Iters to varia tional image restoration
techniques. After that we investigate morphological ltes, a topic which looks at
rst glance fairly di erent to the di usion approach. Never theless, it reveals some
interesting relations when it is interpreted within a PDE framework. This becomes

1



2 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

especially evident when considering curvature-based maugdogical PDEs. Finally

we shall discuss total variation image restoration techniges which permit discon-
tinuous solutions. The last section summarizes the advargas and shortcomings
of the main methods and gives an outline of the questions weeaconcerned with
in the subsequent chapters.

1.1 Physical background of di usion processes

Most people have an intuitive impression of di usion as a ptsical process that
equilibrates concentration di erences without creating o destroying mass. This
physical observation can be easily cast in a mathematicalrfoulation.

The equilibration property is expressed byFick's law:

j= D ru (1.1)

This equation states that a concentration gradient u causes a uxj which aims
to compensate for this gradient. The relation between u and j is described by
the di usion tensor D, a positive de nite symmetric matrix. The case wherg and
r u are parallel is calledisotropic. Then we may replace the di usion tensor by a
positive scalar-valueddi usivity g. In the generalanisotropic case,j andr u are
not parallel.

The observation that di usion does only transport mass witlout destroying it
or creating new mass is expressed by tlentinuity equation

@ = divj (1.2)

wheret denotes the time.
If we plug in Fick's law into the continuity equation we end upwith the di usion
equation
@ =div(D r u): (1.3)

This equation appears in many physical transport processek the context of
heat transfer it is called heat equation In image processing we may identify the
concentration with the grey value at a certain location. If he di usion tensor is
constant over the whole image domain, one speakshaimogeneousli usion, and
a space-dependent Itering is calleéihhomogeneousOften the di usion tensor is a
function of the di erential structure of the evolving imageitself. Such a feedback
leads tononlinear di usion Iters . Di usion which does not depend on the evolving
image is calledinear.

Sometimes the computer vision literature deviates from th@receding nota-
tions: It can happen that homogeneous ltering is named isobpic, and inhomo-
geneous blurring is called anisotropic, even if it uses a fmavalued di usivity
instead of a di usion tensor.



1.2 LINEAR DIFFUSION FILTERING 3

1.2 Linear diusion Itering

The simplest and best investigated PDE method for smoothinignages is to apply
a linear di usion process. We shall focus on the relation beeen linear di usion
Itering and the convolution with a Gaussian, analyse its sraothing properties for
the image as well as its derivatives, and review the fundantah properties of the
Gaussian scale-space induced by linear di usion lteringAfterwards a survey on
discrete aspects is given and applications and limitationgf the linear di usion
paradigm are discussed. The section is concluded by sketthitwo linear general-
izations which can incorporate a-priori knowledge: a ne Gassian scale-space and
directed di usion processes.

1.2.1 Relations to Gaussian smoothing
Gaussian smoothing

Let a grey-scale imagé be represented by a real-valued mapping 2 LY(R?). A
widely-used way to smoothf is by calculating the convolution
z
(K H)(x):= K (x y)f(y)dy (1.4)

R2

where K denotes the two-dimensional Gaussian of width (standard diation)
> 0: I
1 jxj?
K (x):= > 32 exp 52 : (1.5)
There are several reasons for the excellent smoothing projes of this method:
First we observe that sinceK 2 C! (R?) we get K f 2 C! (R?); even iff is
only absolutely integrable.
Next, let us investigate the behaviour in the frequency doma When de ning
the Fourier transformation F by
z
(Ff)(') = f(x) exp( ih;xi)dx (1.6)

R2
we obtain by the convolution theorem that
(F(K)C) = (FK)() (Ff)(): (1.7)

Since the Fourier transform of a Gaussian is again Gaussiahaped,
!

iz
2=2

(FK)(') = exp (1.8)
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we observe that (1.4) is a low-pass lter that attenuates hilg frequencies in a
monotone way.

Interestingly, the smoothing behaviour can also be unde®bd in the context
of a PDE interpretation.

Equivalence to linear di usion ltering

It is a classical result (cf. e.g. [331, pp. 267{271] and [18%p. 43{56]) that for any
bounded f 2 C(R?) the linear di usion process

@ = u; (1.9)
ux;0) = f(x) (1.10)
possesses the solution
") (t=0)

u(x;t) = (1.11)

(KPx  f)(x) (t> 0):
This solution is unique, provided we restrict ourselves tauhctions satisfying
jux;t)y M exp(@xj?) (M:;a> 0): (1.12)

It depends continuously on the initial imagef with respect to k:k 1 gz); and it
ful Is the maximum{minimum principle

inf f u(x;t) supf on R? [0:1): (1.13)
R?2 R2

From (1.11) we observe that the time is related to the spatial width = P 2t of
the Gaussian. Hence, smoothing structures of orderrequires to stop the di usion
process at time

T=12% (1.14)

Figure 5.2 (b) and 5.3 (c) in Chapter 5 illustrate the e ect oflinear di usion
ltering.

Gaussian derivatives

In order to understand the structure of an image we have to ahgse grey value
uctuations within a neighbourhood of each image point, thais to say, we need
information about its derivatives. However, di erentiation is ill-posed, as small
perturbations in the original image can lead to arbitrarilylarge uctuations in

the derivatives. Hence, the need for regularization methgdarises. A thorough

LA problem is called well-posed, if it has a unique solution with depends continuously on
the input data and parameters. If one of these conditions is iolated, it is called ill-posed.



1.2 LINEAR DIFFUSION FILTERING S

treatment of this mathematical theory can be found in the boks of Tikhonov and
Arsenin [402], Louis [266] and Engl et al. [128].

One possibility to regularize is to convolve the image with &aussian prior to
di erentiation [404]. By the equality

@@ K f)=K (@@f)=(Q@gK) f (1.15)

for su ciently smooth f, we observe that all derivatives undergo the same Gaussian
smoothing process as the image itself and this process is iggient to convolving
the image with derivatives of a Gaussian.

Replacing derivatives by theseGaussian derivativeshas a strong regularizing
e ect. This property has been used to stabilize ill-posed pblems like deblurring
images by solving the heat equation backwards in tim¢141, 177]. Moreover, Gaus-
sian derivatives can be combined to so-calledi erential invariants , expressions
that are invariant under transformations such as rotationsfor instancejr K uj
or K u.

Di erential invariants are useful for the detection of featires such as edges,
ridges, junctions, and blobs; see [256] for an overview. Ttustrate this, we focus
on two applications for detecting edges.

A frequently used method is theCanny edge detectof69]. It is based on calcu-
lating the rst derivatives of the Gaussian-smoothed imageAfter applying sophis-
ticated thinning and linking mechanisms flon-maxima suppressiomnd hysteresis
thresholding, edges are identi ed as locations where the gradient madgade has a
maximum. This method is often acknowledged to be the best Bar edge detector,
and it has become a standard in edge detection.

Another important edge detector is theMarr{Hildreth operator [278], which
uses thelLaplacian-of-Gaussian (LoG) K as convolution kernel. Edges df are
identi ed as zero-crossings of K f. This needs no further postprocessing and
always gives closed contours. There are indications that Gs and especially their
approximation by di erences-of-Gaussians (DoGs)play an important role in the
visual system of mammals, see [278] and the references threr¥oung developed
this theory further by presenting evidence that the receptie elds in primate eyes
are shaped like the sum of a Gaussian and its Laplacian [448hd Koenderink
and van Doorn suggested the set of Gaussian derivatives asengral model for
the visual system [242].

If one investigates the temporal evolution of the zero-cremgs of an image |-
tered by linear di usion, one observes an interesting phentenon: When increasing
the smoothing scale , no new zero-crossings are created which cannot be traced
back to ner scales [439]. This evolution property is calledausality [240]. It is

20f course, solutions of the regularization can only approxinate the solution of the original
problem (if it exists). In practice, increasing the order of applied Gaussian derivatives or reducing
the kernel size will nally deteriorate the results of deblurring.
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closely connected to the maximum{minimum principle of cedin parabolic opera-
tors [189]. Attempts to reconstruct the original image fronthe temporal evolution
of the zero-crossings of the Laplacian have been carried doyt Hummel and Mo-
niot [190]. They concluded, however, that this is practicét unstable unless very
much additional information is provided.

In the western world the evolution property of the zero-crasngs was the key
investigation which has inspired Witkin to the so-called stme-space concept [439].
This shall be discussed next.

1.2.2 Scale-space properties
The general scale-space concept

It is a well-known fact that images usually contain structues at a large variety of
scales. In those cases where it is not clear in advance whishhe right scale for the
depicted information it is desirable to have an image represtation at multiple
scales. Moreover, by comparing the structures at di erentcales, one obtains a
hierarchy of image structures which eases a subsequent ireagterpretation.

A scale-spaces an image representation at a continuum of scales, embealgli
the imagef into a family f T,f jt ~ Og of gradually simpli ed versions of it, provided
that it ful Is certain requirements 3. Most of these properties can be classi ed as
architectural, smoothing (information-reducing) or invaiance requirements [12].

An important architectural assumption is recursivity, i.e. fort = 0, the scale-
space representation gives the original imade and the ltering may be split into
a sequence of Iter banks:

Tof
Tt+ Sf

f; (1.16)
T(Tsf)  8s;t O (1.17)

This property is very often referred to as thesemigroup property Other architec-
tural principles comprise for instance regularity propeies ofT; and local behaviour
ast tends to O.

Smoothing properties and information reduction arise fronthe wish that the
transformation should not create artifacts when passingdm ne to coarse rep-
resentation. Thus, at a coarse scale, we should not have atwhal structures
which are caused by the Itering method itself and not by unddying structures
at ner scales. This simpli cation property is speci ed by numerous authors in
di erent ways, using concepts such as no creation of new léwrves (causality)
[240, 450, 189, 255], nonenhancement of local extrema [3¥]2decreasing number

3Recently it has also been proposed to extend the scale-spacencept to scale{imprecision
spaceby taking into account the imprecision of the measurement deice [171].



1.2 LINEAR DIFFUSION FILTERING 7

of local extrema [255], maximum loss of gure impression [&P Tikhonov regular-

ization [302, 303], maximum{minimum principle [189, 328]positivity [324, 138],

preservation of positivity [191, 193, 320], comparison piciple [12], and Lyapunov
functionals [415, 429]. Especially in the linear setting, amy of these properties are
equivalent or closely related; see [426] for more details.

We may regard an image as a representative of an equivalentzss containing
all images that depict the same object. Two images of this da di er e.g. by grey-
level shifts, translations and rotations or even more comiphted transformations
such as a ne mappings. This makes the requirement plausibliéat the scale-space
analysis should be invariant to as many of these transformans as possible, in
order to analyse only the depicted object [196, 16].

The pioneering work of Alvarez, Guichard, Lions and Morel P shows that
every scale-space ful lling some fairly natural architectral, information-reducing
and invariance axioms is governed by a PDE with the originalmage as initial
condition. Thus, PDEs are the suitable framework for scalspaces.

Often these requirements are supplemented with an additiah assumption
which is equivalent to the superposition principle, nameljinearity:

Ti(af + bg = aTf + bTg 8t 0, 8a;b2 R: (1.18)

As we shall see below, imposing linearity restricts the seakpace idea to essentially
one representative.

Gaussian scale-space

The historically rst and best investigated scale-space ihe Gaussian scale-space
which is obtained via convolution with Gaussians of increasy variance, or { equiv-
alently { by linear di usion lItering according to (1.9), (1 .10).

Usually a 1983 paper by Witkin [439] or a 1980 report by Stansld [392]
are regarded as the rst references to the linear scale-spamea. Recent work
by Weickert, Ishikawa and Imiya [426, 427], however, show$at scale-space is
more than 20 years older: An axiomatic derivation of 1-D Gas&n scale-space
has already been presented by Taizo lijima in a technical pap from 1959 [191]
followed by a journal version in 1962 [192]. Both papers areitten in Japanese.

In [192] lijima considers an observation transformation vhich depends on
a scale parameter and which transforms the original imagéd (x) into a blurred
versiorf [ f (x9;x; ]. This class of blurring transformations is callechoke(defo-
cusing). He assumes that it has the structure

4
[FOOx 1= FE(xxxS gdx’, (1.19)

1

4The variable x° serves as a dummy variable.
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and that it should satisfy ve conditions:

() Linearity (with respect to multiplications):
If the intensity of a pattern becomesA times its original intensity, then the
same should happen to the observed pattern:

[Af (X% 1= A[FXY% 1 (1.20)

(I1) Translation invariance:
Filtering a translated image is the same as translating theltered image:

[F(x® a);x 1= [ f(x9x & I (1.21)

(1) Scale invariance:
If a pattern is spatially enlarged by some factor , then there exists a °=
Y; ) such that

[F(xE)x 1= [ fF(xY:x=; 9 (1.22)

(IV) (Generalized) semigroup property:
If f is observed under a parameter, and this observation is observed un-
der a parameter ,, then this is equivalent to observingf under a suitable
parameter 3= 3( 1; 2):

h[f(xoﬁ;x&, X 2i = [ f(x%;x; 3] (1.23)

(V) Preservation of positivity:
If the original image is positive, then the observed image fgositive as well:

[f(x9);x; 1>0 8f(xHY>0, 8 > O (1.24)

Under these requirements lijima derives in a very systematiway that

2 (x x9?

[f(xY;x ] = §p1? f (x9 exp 17

dx® (1.25)
Thus, [ f (%x9;x; ]is justthe convolution betweerf and a Gaussian with standard
deviation = 2.

This has been the starting point of an entire world of linearcale-space research
in Japan, which is basically unknown in the western world. Jsanese scale-space
theory was well-embedded in a general framework for pattenecognition, feature
extraction and object classi cation [195, 197, 200, 320],nd many results have
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been established earlier than in the western world. Apart &m their historical
merits, these Japanese results reveal many interesting djtias which should induce
everyone who is interested in scale-space theory to have asdr look at them. More
details can be found in [426, 427] as well as in some Englistalsespace papers
by lijima such as [195, 197]. In particular, the latter oneshow that there is no
justi cation to deny lijima's pioneering role in linear scde-space theory because of
language reasons.

Table 1.1: Overview of continuous Gaussian scale-spaceamatics (11 = lijima

[191, 192], 12 = lijima [193, 194], I3 = lijima [196], O = Otsu B20], K = Koenderink
[240], Y = Yuille/Poggio [450], B = Babaud et al. [30], L1 = Lindeberg [255], F1 =
Florack et al. [140], A = Alvarez et al. [12], P = Pauwels et al[324], N = Nielsen
et al. [303], L2 = Lindeberg [257], F2 = Florack [138]).

230 |K | Y |B|LL|F1|A| P |N|L2Z|F2

convolution kernel
semigroup property
locality

regularity

in netes. generator
max. loss principle
causality
nonnegativity
Tikhonov regulariz.
aver. grey level invar.
at kernel for t!1
isometry invariance
homogen. & isotropy
separability

scale invariance
valid for dimension 112(2(2(12|12|1|1|>1|N|12|N|N N

Table 1.1 presents an overview of the current Japanese andstezgn Gaussian
scale-space axiomatics (see [426, 427] for detailed exptaons). All of these ax-
iomatics use explicitly or implicitly® a linearity assumption. We observe that {
despite the fact that many axiomatics reveal similar rst pinciples { not two of
them are identical. Each of the 14 axiomatics con rms and ermces the evidence
that the others give: that Gaussian scale-space is uniquethin a linear framework.

A detailed treatment of Gaussian scale-space theory can beuhd in two
Japanese monographs by lijima [197, 198], as well as in Esglibooks by Lin-
deberg [256], Florack [139], and ter Haar Romeny [176]. A ledltion edited by

SOften it is assumed that the lIter is a convolution integral. This is equivalent to linearity
and translation invariance.
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Sporring, Nielsen, Florack and Johansen [389] gives an dia# overview of the

various aspects of this theory, and additional material ispesented in [211]. Many
relations between Gaussian scale-space and regularizattbeory have been elab-
orated by Nielsen [302], and readers who wish to analyse lmeand nonlinear
scale-space concepts in terms of di erential and integralegmetry can nd a lot

of material in the thesis of Salden [351].

1.2.3 Numerical aspects

The preceding theory is entirely continuous. However, in pctical problems, the
image is sampled at the nodefpixels) of a xed equidistant grid. Thus, the di u-
sion lter has to be discretized.

By virtue of the equivalence of solving the linear di usion quation and con-
volving with a Gaussian, we can either approximate the conlidtion process or the
di usion equation.

When restricting the image to a nite domain and applying theFast Fourier
Transformation (FFT), convolution in the spatial domain can be reduced to mul-
tiplication in the frequency domain, cf. (1.7). This proceéing requires a xed
computational e ort of order N logN, which depends only on the pixel humber
N, but not on the kernel size . For large kernels this is faster than most spatial
techniques. Especially for small kernels, however, aliagi e ects in the Fourier
domain may create oscillations and over- and undershoots/Hl.

One e cient possibility to approximate Gaussian convoluton in the spatial do-
main consists of applying recursive lters [109, 448]. Moreequently the Gaussian
kernel is just sampled and truncated at some multiple of itstandard deviation

. Factorizing a higher-dimensional Gaussian into one-dimsional Gaussians re-
duces the computational e ort to O(N ). Convolution with a truncated Gaussian,
however, reveals the drawback that it does not preserve theraigroup property of
the continuous Gaussian scale-space [255].

Lindeberg [255] has established a linear scale-space tlyefor the semidiscreté
case. His results are in accordance with those of Norman [R1®ho proposed in
1960 that the discrete analogue of the Gaussian kernel shoblle given in terms of
modi ed Bessel functions of integer order. Since this scagpace family arises nat-
urally from a semidiscretized version of the di usion equabn, it has been argued
that approximating the di usion equation should be prefered to discretizing the
convolution integral [255].

Recently, interesting semidiscrete and fully discrete lgar scale-space formula-
tions have been established utilizing stochastic princips: Astem and Heyden [27]
study a framework based on stationary random elds, while ta theory by Salden
et al. [353] exploits the relations between di usion and Ma&wov processes.

5By semidiscrete we mean discrete in space and continuous ifinte throughout this work.
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Among the numerous numerical possibilities to approximatthe linear di usion
equation, nite di erence (FD) schemes dominate the eld. Apart from some im-
plicit approaches [166, 67, 68] allowing realizations asecursive lter [14, 10, 451],
explicit schemes are mainly used. A very e cient approximabn of the Gaus-
sian scale-space results from applying multigrid ideas. €Gaussian pyramid[64]
has the computational complexityO(N) and gives a multilevel representation at
nitely many scales of di erent resolution. By subsequenty smoothing the image
with an explicit scheme for the di usion equation and restigting the result to a
coarser grid, one obtains a simpli ed image representaticat the next coarser grid.
Due to their simplicity and e ciency, pyramid decompositions have become very
popular and have been integrated into commercially availdd hardware [70, 214].
Pyramids are not invariant under translations, however, ath sometimes it is ar-
gued that they are undersampled and that the pyramid levelshsuld be closef.
These are the reasons why some people regard pyramids rathsrpredecessors of
the scale-space idea than as a numerical approximatfon

1.2.4 Applications

Due to its equivalence to convolution with a Gaussian, lineali usion Itering has
been applied in numerous elds of image processing and conbguvision. It can
be found in almost every standard textbook in these elds.

Less frequent are applications which exploit thevolution of an image under
Gaussian scale-space. Thieep structureanalysis [240] provides useful information
for extracting semantic information from an image, for insince

for nding the most relevant scales(scale selection, focus-of-attention)This
may be done by searching for extrema of (nonlinear) combinahs of normal-
ized Gaussian derivatives [256] or by analysing informatiotheoretic mea-
sures such as the entropy [208, 388] or generalized entrg(i@20] over scales.

for multiscale segmentation of images [172, 254, 256, 3188} The idea is
to identify segments at coarse scales and to link backwards the original
image in order to improve the localization.

In recent years also applications of Gaussian scale-spacestereo, optic ow
and image sequences have become an active research eld,[239, 241, 258, 259,
302, 306, 441]. Several scale-space applications are sunmad in a survey paper
by ter Haar Romeny [175].

7Of course, multiresolution techniques such as pyramids or idcrete wavelet transforms [92,
106] are just designed to have few or no redundancies, whilecale-space analysis intends to
extract semantical information by tracing signals through a continuum of scales.

8Historically, this is incorrect: lijima's scale-space wok [191] is much older than multigrid
ideas in image processing.
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Interesting results arise when one studies linear scaleaspe on a sphere [236,
353]: while the di usion equation remains the correct conpg, Gaussian kernels are
of no use anymore: appropriate kernels have to be expresseddarms of Legendre
functions [236]. This and other results [12, 255] indicaténat the PDE formulation
of linear scale-space in terms of a di usion equation is moneatural and has a
larger generalization potential than convolution with Gawgsians.

1.2.5 Limitations

In spite of several properties that make linear di usion ltering unique and easy
to handle, it reveals some drawbacks as well:

(&) An obvious disadvantage of Gaussian smoothing is the fabat it does not
only smooth noise, but also blurs important features such &slges and, thus,
makes them harder to identify. Since Gaussian smoothing i®signed to be
completely uncommitted, it cannot take into account any a-gori informa-
tion on structures which are worth being preserved (or evembanced).

(b) Linear diusion ltering dislocates edges when moving fom ner to coarser
scales, see e.g. Witkin [439]. So structures which are idiezdtl at a coarse
scale do not give the right location and have to be traced bactk the original
image [439, 38, 165]. In practice, relating dislocated infoation obtained at
di erent scales is di cult and bifurcations may give rise to instabilities. These
coarse-to- ne tracking di culties are generally denoted & the correspondence
problem

(c) Some smoothing properties of Gaussian scale-space do cary over from
the 1-D case to higher dimensions: A closed zero-crossingitoor can split
into two as the scale increases [450], and it is generally niotie that the
number of local extrema is nonincreasing, see [254, 255]iflustrative coun-
terexamples. A deep mathematical analysis of such phenomaehas been
carried out by Damon [105] and Rieger [342]. It turned out thiathe pairwise
creation of an extremum and a saddle point is not an exceptipbut happens
generically.

Regarding (b) and (c), much e orts have been spent in order tanderstand
the deep structure in Gaussian scale-space, for instance doyalysing its toppoints
[210]. There is some evidence that these points, where theadient vanishes and
the Hessian does not have full rank, carry essential imaggdommation [212]. Part
Il of the book edited by Sporring et al. [389] and the referaxes therein give an
overview of the state-of-the-art in deep structure analysi

Due to the uniqueness of Gaussian scale-space within a lindé@amework we
know that any modi cation in order to overcome the problems &){(c) will either
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renounce linearity or some scale-space properties. We s$tsde that appropriate
methods to avoid the shortcomings (a) and (b) are nonlinearidsion processes,
while (c) requires morphological equations [206, 207, 218]

1.2.6 Generalizations

Before we turn our attention to nonlinear processes, let usrst investigate two
linear modi cations which have been introduced in order to d@dress the problems
(a) and (b) from the previous section.

A ne Gaussian scale-space

A straightforward generalization of Gaussian scale-spacesults from renouncing
invariance under rotations. This leads to thea ne Gaussian scale-space

Z > 1 !
gt ep EWDCXY) pvay (126)

.. 4 det(Dy) 4

u(x;t) =

whereD; := tD, t> 0, andD 2 R? 2 is symmetric positive de nite®. For a xed
matrix D, calculating the convolution integral (1.26) is equivalento solving a
linear anisotropic di usion problem with D as di usion tensor:

@Qu
u(x; 0)

div(D r u); (1.27)
f(X): (1.28)

In [427] it is shown that a ne Gaussian scale-space has beeriamatically derived
by lijima in 1962 [193, 194]. He named(x;t) the generalized gureoff , and (1.27)
the basic equation of gure[196]. In 1971 this concept was realized in hardware in
the optical character reader ASPET/71 [199, 200]. The scalpace part has been
regarded as the reason for its reliability and robustness.

In 1992 Nitzberg and Shiota [310] proposed to adapt the Gauas kernel shape
to the structure of the original image. By chosind in (1.26) as a function of the
structure tensor (cf. Section 2.2) of , they combined nonlinear shape adaptation
with linear smoothing. Later on similar ideas have been deleped in [259, 443].

It should be noted that shape-adapted Gaussian smoothing twia spatially
varying D is no longer equivalent to a di usion process of type (1.27)n practice
this can be experienced by the fact that shape-adaptation @aussian smoothing
does not preserve the average grey level, while the divergerformulation ensures
that this is still possible for nonuniform di usion lterin g; see Section 1.1. Also in
this case the di usion equation seems to be more general. Ifi®wants to relate

%1sotropic Gaussian scale-space can be recovered using thaiumatrix for D.
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shape-adapted Gaussian smoothing to a PDE, one has to carmytsophisticated
scaling limits [310].

Noniterative shape-adapted Gaussian smoothing di ers fro nonlinear aniso-
tropic di usion ltering by the fact that the latter one intr oduces a feedback into
the process: it adapts the di usion tensor in (1.27) to the derential structure of
the ltered image instead of the original image. Such concéepwill be investigated
in Section 1.3.3 and in the remaining chapters of this book.

Directed di usion

Another method for incorporating a-priori knowledge into dinear di usion process
is suggested by lliner and Neunzert [202]. Provided we arevgih some background
information in form of a smooth imageb, they show that under some technical
requirements and suitable boundary conditions the classicsolution u of

@Qu
u(x; 0)

b u u b; (1.29)
f (x) (1.30)

converges tdbalong a path where the relative entropy with respect tbincreases in
a monotone way. Numerical experiments have been carried dut Giuliani [159],
and an analysis in terms of nonsmootl and weak solutions is due to lliner and
Tie [203].

Such adirected di usion processrequires to specify an entire image as back-
ground information in advance; in many applications it woul be desirable to
include a priori knowledge in a less speci c way, e.g. by p@#ing that features
within a certain contrast and scale range are considered tesemantically impor-
tant and processed di erently. Such demands can be satis day nonlinear di usion
lters.

1.3 Nonlinear di usion lItering

Adaptive smoothing methods are based on the idea of applyirprocess which
itself depends on local properties of the image. Although i concept is well-

known in the image processing community (see [349] and thdeneences therein

for an overview), a corresponding PDE formulation was rst iyen by Perona and

Malik [326] in 1987. We shall discuss this model in detail, gscially its ill-posedness
aspects. This gives rise to study regularizations. Thesectemiques can be extended
to anisotropic processes which make use of an adapted di asitensor instead of
a scalar di usivity.
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1.3.1 The Perona{Malik model
Basic idea

Perona and Malik propose a nonlinear di usion method for avding the blurring

and localization problems of linear di usion ltering [326 328]. They apply an
inhomogeneous process that reduces the di usivity at thodecations which have
a larger likelihood to be edges. This likelihood is measuréy jr uj?. The Perona{
Malik Iter is based on the equation

@u = div(g(r ujd) r u): (1.31)

and it uses di usivities such as

1

iz (> O (1.32)

g(s’) =
Although Perona and Malik name their Iter anisotropic, it should be noted that
{ in our terminology { it would be regarded as an isotropic mod|, since it utilizes
a scalar-valued di usivity and not a di usion tensor.

Interestingly, there exists a relation between (1.31) anche neural dynamics of
brightness perception: In 1984 Cohen and Grossberg [94] posed a model of the
primary visual cortex with similar inhibition e ects as in t he Perona{Malik model.

The experiments of Perona and Malik were visually very impssive: edges
remained stable over a very long time. It was demonstrated 28] that edge de-
tection based on this process clearly outperforms the line€anny edge detector,
even without applying non-maxima suppression and hystelisshresholding. This
is due to the fact that di usion and edge detection interact m one single process
instead of being treated as two independent processes whiate to be applied
subsequently. Moreover, there is another reason for the imgssive behaviour at
edges, which we shall discuss next.

Edge enhancement

To study the behaviour of the Perona{Malik Iter at edges, l¢ us for a moment
restrict ourselves to the one-dimensional case. This simpk the notation and
illustrates the main behaviour since near a straight edge avb-dimensional image
approximates a function of one variable.
For the di usivity (1.32) it follows that the ux function ( s) := sg(s?) satis es
Ys) O forjsj ,and qs) < 0 forjsj> , see Figure 1.1. Since (1.31) can
be rewritten as

@u= Yuy)ux; (1.33)

we observe that { in spite of its nonnegative di usivity { the Perona{Malik model
is of forward parabolic typefor juyj , and of backward parabolic typdor juyj>
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1 0.6
diffusivity —— flux function ——

0 0
0 lambda 0 lambda

Figure 1.1: (a)Left: Diusivity g(s?)= ——=—: (b) Right: Flux function

1+s2= 2
(S)= 5o=2-

Hence, plays the role of acontrast parameterseparating forward (low contrast)
from backward (high contrast) di usion areas.

It is not hard to verify that the Perona{Malik Iter increase s the slope at
in ection points of edges within a backward area: If there dsts a su ciently
smooth solutionu it satis es

@U2) = 2u,@(u) = 2 Qu)uct?, +2 YUy) Uy Uy : (1.34)

A location xo whereu? is maximal at some timet is characterized by uy Uy, =0
and uyU.y O: Therefore,

(@Ud) (xo;t) 0 for jux(xe;t)j > (1.35)

with strict inequality for UyUuxy < O:
In the two-dimensional case, (1.33) is replaced by [12]

@ = qruu +g(r u?u (1.36)

where thegauge coordinates and denote the directions perpendicular and paral-
lel to r u, respectively. Hence, we have forward di usion alongophotes(i.e. lines
of constant grey value) combined with forward{backward diusion along owlines
(lines of maximal grey value variation).

We observe that the forward{backward di usion behaviour isnot only restricted
to the special di usivity (1.32), it appears for all di usiv ities g(s?) whose rapid
decay causes non-monotone ux functions §) = sg(s?). Overviews of several
common di usivities for the Perona{Malik model can be foundin [43, 343], and
a family of di usivities with di erent decay rates is investigated in [36]. Rapidly
decreasing di usivities are explicitly intended in the Peona{Malik method as they
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give the desirable result of blurring small uctuations andsharpening edges. There-
fore, they are the main reason for the visually impressive selts of this restoration
technique.

Itis evident that the \optimal" value for the contrast param eter has to depend
on the problem. Several proposals have been made to factitasuch a choice in
practice, for instance adapting it to a speci ed quantile inthe cumulative gradient
histogramme [328], using statistical properties of a traing set of regions which
are considered as at [444], or estimating it by means of the@tal image geometry
[270].

lll-posedness

Unfortunately, forward{backward equations of Perona{Malk type cause some the-
oretical problems. Although there is no general theory for anlinear parabolic
processes, there exist certain frameworks which allow totaslish well-posedness
results for a large class of equations. Let us recall threeagmples:

Let S(N) denote the set of symmetricN N matrices and Hessf) the
Hessian ofu. Classical di erential inequality techniques [411] basedn the
Nagumo{Westphal lemma require that the underlying nonlinar evolution
equation

@u = F(t;x;u;r u;Hess()) (2.37)

satis es the monotony property
FExnpY)  FExnp X) (1.38)
forall X;Y 2S(2) where Y X is positive semide nite.

The same requirement is needed for applying the theory of gissity solutions.
A detailed introduction into this framework can be found in apaper by
Crandall, Ishii and Lions [103].

Let H be a Hilbert space with scalar product:(:)and A:H ! H .In order
to apply the concept of maximal monotone operators [57] to éhproblem

du
— + Au

dt
u(0)

0; (1.39)
f (1.40)

one has to ensure thaf\ is monotone i.e.

(Au Av;u v) O 8u;v2H: (1.41)
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We observe that the nonmonotone ux function of the Perona{Mlik process im-
plies that neither (1.38) is satis ed norA de ned by Au := div(g(jr uj?>)r u)
is monotone. Therefore, none of these frameworks is appbta to ensure well-
posedness results.

One reason why people became pessimistic about the well-garsess of the
Perona{Malik equation was a result by Hellig [187]. He conructed a forward{
backward di usion process which can have in nitely many saltions. Although this
process was di erent from the Perona{Malik process, one wagarned what can
happen. In 1994 the general conjecture was that the Peronagik Iter might have
weak solutions, but one should neither expect uniquenessrstability [329]. In the
meantime several theoretical results are available whiclrqvide some insights into
the actual degree of ill-posedness of the Perona{Malik Ite

Kawohl and Kutev [222] proved that the Perona{Malik processloes not have
global (weak)C? solutions for intial data that involve backward di usion. T he exis-
tence of localC?! solutions remained unproven. If they exist, however, Kawdland
Kutev showed that these solutions are unique and satisfy a maum-minimum
principle. Moreover, under special assumptions on the i data, it was possible
to establish a comparison principle.

Kichenassamy [224, 225] proposed a notion of generalizetisons, which are
piecewise linear and contain jumps, and he showed that an dysis of their moving
and merging gives similar e ects to those one can observe inagtice.

Results of You et al. [446] give evidence that the Perona{Ma&l process is
unstable with respect to perturbations of the initial image They showed that the
energy functional leading to the Perona{Malik process asestpest descent method
has an in nite number of global minima which are dense in themage space. Each
of these minima corresponds to a piecewise constant imagadalightly di erent
initial images may end up in di erent minima fort ! 1

Interestingly, forward{backward di usion equations of Peona{Malik type are
not as unnatural as they look at rst glance: besides their iportance in computer
vision they have been proposed as a mathematical model fohand mass transfer
in a stably strati ed turbulent shear ow. Such a model is usé to explain the
evolution of stepwise constant temperature or salinity prées in the ocean. Related
equations also play a role in population dynamics and visdasiticity, see [35] and
the references therein.

Numerically, the mainly observable instability is the so-alled staircasing e ect,
where a sigmoid edge evolves into piecewise linear segmevitsch are separated
by jumps. It has already been observed by Posmentier in 19733B]. He used an
equation of Perona{Malik type for numerical simulations ofthe salinity pro les
in oceans. Starting from a smoothly increasing initial distbution he reported the
creation of perturbations which led to a stepwise constantrp le after some time.
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In image processing, numerical studies of the staircasinget have been carried
out by Nitzberg and Shiota [310], Fehlich and Weickert [18], and Benhamouda
[36]. All results point in the same direction: the number of reated plateaus de-
pends strongly on the regularizing e ect of the discretizabn. Finer discretizations
are less regularizing and lead to more \stairs". Weickert ah Benhamouda [425]
showed that the regularizing e ect of a standard nite di erence discretization is
su cient to turn the Perona{Malik Iter into a well-posed in itial value problem
for a nonlinear system of ordinary di erential equations. s global solution satis-
es a maximum{minimum principle and converges to a constansteady-state. The
theoretical framework for this analysis will be presentechiChapter 3.

There exists also a discrete explanation why staircasing éssentially the only
observable instability: In 1-D, standard FD discretizatims are monotonicity pre-
serving, which guarantees that no additional oscillationsccur during the evolu-
tion. This has been shown by Dzu Magaziewa [123] in the sensidiete case and
by Benhamouda [36, 425] in the fully discrete case with an digt time discretiza-
tion. Further contributions to the explanation and avoidarce of staircasing can be
found in [4, 36, 98, 225, 438].

Scale-space interpretation

Perona and Malik renounced the assumption of Koenderink'snear scale-space
axiomatic [240] that the smoothing should treat all spatiapoints and scale levels
equally. Instead of this, they required that region boundaes should be sharp and
should coincide with the semantically meaningful boundags at each resolution
level (immediate localization), and that intra-region smoothing should be preferred
to inter-region smoothing(piecewise smoothing)These properties are of signi cant
practical interest, as they guarantee that structures can & detected easily and
correspondence problems can be neglected. Experiments desirated that the
Perona{Malik lIter satis es these requirements fairly wel [328].

In order to establish a smoothing scale-space property fonis nonlinear dif-
fusion process, a natural way would be to prove a maximum{mimum principle,
provided one knows that there exists a su ciently smooth saltion. Since the ex-
istence question used to be the bottleneck in the past, the st proof is due to
Kawohl and Kutev who established an extremum principle forheir local weakC?
solution to the Perona{Malik Iter [222]. Of course, this isonly partly satisfying,
since in scale-space theory one is interested in having artrerkium principle for
the entire time interval [O; 1 ).

Nevertheless, also other attempts to apply scale-spacerfraworks to the Perona{
Malik process have not been more successful yet:

Salden [350], Florack [143] and Eberly [124] proposed to gaover the linear
scale-space theory to the nonlinear case by considering hoear di usion
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processes which result from special rescalings of the lineae. Unfortunately,
the Perona{Malik lIter turned out not to belong to this class [143].

Alvarez, Guichard, Lions and Morel [12] have developed a narear scale-
space axiomatic which comprises the linear scale-space dheas well as
nonlinear morphological processes (which we will discuss 1.5 and 1.6).
Their smoothing axiom is a monotony assumptior{comparison principle)
requiring that the scale-space is order-preserving:

f g =) T,f Tig 8t O (1.42)

This property is closely related to a maximum{minimum pringple and to
L1 -stability of the solution [12, 261]. However, the Perona{Mlik model
does not t into this framework, because its local weak soludn satis es a
comparison principle only for some nite time, but not for al t > 0; see [222].

1.3.2 Regularized nonlinear models

It has already been mentioned that numerical schemes may pide implicit reg-
ularizations which stabilize the Perona{Malik process [4}. Hence, it has been
suggested to introduce the regularization directly into tk continuous equation in
order to become more independent of the numerical implemeation [81, 310].

Since the dynamics of the solution may critically depend orhe sort of regu-
larization, one should adjust the regularization to the desed goal of the forward{
backward heat equation [35]. One can apply spatial or tempalr regularization
(and of course, a combination of both). Below we shall discughree examples
which illustrate the variety of possibilities and their taioring towards a specic
task.

(a) The rst spatial regularization attempt is probably due to Posmentier who
observed numerically the stabilizing e ect of averaging ta gradient within
the di usivity [333].

A mathematically sound formulation of this idea is given by @te, Lions,
Morel and Coll [81]. By replacing the di usivity g(jr uj?) of the Perona{
Malik model by a Gaussian-smoothed versiog(jr u j?) with u = K u
they end up with

@u =div(g(r uj?r u): (1.43)

In [81] existence, uniqueness and regularity of a solutioarf > 0Ohave been
established.

This process has been analysed and modi ed in many ways: Wéiler and
Pizer [438] have suggested that the regularization paranegt should be
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(b)

(©)

a decreasing function int, and Li and Chen [252] have proposed to subse-
quently decrease the contrast parameter. A detailed study of the in uence
of the parameters in a regularized Perona{Malik model has be carried out
by Benhamouda [36]. Kacur and Mikula [217] have investigatd a modi ca-
tion which allows to di use di erently in di erent grey valu e ranges. Spatial
regularizations of the Perona{Malik process leading to asotropic di usion
equations have been proposed by Weickert [413, 415] and vié described
in 1.3.3. Torkamani{Azar and Tait [403] suggest to replacehie Gaussian
convolution by the exponential Iter of Shen and Castatf [381].

In Chapter 2 we shall see that spatial regularizations leadtwell-posed scale-
spaces with a large class of Lyapunov functionals which gaatee that the
solution converges to a constant steady-state.

From a practical point of view, spatial regularizations o & the advantage
that they make the lter insensitive to noise at scales smadr than . There-
fore, when regarding (1.43) as an image restoration equatioit exhibits
besides the contrast parameter an additional noise scale . This avoids a
shortcoming of the genuine Perona{Malik process which mmgerprets strong
oscillations due to noise as edges which should be presereedven enhanced.
Examples for spatially regularized nonlinear di usion Itering can be found
in Figure 5.2 (c) and 5.4 (a),(b).

P.-L. Lions proved in a private communication to Mumford that the one-
dimensional process

@u
@

@(9(v) @u); (1.44)
Lj@u? v) (1.45)

leads to a well-posed lIter (cf. [329]). We observe thav is intended as a
time-delay regularization ofj@uj? where the parameter > 0 determines
the delay. These equations arise as a special case of the spsmporal

regularizations of Nitzberg and Shiota [310] when neglestj any spatial reg-
ularization. Mumford conjectures that this model gives pieewise constant
steady-states. In this case, the steady-state solution wiousolve a segmen-
tation problem.

In the context of shear ows, Barenblatt et al. [35] regukrized the one-
dimensional forward{backward heat equation by considergthe third-order
equation

@u=@((u))+ @:(( uy)) (1.46)

10This renounces invariance under rotation.
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where is strictly increasing and uniformly bounded in R, and j {s)j =
O( Ys)) ass! 1 . This regularization was physically motivated by in-
troducing a relaxation time into the di usivity.

For the corresponding initial boundary value problem with lmmogeneous
Neumann boundary conditions they proved the existence of anigue gen-
eralized solution. They also showed that smooth solutionsay become dis-
continuous within nite time, before they nally converge to a piecewise
constant steady-state.

These examples demonstrate that regularization is much nethan stabilizing
an ill-posed processRegularization is modeling. Appropriately chosen regulaa-
tions create the desired Iter featuresWe observe that spatial regularizations are
closer to scale-space ideas while temporal regularizatiare more related to image
restoration and segmentation, since they may lead to nontrial steady-states.

1.3.3 Anisotropic nonlinear models

All nonlinear di usion lters that we have investigated so far utilize a scalar-valued
di usivity g which is adapted to the underlying image structure. Therefe, they
are isotropic and the uxj = gr u is always parallel tor u. Nevertheless, in
certain applications it would be desirable to bias the ux tevards the orientation
of interesting features. These requirements cannot be sa#@d by a scalar di u-
sivity anymore, a di usion tensor leading to anisotropic dusion lters has to be
introduced.

First anisotropic ideas in image processing date back to Gram [167] in 1962,
followed by Newman and Dirilten [300], Lev, Zucker and Roseid [250], and
Nagao and Matsuyama [297]. They used convolution masks thdepended on
the underlying image structure. Related statistical appraches were proposed by
Knutsson, Wilson and Granlund [237]. These ideas have beamther developed
by Nitzberg and Shiota [310], Lindeberg and Grding [259]and Yang et al. [443].
Their suggestion to use shape-adapted Gaussian masks hasrbdiscussed in Sec-
tion 1.2.6.

Anisotropic di usion Iters usually apply spatial regularization strategies!. A
general theoretical framework for spatially regularizedrasotropic di usion lters
will be presented in the remaining chapters of this book.

Below we study two representatives of anisotropic di usiomprocesses. The rst
one o ers advantages at noisy edges, whereas the second snedll-adapted to the
processing of one-dimensional features. They are calledjegenhancing anisotropic
di usion and coherence-enhancing anisotropic di usion,aspectively.

1 An exception is the time-delay regularization of Cottet and El-Ayyadi [100, 101].
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(a) Anisotropic regularization of the Perona{Malik process
In the interior of a segment the nonlinear isotropic di usim equation (1.43)
behaves almost like the linear di usion Iter (1.9), but at edges diusion
is inhibited. Therefore, noise at edges cannot be eliminatesuccessfully by
this process. To overcome this problem, a desirable methoHosild prefer
di usion along edges to di usion perpendicular to them.

Anisotropic models do not only take into account the modulusf the edge
detectorr u , but also its direction. To this end, we construct the orthoor-
mal system of eigenvectors;, v, of the diusion tensor D such that they
re ect the estimated edge structure:

vikru; Vo ?r U (1.47)

In order to prefer smoothing along the edge to smoothing a@®it, Weickert
[415] proposed to choose the corresponding eigenvalugsand , as

g(ir u j?); (1.48)
1: (1.49)

i(ru)
o(r u )

Section 5.1 presents several examples where this procesapglied to test
images.

In general,r u does not coincide with one of the eigenvectors bf as long
as > 0: Hence, this model behaves really anisotropic. If we let thegular-
ization parameter tend to O, we end up with the isotropic Perona{Malik
process.

Another anisotropic model which can be regarded as a reguleation of an
isotropic nonlinear di usion Iter has been described in [43].

(b) Anisotropic models for smoothing one-dimensional objects
A second motivation for introducing anisotropy into di usion processes arises
from the wish to process one-dimensional features such aHike structures.
To this end, Cottet and Germain [102] constructed a di usiontensor with
eigenvectors as in (1.47) and corresponding eigenvalues

i(ru) = 0; (1.50)
- jr uj? :
o0lru) = T+ (r U= )2 (> 0): (1.51)
This is a process diusing solely perpendicular to u . For ! 0, we

observe thatr u becomes an eigenvector @ with corresponding eigenvalue
0. Therefore, the process stops completely. In this sendgsinot intended as
an anisotropic regularization of the Perona{Malik equatia. Well-posedness
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results for the Cottet{Germain Iter comprise an existenceproof for weak
solutions.

Since the Cottet{Germain model di uses only in one directiq, it is clear
that its result depends very much on the smoothing directiarFor enhancing
parallel line-like structures, one can improve this model en replacingr u’

by a more robust descriptor of local orientation, the struaire tensor (cf.
Section 2.2). This leads tocoherence-enhancing anisotropic di usior{418],
which shall be discussed in Section 5.2, where also many epéas can be
found.

1.3.4 Generalizations

Higher dimensions. It is easily seen that many of the previous results can
be generalized to higher dimensions. This may be useful wheansidering e.g.
medical image sequences from computerized tomography (Cadi) magnetic reso-
nance imaging (MRI), or when applying di usion Iters to the postprocessing of
uctuating higher-dimensional numerical data. The rst three-dimensional non-
linear di usion lters have been investigated by Gerig et al [155] in the isotropic
case and by Rambaux and Gaicon [339] in the anisotropic cask generalization
of coherence-enhancing anisotropic di usion to higher diemsions is proposed in
[428], and Sanchez{Ortiz et al. [355] describe nonlineari dsion Itering of 3-D
image sequences by treating them as 4-D data sets.

More sophisticated structure descriptors. The edge detectorr u en-
ables us to adapt the di usion to magnitude and direction of dges, but it can
neither distinguish between edges and corners nor does ivajia reliable measure
of local orientation. As a remedy, one can steer the smootlgrprocess by more
advanced structure descriptors such as higher-order deatives [127] or tensor-
valued expressions of rst-order derivatives [414, 418].hE theoretical analysis in
the present work shall comprise the second possibility. Itas also been proposed
to replacer u by a Bayesian classi cation result in feature space [26].

Vector-valued models. Vector-valued images can arise either from devices
measuring multiple physical properties or from a feature atysis of one single
image. Examples for the rst category are colour images, ntisspectral Landsat
exposures and multi-spin echo MR images, whereas represgines of the second
class are given by statistical moments or thgt spaceinduced by the image itself
and its partial derivatives up to a given order. Feature vedrs play an important
role for tasks like texture segmentation.
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The simplest idea how to apply di usion Itering to multicha nnel images would
be to di use all channels separately and independently fromach other. This leads
to the undesirable e ect that edges may be formed at di erentocations for each
channel. In order to avoid this, one should use a common di usty which combines
information from all channels. Such isotropic vector-vaked di usion models were
studied by Gerig et al. [155, 156] and Whitaker [433, 434] iln¢ context of medical
imagery. Extensions to anisotropic vector-valued modelsitlr a common tensor-
valued structure descriptor for all channels have been instgated by Weickert
[422].

1.3.5 Numerical aspects

For nonlinear di usion Itering numerous numerical methods have been applied:

Finite element techniques are described in [367, 391, 34,6R1Bansch and
Mikula reported a signi cant speed-up by supplementing the with an adaptive
mesh coarsening [34]. Neural network approximations to nlamear di usion lters
are investigated by Cottet [100, 99] and Fischl and Schwart@d37]. Perona and
Malik [327] propose hardware realizations by means of angle VLSI networks
with nonlinear resistors. A very detailed VLSI proposal haveen developed by
Gijbels et al. [158].

In [148] three schemes for a spatially regularized 1-D PewrdiMalik Iter are
compared: a wavelet method of Petrov{Galerkin type, a psewdpectral method
and a nite-di erence scheme. It turned out that all results became fairly similar,
when the regularization parameter was su ciently large. Since the computational
e ort is of a comparable order of magnitude, it seems to be a rttar of taste which
scheme is preferred.

Most implementations of nonlinear di usion lters are basel on nite dier-
ence methods, since they are easy to handle and the pixel sture of digital
images already provides a natural discretization on a xedectangular grid. Ex-
plicit schemes are the most simple to code and, therefore,eth are used almost
exclusively. Due to their local behaviour, they are well-sted for parallel architec-
tures. Nevertheless, they su er from the fact that fairly snall time step sizes are
needed in order to ensure stability. Semi-implicit schemgsvhich approximate the
di usivity or the di usion tensor in an explicit way and the r est implicitly { are
considered in [81]. They possess much better stability pregies. A fast multigrid
technique using a pyramid algorithm for the Perona{Malik lter has been studied
by Acton et al. [5, 4]; see also [349] for related ideas.

While the preceding techniques are focusing aapproximating a continuous
equation, it is often desirable to have a genuinely discretBeory which guarantees
that an algorithm exactlyreveals the same qualitative properties as its continuous
counterpart. Such a framework is presented in [420, 421],thdor the semidiscrete
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Table 1.2: Requirements for continuous, semidiscrete andllf dis-

crete nonlinear di usion scale-space.

requirement | continuous semidiscrete | discrete
u =div(Dru) | ¥ =A(uu |u=
u(t=0)= f u(0) = f uk*tt = Q(u*)uk
Dr u;ni =0
smoothness | D 2 C! A Lipschitz- | Q continuous
continuous
symmetry D symmetric A symmetric | Q symmetric
conservation| div form; column sums| column sums
re ective b.c. are 0 are 1
nonnega- positive nonnegative | nonnegative
tivity semide nite o -diagonals | elements
connectivity | uniformly pos. | irreducible irreducible;
de nite pos. diagonal

and for the fully discrete case. A detailed treatment of thigheory can be found
in Chapter 3 and 4, respectively. Table 1.2 gives an overviesi the requirements
which are needed in order to prove well-posedness, averageygvalue invariance,
causality in terms of an extremum principle and Lyapunov fuationals, and con-
vergence to a constant steady-state [423].

We observe that the requirements belong to ve categoriesm®othness, sym-
metry, conservation, nonnegativity and connectivity requements. These criteria
are easy to check for many discretizations. In particulart turns out that suitable
explicit and semi-implicit nite di erence discretizatio ns of many discussed models
create discrete scale-spaces. The discrete nonlinear sespace concept has also led
to the development of fast novel schemes, which are based onaalditive operator
splitting (AOS) [424, 430]. Under typical accuracy requirements, they arédaut
10 times more e cient than the widely used explicit schemesand a speed-up by
another order of magnitude can be achieved by a parallel inrgshentation [431]. A
general framework for AOS schemes will be presented in Senté.4.2.

1.3.6 Applications

Nonlinear di usion lIters have been applied for postprocesing uctuating data

[269, 415], for visualizing quality-relevant features inanputer aided quality con-
trol [299, 413, 418], and for enhancing textures such as ngeints [418]. They have
proved to be useful for improving subsampling [144] and lirsdetection [156, 418],
for blind image restoration [445], for scale-space basedysentation algorithms
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[307, 308], for segmentation of textures [433, 437] and reiely sensed data [6, 5],
and for target tracking in infrared images [65]. Most appli&tions, however, are
concerned with the Itering of medical images [26, 28, 29, 85244, 248, 264, 270,
308, 321, 355, 386, 393, 431, 434, 437, 444]. Some of thesécappns will be
investigated in more detail in Chapter 5.

Besides such speci ¢ problem solutions, nonlinear di usio Iters can be found
in commercial software packages such as the medical vismation tool Analyze'?

1.4 Methods of di usion{reaction type

This section investigates variational frameworks, in whitdi usion{reaction equa-
tions or coupled systems of them are interpreted as steepesscent minimizers of
suitable energy functionals. This idea connects di usion ethods to edge detection
and segmentation ideas.

Besides the variational interpretation there exist othernteresting theoretical
frameworks for di usion lters such as the Markov random eld and mean eld
annealing context [152, 153, 247, 251, 328, 387], robusttistiics [41], and deter-
ministic interactive particle models [279]. Their discussn, however, would lead us
beyond the scope of this book.

1.4.1 Single di usion{reaction equations

Nordstrem [311] has suggested to obtain a reconstructiom of a degraded image
f by minimizing the energy functional
z
Ef (u;w) := (u )2+ wijr u?+ 2(w Inw) dx: (1.52)

The parameters and are positive weights andv : ! [0; 1] gives a fuzzy edge
representation: in the interior of a regionw approaches 1 while at edgesy is close
to 0 (as we shall see below).

The rst summand of E punishes deviations ot from f (deviation cost), the
second term detects unsmoothness afwithin each region(stabilizing cost) and
the last one measures the extend of edgésige cost) Cost terms of these three
types are typical for variational image restoration methos.

The corresponding Euler equations to this energy functiohare given by

0 (u f) div(wr u); (1.53)
0= 2@ &+ jru? (1.54)

2 Analyzeis a registered trademark of Mayo Medical Ventures, 200 FirsStreet SW, Rochester,
MN 55905, U.S.A.
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equipped with a homogeneous Neumann boundary condition for
Solving (1.54) forw gives
1
We recognize thatw is identical with the Perona{Malik di usivity g(jr uj?) in-
troduced in (1.32). Therefore, (1.53) can be regarded as teeady-state equation
of

@ =div(g@r uHru+ (f u): (1.56)

This equation can also be obtained directly as the descent thed of the functional
z

Fi (U) := (u )2+ 2In 1+1Y gx: (1.57)

The di usion{reaction equation (1.56) consists of the Pema{Malik process
with an additional bias term (f u). One of Nordstrem's motivations for intro-
ducing this term was to free the user from the di culty of spedfying an appropriate
stopping time for the Perona{Malik process.

However, it is evident that the Nordst®m model just shiftsthe problem of
specifying a stopping timeT to the problem of determining . So it seems to
be a matter of taste which formulation is preferred. Peoplenierested in image
restoration usually prefer the reaction term, while for sda-space researchers it is
more natural to have a constant steady-state as the simplegshage representation.

Nordstem's method may su er from the same ill-posednessrpblems as the
underlying Perona{Malik equation, and it is not hard to veriy that the energy
functional (1.57) is nonconvex. Therefore, it can possesamerous local minima,
and the process (1.56) withf as initial condition does not necessarily converge to
a global minimum. Similar di culties may also arise in other di usion{reaction
models, where convergence results have not yet been estigd [152, 186].

A popular possibility to avoid these ill-posedness and coekgence problems is
to renounce edge-enhancing di usivities in order to end up ithh (nonquadratic)
convex functionals [43, 88, 110, 367, 391]. In this case tmameworks of convex
optimization and monotone operators are applicable, ensnog well-posedness and
stability of a standard nite-element approximation [367]

Di usion{reaction approaches have been applied to edge dsition [367, 391],
to the restoration of inverse scattering images [263], to & T [88] and vascular
reconstruction in medical imaging [102, 325], and to opticow [368, 111] and
stereo problems [343]. They can be extended to vector-valuemages [369] and
to corner-preserving smoothing of curves [136, 323]. Di im{reaction methods
with constant di usivities have also been used for local carast normalization in
images [330].
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1.4.2 Coupled systems of di usion{reaction equations

Mumford and Shah [295, 296] have proposed to obtain a segnmeghimageu from

f by minimizing the functiongl .

E¢(u;K) = (u f)%dx + jir uj?dx + jKj (1.58)
nK
with nonnegative parameters and . The discontinuity set K consists of the
edges, and its one-dimensional Hausdor measuji j gives the total edge length.
Like the Nordstrem functional (1.52), this expression cosists of three cost terms:
the rst one is the deviation cost, the second one gives theadtilizing cost, and
the third one represents the edge cost.

The Mumford{Shah functional can be regarded as a continuougrsion of the
Markov random eld method of Geman and Geman [154] and the wkanembrane
model of Blake and Zisserman [42]. Related approaches areocalised to model
materials with two phases and a free interface.

The fact that (1.58) leads to a free discontinuity problem cases many challeng-
ing theoretical questions [249]. The book of Morel and Solim [292] covers a very
detailed analysis of this functional. Although the existeoe of a global minimizer
with a closed edge seK has been established [108, 17], uniqueness is in general
not true [292, pp. 197{198]. Regularity results foK in terms of (at least) C-arcs
have recently been obtained [18, 19, 20, 48, 49, 107].

The concept of energy functionals for segmenting images osethe practical
advantage that it provides a framework for comparing the quday of two seg-
mentations. On the other hand, (1.58) exhibits also some stitcomings, e.g. the
problem that sigmoid-like edges produce multiple segmenian boundaries(over-
segmentation, staircasing e ect)377]. Another drawback results from the fact that
the Mumford{Shah functional allows only singularities whth are typical for mini-
mal surfaces: Corners or T-junctions are not possible andgseents meet at triple
points with 120° angle [296]. In order to avoid such problems, modi cationsf ¢he
Mumford{Shah functional have been proposed by Shah [379]nAa ne invariant
generalization of (1.58) is investigated in [32, 31] and ajid to a ne invariant
texture segmentation [31, 33], and a Mumford{Shah functical for curves can be
found in [323].

Since many algorithms in image processing can be restatedwassions of the
Mumford{Shah functional [292] and since it is a prototype o& free discontinuity
problem it is instructive to study this variational problem in more detail.

Numerical complications arise from the fact that the Mumfod{Shah functional
has numerous local minima. Global minimizers such as the sitated annealing
method used by Geman and Geman [154] are extremely slow. Henane searches
for fast (suboptimal) deterministic strategies, e.g. pyrmidal region-growing algo-
rithms [3, 239].
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Another important class of numerical methods is based on thdea to approx-
imate the discontinuity set K by a smooth functionw, which is close to 0 near
edges ofu and which approximates 1 elsewhere.

We may for instance study the functional

4

Fr (U W) := (u £)2+ wW2jr U2+ gr w2+ %% dx  (1.59)

with a positive parameterc specifying the \edge width". Ambrosio and Tortorelli
proved that this functional converges to the Mumford{Shah udnctional forc! 0
(in the sense of -convergence, see [22] for more details).

Minimizing F; corresponds to the gradient descent equations

@u
@w

div(w?r u) + (f u); (1.60)

cw Yjrupt+ 52 (1.61)

with homogeneous Neumann boundary conditions. Equation$ this type are in-
vestigated by Richardson and Mitter [341]. Since (1.60) rembles the Nordstem
process (1.56), similar problems can arise: The functiongj is not jointly convex
in u and v, so it may have many local minima and a gradient descent algthhm
may get trapped in a poor local minimum. Well-posedness rdtifor this system
have not been obtained up to now, but a maximum{minimum pringple and a local
stability proof have been established.

Another di usion{reaction system is studied by Shah [375, B6]. He replaces
the functional (1.58) by two coupled convex energy functials and applies gradi-
ent descent. This results in nding an equilibrium state betveen two competing
processes. Experiments indicate that it converges to a siabsolution. Proesmans
et al. [337, 336] observed that this solution looks fairly bfred since the equations
contain di usion terms such as u. They obtained pronounced edges by replacing
such a term by its Perona{Malik counterpart div (@(jr uj?)r u). Related equations
are also studied in [398]. Of course, this approach giveseai® the same theoretical
questions as (1.60), (1.61).

The system of Richardson and Mitter is used for edge deteatig341]. Shah in-
vestigates di usion{reaction systems for matching steremmages [378], while Proes-
mans et al. apply coupled di usion-reaction equations to imge sequence analysis,
vector-valued images and stereo vision [336, 338]. Theirita di erence algorithms
run on a parallel transputer network.

It should also be mentioned that there exist reaction{di uson systems which
have been applied to image restoration [334, 335, 382], tes¢ generation [406, 440]
and halftoning [382], and which are not connected to Peronkffalik or Mumford{
Shah ideas. They are based on Turing's pattern formation met[405].
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1.5 Classic morphological processes

Morphology is an approach to image analysis based on shapks.mathematical
formalization goes back to the group around Matheron and Sar; both working
at ENS des Mines de Paris in Fontainebleau. The theory had tdeen developed
for binary images, afterwards it was extended to grey-scaimages by regarding
level sets as shapes. Its applications cover biology, mealidiagnostics, histology,
quality control, radar and remote sensing, science of matal, mineralogy, and
many others.

Morphology is usually described in terms of algebraic setébry, see e.g. [280,
371, 181, 184] for an overview. Nevertheless, PDE formulatis for classic morpho-
logical processes have been discovered recently by Brotketd Maragos [60], van
den Boomgaard [50], Arehart et al. [25] and Alvarez et al. [].2

This section surveys the basic ideas and elementary opemats of binary and
grey-scale morphology, presents its PDE representationsr fimages and curves,
and summarizes the results concerning well-posedness aodle-space properties.
Afterwards numerical aspects of the PDE formulation of thes processes are dis-
cussed, and generalizations are sketched which comprise thorphological equiv-
alent of Gaussian scale-space.

1.5.1 Binary and grey-scale morphology

Binary morphology considersshapes (silhouettes)i.e. closed setsX R? whose
boundaries are Jordan curves [16]. Henceforth, we identify shapeX with its

characteristic function (
1 if x2X,

0 else. (1.62)

(x) :=
Binary morphological operations a ect only the boundary cwe of the shape and,
therefore, they can be viewed as curve or shape deformations
Grey-scale morphology generalizes these ideas [274] byod@gosing an image
f into its level sets f X f; a 2 Rg; where

X.f = fx2 R? f(x) ag: (1.63)

A binary morphological operationA can be extended to some grey-scale imafje
by de ning
Xa(Af):= A(X,f) 8a2 R: (1.64)

We observe that for this type of morphological operations dy grey-level sets
matter. As a consequence, they are invariant under monotoigeey-level rescalings.
This morphological invariance (grey-scale invariancay characteristic for all meth-
ods we shall study in Section 1.5 and 1.6, except for 1.5.6 asoime modi cations



32 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

in 1.6.5. It is a very desirable property in all cases whereightness changes of the
illumination occur or where one wants to be independent of éhspeci ¢ contrast

range of the camera. On the other hand, for applications likedge detection or
image restoration, contrast provides important informaton which should be taken
into account. Moreover, in some cases isolines may give iegdate information

about the depicted physical object boundaries.

1.5.2 Basic operations

Classic morphology analyses a shape by matching it with a salled structuring
element a bounded setB  R?. Typical shapes foB are discs, squares, or ellipses.
The two basic morphological operationgjilation and erosionwith a structuring

elementB, are de ned for a grey-scale imagé2L* (R?) by [60]

dilation: (f B)(x) :
erosion: ¢ B)(x :

sup ff(x vy); y2Bg; (1.65)
inf ff(x+y); y2Bg: (1.66)

These names can be easily motivated when considering a shapa binary image
and a disc-shaped structuring element. In this case dilatidolows up its boundaries,
while erosion shrinks them.

Dilation and erosion form the basis for constructing other wrphological pro-
cesses, for instancepeningand closing:

opening: ¢ B)(x) :
closing: ¢ B)(x) :

(f B) B)(X); (1.67)
(f B) B)(X): (1.68)

In the preceding shape interpretation opening smoothes tishape by breaking nar-
row isthmuses and eliminating small islands, while closirggnoothes by eliminating
small holes, fusing narrow breaks and lling gaps at the coaurs [181].

1.5.3 Continuous-scale morphology

Let us consider a convex structuring elementB with a scaling parametert > 0.
Then, calculating u(t)= f tB and u(t)=f tB; respectively3, can be shown
to be equivalent to solving

@u(x;t) = sup hy;r u(x;t)i; (1.69)
y2B
@u(x;t) = iyr;fB hy;r u(x;t)i: (12.70)

with f as initial condition [12, 360].

BHenceforth, we frequently use the simpli ed notation u(t) instead of u(:; t)
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By choosing e.gB := fy 2 R?; jyj 1g one obtains
@Qu jruj; (1.71)
@ = jr u (1.72)
The solution u(t) is the dilation (resp. erosion) off with a disc of radiust and

centre 0 as structuring element. Figure 5.5 (a) presents titemporal evolution of
a test image under such a continuous-scale dilation.

Connection to curve evolution

Morphological PDEs such as (1.71) or (1.72) are closely redd to shape and
curve evolutions. This can be illustrated by considering ansooth Jordan curve
cC:[0c2] [01)! R?

!
: x1(p; 1)
C(p;t) = 1.73
(P9 X2(p;t) ( )
wherep is the parametrization andt is the evolution parameter. We assume that
C evolves in outer normal directionn with speed , which may be a function of
its curvature = %(EeiCm)
1Cp)
@ = () m (1.74)
C(p:0) = Co(p): (1.75)

One can embed the curv&€(p;t) in an imageu(x;t) in such a way that C is just
a level curve ofu. The corresponding evolution fow is given by [319, 362, 16]

@u = (curv(u)) jr uj: (1.76)

where the curvature ofu is
!

. ru
curv(u) :==div. —— : 1.77
(1) U (1.77)
Sometimes the image evolution (1.76) is called thBulerian formulation of the
curve evolution (1.74), because it is written in terms of a ®d coordinate system.

We observe that (1.71) and (1.72) correspond to the simplesss = 1.
Hence, they describe the curve evolutions
@ = n (1.78)

This equation moves level sets in normal direction with cotent speed. Such a
process is also namedrassre ow or prairie ow . It is closely related to the
Huygens principle for wave propagation [25]. Its importare for shape analysis
in biological vision has already been pointed out in the siis by Blum [47]. He
simulated grass re ow by a self-constructed opticomechaoal device.
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1.5.4 Theoretical results

Equations such as (1.78) may develop singularities and imgections even for
smooth initial data. Hence, concepts of jump conditions, &opy solutions, and
shocks have to be applied to this shape evolution [228].

A suitable framework for the image evolution equation (1.76is provided by
the theory of viscosity solutions [103]. The advantage of it analysis is that it
allows us to treat shapes with singularities such as cornenrshere the classical
solution concept does not apply, but a unique weak solutiom ithe viscosity sense
still exists.

It can be shown [90, 129, 103], that for an initial value

f 2 BUC(R?) := f' 2L (R? "' is uniformly continuous on RRg  (1.79)

the equations (1.69),(1.70) possess a unique global visgosolution u(x;t) which
ful Is the maximum{minimum principle

inf f u(x;t) supf on R? [0:1): (1.80)
R? R?

Moreover, it is L! -stable: for two di erent initial images f, g the corresponding
solutions u(t), v(t) satisfy

ku(t) v(ko: gz kT gk r: (1.81)

1.5.5 Scale-space properties

Brockett and Maragos [60] pointed out that the convexity ofB is su cient to
ensure the semigroup property of the corresponding dilatis and erosions. This
establishes an important architectural scale-space profe

Similar results have been found by van den Boomgaard and Sniars [53].
Moreover, they conjecture a causality property where singarities play a role sim-
ilar to zero-crossings in Gaussian scale-space.

Jackway and Deriche [206, 207] prove a causality theorem ftire dilation{
erosion scale-space, which is also based on local extrenstagad of zero-crossings.
They establish that under erosion the number of local minime decreasing, while
dilation reduces the number of local maxima. The location afhese extrema is
preserved during their whole lifetime.

A complete scale-space interpretation is due to Alvarez, @Gihard, Lions and
Morel [12]: They prove that under three architectural assuptions (semigroup
property, locality and regularity), one smoothing axiom (omparison principle) and
additional invariance requirements (grey-level shift inariance, invariance under ro-
tations and translations, morphological invariance), a tw-dimensional scale-space
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equation has the following form:
@u = jr uj F(t; curv(u)) (1.82)

Clearly, dilation and erosion belong to the class (1.82), tts being good candi-
dates for morphological scale-spaces. Indeed, in [12] itsisown that the converse
is true as well: all axioms that lead to (1.82) are ful lled**

1.5.6 Generalizations

It is possible to extend morphology with a structuring elem@ to morphology with
non at structuring functions. In this case we have to renoune invariance under
monotone grey level transformations, but we gain an intergsg insight into a
process which has very much in common with Gaussian scale&sg.

A dilation of an imagef with a structuring function b: R?! R is de ned as

(f b(x) = szup ff(x y)+ by)g: (1.83)
y2R?
This is a generalization of de nition (1.65), since one carecover dilation with a
structuring element B by considering the at structuring function

(

o =, 0 %2B)

(x6B). (1.84)

Van den Boomgaard [50, 51] and Jackway [206] proposed to tBlan imagef (x)
with quadratic structuring functions of type

b(x;t) = J>:1_Jtz (t> 0): (1.85)

It can be shown [50, 53] that the resulu(x;t) is a weak solution of

@u
u(x; 0)

ir uj?; (1.86)
f(x): (1.87)

The temporal evolution of a test image under this process iBustrated in Figure
5.5 (b).

In analogy to the fact that Gaussian-type functionk(x;t) = aexp(jfl—jtz) are the
only rotationally symmetric kernels which are separable Wi respect to convolu-
tion, van den Boomgaard proves that the quadratic structung functions b(x; t)
are the only rotationally invariant structuring functions which are separable with
respect to dilation [50, 51].

Mnvariance under rotations is only satis ed for a disc centeed in 0 as structuring element.
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A useful tool for understanding this similarity and many otlrer analogies be-
tween morphology and linear systems theory is th&lope transform This general-
ization of the Legendre transform is the morphological equalent of the Fourier
transform. It has been discovered simultaneously by Dorshd van den Boomgaard
[119] and by Maragos [275] in slightly di ering formulatiors.

The close relation between (1.86) and Gaussian scale-spaes also triggered
Florack and Maas [142] to study a one-parameter family of ismrphisms of linear
di usion which reveals (1.86) as limiting case.

1.5.7 Numerical aspects

Dilations or erosions with quadratic structuring functiors are separable and, thus,
they can be implemented very e ciently by applying one-dimasional operations.
A fast algorithm is described by van den Boomgaard [51].

For morphological operations with at structuring elemens, the situation is
more complicated. Schemes for dilation or erosion which abased oncurve evo-
lution turn out be be di cult to handle: they require prohibi tive small time steps,
and su er from the problem of coping with singularities and opological changes
[319, 25, 360].

For this reason it is useful to discretize the correspondinghageevolution equa-
tions. The widely-usedOsher{Sethian scheme819] are based on the idea to derive
numerical methods for such equations from techniques for fgrbolic conservation
laws. Overviews of these level set approaches and their vars applications can be
found in [372, 374].

To illustrate the basic idea with a simple example, let us réisct ourselves to the
one-dimensional dilation equation@u=j@uj: A rst-order upwind Osher{Sethian
scheme for this process is given by

S

urtou = min M;O 2+ max M;O 2; (1.88)
h h
where h is the pixel size, is the time step size, andu denotes a discrete
approximation of u(ih;n ):
Level set methods possess two advantages over classicattlsedretic schemes
for dilation/erosion [25, 360, 218, 66]:

(a) They give excellent results for non-digitally scalablestructuring elements
whose shapes cannot be represented correctly on a discreid,dor instance
discs or ellipses.

(b) The time t plays the role of a continuous scale parameter. Therefordjet
size of a structuring element need not be multiples of the X size, and it
is possible to get results with sub-pixel accuracy.
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However, they reveal also two disadvantages:
(a) They are slower than set-theoretic morphological sches.
(b) Dissipative e ects such as blurring of discontinuitiesoccur.

To address the rst problem, speed-up techniques for shap&adution have been
proposed which use only points close to the curve at every tamstep [8, 435,
373]. Blurring of discontinuities can be minimized by apping shock-capturing
techniques such as high-order EN® schemes [395, 385].

1.5.8 Applications

Continuous-scale morphology has been applied to shaperrshading problems,
gridless image halftoning, distance transformations, angkeletonization. Applica-
tions outside the eld of image processing and computer vai include for instance
shape o sets in CAD and path planning in robotics. Overviewsand suitable ref-
erences can be found in [233, 276].

1.6 Curvature-based morphological processes

Besides providing a useful reinterpretation of classic cmuous-scale morphology,
the PDE approach has led to the discovery of new morphologlagperators. These
processes are curvature-based, and { although they cannat lvritten in conserva-
tion form { they reveal interesting relations to di usion processes. Two important
representatives of this class are mean curvature motion ants a ne invariant
counterpart. In this subsection we shall discuss these PDEsossible generaliza-
tions, numerical aspects, and applications.

1.6.1 Mean-curvature Itering

In order to motivate our rst curvature-based morphologica PDE, let us recall
that the linear di usion equation (1.9) can be rewritten as

@Qu=@u+ @ u; (1.89)

where the unit vectors and are parallel and perpendicular ta u, respectively.
The rst term on the right-hand side of (1.89) describes smdhing along the
owlines, while the second one smoothes along isophotes. #hwe want to smooth

SENO meansessentially non-oscillatory. By adapting the stencil for derivative approximations
to the local smoothness of the solution, ENO schemes obtaindth high-order accuracy in smooth
regions and sharp shock transitions [183].
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the image anisotropically along its isophotes, we can negl¢he rst term and end
up with the problem

@ = Q@u; (1.90)
u(x; 0) f(x): (2.91)

By straightforward calculations one veri es that (1.90) ca also be written as

2 2
Ui, Uxaxa  2U U Ux, + U Uxox,

@Qu 2+ @2, (1.92)
1 .

= u v uj2hr u; Hess(Q)r ui (1.93)

= jr ujcurv(u): (1.94)

Since curvi)=div Jrr—uuj is the curvature ofu (mean curvature for dimensions
3), equation (1.94) is namedmean) curvature motion (MCM). The corresponding
curve evolution

@C(p;t) = (p;t) n(p;t) (1.95)

shows that (1.90) propagates isophotes in inner normal doton with a velocity
that is given by their curvature = %

Processes of this type have rst been studied by Brakke in 19754]. They
arise in ame propagation, crystal growth, the derivation & minimal surfaces, grid
generation, and many other applications; see [372, 374] atie references therein
for an overview. The importance of MCM in image processing b&me only recently
clear: As nicely explained in a paper by Guichard and Morel TB], mean curvature
motion can be regarded as the limit process when classic motogical operators
such as median Itering are iteratively applied.

Figure 5.5 (c) and 5.11 (a) present examples for mean curvatu ltering. Equa-
tion (1.95) is also calledyeometric heat equatiomr Euclidean shortening ow The
subsequent discussions shall clarify these names.

Intrinsic heat ow

Interestingly, there exists a further connection betweenriear di usion and motion
by curvature. Let v(p;t) denote the Euclidean arc-lengthof C(p;t); i.e.

P
v(p;t) == JC (;t)jd; (1.96)
0

where C = @C: The Euclidean arc-length is characterized byC,j = 1. It is
invariant under Euclidean transformations i.e. mappings

x! Rx+b (2.97)
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where R2 R? ? denotes a rotation matrix and b2 R? is a translation vector.
Since it is well-known from di erential geometry (see e.g.7[L], p. 14) that

(p;t) n(p;t) = @ .C(p;1); (1.98)

we recognize that curvature motion can be regarded as Eucdah invariant di u-
sion of isophotes:

@C(p;t) = @C(p;1): (1.99)

This geometric heat equations intrinsic, since it is independent of the curve para-
metrization. However, the reader should be aware of the fatttat { although this
equation looks like a linear one-dimensional heat equatidnt is in fact nonlinear,
since the arc-lengthv is again a function of the curve.

Theoretical results

For the evolution of a smooth curve under its curvature, it ha been shown in
[188, 151, 169] that a smooth solution exists for some nitdnme interval [O; T).
A convex curve remains convex, a nonconvex one becomes ceramd, fort! T,
the curve shrinks to acircular point, i.e. a point with a circle as limiting shape.
Moreover, since under all owsC; = C,, the Euclidean arc-lenqu parametrization
q(p) := v(p) is the fastest way to shrink the Euclidean perimeter jC,j dp, equation
(1.99) is calledEuclidean shortening ow[150]. The time for shrinking a circle of
radius to a point is given by

T=12% (1.100)

In analogy to the dilation/erosion case it can be shown thatfor an initial image
f 2 BUC(R?), equation (1.90) has a unique viscosity solution which is! -stable
and satis es a maximum{minimum principle [12].

Scale-space interpretation

A shape scale-space interpretation for curve evolution uedEuclidean heat ow is
studied by Kimia and Siddiqi [227]. It is based on results of\&ans and Spruck [129].
They establish the semigroup property as architectural quidy, and smoothing
properties follow from the fact that the total curvature deceases. Moreover, the
number of extrema and in ection points of the curvature is naincreasing.

As an image evolution, MCM belongs to the class of morpholagil scale-spaces
which satisfy the general axioms of Alvarez, Guichard, Liaand Morel [12], that
have been mentioned in 1.5.5.

When studying the evolution of isophotes under MCM, it can bshown that,
if one isophote is enclosed by another, this ordering is pegsed [129, 227]. Such a
shape inclusion principleimplies in connection with (1.100) that it takes the time
T= % 2 to remove all isophotes within a circle of radius . This shows that the



40 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

relation between temporal and spatial scale for MCM is the s@e as for linear
di usion ltering (cf. (1.14)).

Moreover, two level sets cannot move closer to one anotherath they were
initially [129, 227]. Hence, contrast cannot be enhancedhis property is charac-
teristic for all scale-spaces of the Alvarez{Guichard{Lios{Morel axiomatic and
distinguishes them from nonlinear di usion lters.

1.6.2 Ane invariant lItering
Motivation

Although Euclidean invariant smoothing methods are su cieat in many applica-
tions, there exist certain problems which also require inveance with respect to
a ne transformations. A (full) a ne transformation is a mapping

x| AX+D (1.101)

whereb2 R? denotes a translation vector and the matrixA 2 R? 2 is invertible.
A ne transformations arise as shape distortions of planar bjects when being
observed from a large distance under di erent angles.

A ne invariant intrinsic di usion

In analogy to the Euclidean invariant heat ow, Sapiro and Taanenbaum [362,
363] constructed an ane invariant ow by replacing the Euclidean arc-length
v(p;t) in (1.99) by an \arc-length” s(p;t) that is invariant with respect to a ne
transformations with det(A) = 1.

Such an a ne arc-length was proposed by Blaschke [44, pp. 1P%] in 1923. It
is characterized by detCs; Css)=1; and it can be calculated as

P 1
s(p;t) = det C (;t);C (;t) °d: (1.102)
0
By virtue of
@Cp;n=(mt) ° n(p;t) (1.103)
we obtain the a ne invariant heat ow
@ty = (Pt ° n(p;t); (1.104)
C(p;0) = Co(p): (1.105)
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A ne invariant image evolution

When regarding the curve C(p;t) as a level-line of an imageu(x;t); we end up
with the evolution equation

1

@ = jruj curv(u) ® (1.106)
1
= U, Uxyxy  2Ukg UxyUxyx, + U Uspxy (1.107)
1
= jrujsu®; (1.108)

where is the direction perpendicular tor u. The temporal evolution of an image
under such an evolution resembles mean curvature motion,esEig. 5.6(a).

Besides the namea ne invariant heat ow , this equation is also calleca ne
shortening ow, a ne morphological scale-space (AMSS) and fundamental equa-
tion in image processing

This image evolution equation has been discovered indepemtly of and si-
multaneously with the curve evolution approach of Sapiro ah Tannenbaum by
Alvarez, Guichard, Lions and Morel [12] via an axiomatic sée-space approach.
After having mentioned some theoretical results, we shallrie y sketch this rea-
soning below.

Theoretical results

The curve evolution properties of a ne invariant heat ow can be shown to be the
same as in the Euclidean invariant case, with three exceptis [363]:

(a) Closed curves shrink to points with an ellipse as limitig shape é€lliptical
points).

(b) The name a ne shortening ow re ects the fact that, under all ows C;=
Cqq the ane arc-length parametrization q(p):= s(p) is the fastest way to
shrink the a ne perimeter

|
L(t) := det Cy(p;t); Cop(p;t)

1
3

dp: (1.109)

(c) The time for shrinking a circle of radius to a point is

i

— 3
T=23 (1.110)
For the image evolution equation (1.106) we have the same uéis as for MCM
and dilation/erosion concerning well-posedness of a visity solution which satis-
es a maximum{minimum principle [12].
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Scale-space properties

Alvarez, Guichard, Lions and Morel [12] proved that (1.106)s unique (up to tem-
poral rescalings) when imposing on the scale-space axioms(fL.82) an additional
a ne invariance axiom:

For every invertible A2 R? 2 and forall t O; there exists a rescaled
time tqt;A) O; such that

T.(Af) = A(Tef) 8f 2 BUC(R?): (1.111)

For this reason they call the AMSS equation alstundamental equation in image
analysis Simpli cations of this axiomatic and related axioms for shpe scale-spaces
can be found in [16].

The scale-space reasoning of Sapiro and Tannenbaum invgates properties
of the curve evolution, see [362] and the references thereBased on results of
[229, 24] they point out that the Euclidean absolute curvatte decreases as well
as the number of extrema and in ection points of curvature. Mreover, a shape
inclusion principle holds.

1.6.3 Generalizations

In order to analyse planar shapes in a way that does not depend their location in
R3, one requires a multiscale analysis which is invariant unde general projective

mapping

AXy + AxXo + Qg1 X1+ AxpXot+ agy 7

: (1.112)
A13X1 + Ap3Xo + Azz @A3Xyp + AxXo t asz

(X1;%2)” !

with A=(4a;)2 R* 2 and detA = 1. Research in this direction has been carried
out by Faugeras and Keriven [130, 131, 133], Bruckstein andhé&ked [62], Olver

et al. [314], and Dibos [112, 113]. It turns out that intrinst heat-equation-like

formulations for the projective group are more complicatedhan the Euclidean

and a ne invariant ones, and that there is some evidence thathey do not reveal

the same smoothing scale-space properties [314]. A studyheft ows which are

invariant under subgroups of the projective group can be fowl in [314, 113].

An intrinsic heat ow for images painted on surfaces has beanvestigated by
Kimmel [232]. It is invariant to the bending (isometric mappng) of the surface.
This geodesic curvature owand other evolutions, both for scalar and vector-valued
images, can be regarded as steepest descent methods of gnkengctionals which
have been proposed by Polyakov in the context of string thep{235].

Euclidean and a ne invariant curve evolutions can also be mdi ed in order
to obtain area- or length-preserving equations [188, 15063 366].
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Recently it has been suggested to modify AMSS such that anyaution at T-
or X-junctions of isophotes is inhibited [75]. Such a lItemg intends to simplify
the image while preserving its \semantical atoms" in the sese of Kanizsa [219].

Generalizations of MCM or AMSS to 3-D images are investigaden [91, 78, 298,
316]. In this case two principal curvatures occur. Since theean have di erent sign,
the question arises of how to combine them to a process whigmpli es arbitrary
surfaces without creating singularities. In contrast to tle 2-D situation, topological
changes such as the splitting of conconvex structures maycoc. This problem is
reminescent of the creation of new extrema in di usion scalgpaces when going
from 1-D to 2-D.

A ne scale-space axiomatics for image sequences (moviesve been estab-
lished in [12, 287, 288], and possibilities to generalizeettaxiomatic of Alvarez,
Guichard, Lions and Morel to colour images are discussed 82].

1.6.4 Numerical aspects

Due to the equivalence between curve evolution and morphgical image pro-
cessing PDEs, we have three main classes of numerical mesoclrve evolution
schemes, set-theoretic morphological schemes and appmiion schemes for the
Eulerian formulation. A comparison of di erent methods of hese classes can be
found in [95].

Curve evolution schemes are investigated by Mokhtarian andackworth [291],
Bruckstein et al. [61], Cohignac et al. [95], Merriman et a[285], Ruuth [347], and
Moisan [289]. In [61] discrete analogues of MCM and AMSS fdne evolution of
planar polygons are introduced. In complete analogy to thedhaviour of the con-
tinuous equations, convergence to polygones, whose cosnbelong to circles and
ellipses, respectively, is established. Related discreterve evolutions are analysed
in [135, 359]. Curve evolution schemes can reveal perfectrae invariance.

Convergent set-theoretic morphological schemes for MCM @AMSS have been
proposed by Cate et al. [80, 79]. On the one hand, they are me fast and they
are entirely invariant under monotone grey-scale transforations, on the other
hand, it is di cult to nd consistent approximations on a pix el grid which have
good rotational invariance. This is essentially the same adeo as for circular
structuring elements in classical set-theoretic morphady, cf. 1.5.7.

Most direct approximations of morphological image evolubn equations are
based on the Osher{Sethian schemes [319, 372, 374]. In theecaf MCM or AMSS,
this leads to an explicit nite di erence method which approcimates the spatial
derivatives by central di erences. Dierent variants of these schemes have been
proposed in order to get better rotational invariance, higér stability or less dissi-
pative e ects [10, 15, 95, 267, 362]. A comparative evaluati of these approaches
has been carried out by Lucido et al. [267]. Niessen et al. B8®04] approximate
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the spatial derivatives by Gaussian derivatives which areatculated in the Fourier
domain.

Concerning stability one observes that all these explicitthemes can violate a
discrete maximum{minimum principle and require small timesteps to be experi-
mentally stable. For AMSS an additional constraint appearshe behaviour of this
equation is highly nonlocal, since a ne invariance implieghat circles are equiva-
lent to ellipses of any arbitrary eccentricity. If one wantgo have a good numerical
approximation of a ne invariance, one has to decrease the teporal step size sig-
ni cantly below the step size of experimental stability [16 218]. Using Gaussian
derivatives for MCM or AMSS permits larger time steps for lage kernels [304], but
their calculation in the Fourier domain is computationallyexpensive and aliasing
may lead to oscillatory solutions, cf. 1.2.3.

One way to achieve unconditionalL! -stability for MCM is to approximate
u by suitable linear combinations of one-dimensional secodder derivatives
along grid directions and to apply an implicit nite di eren ce scheme [95, 13, 146].
Schemes of this type, however, renounce consistency witletbriginal equation as
well as rotational invariance: round shapes evolve into pajonal structures.

A consistent semi-implicit approximation of MCM which discetizes the rst-
order spatial derivatives explicitly and the second-ordederivatives implicitly has
been proposed by Alvarez [10]. In order to solve the resulgnlinear system of
equations he applies symmetric Gau {Seidel iterations.

Nicolet and Spshler [301] investigate a consistent fullymplicit scheme for MCM
leading to a nonlinear system of equations. It is solved by raes of nonlinear Gau {
Seidel iterations. Comparing it with the explicit scheme tbBy report a tradeo
between the larger time step size and the higher computatiahe ort per step.

An inherent problem of all nite di erence schemes for morpblogical image
evolutions are their dissipative e ects which create addibnal blurring of discon-
tinuities. As a remedy, one can decompose the image into bigdevel sets, map
them into Lipschitz-continuous images by applying a distace transformation, and
run a nite di erence method on them. Afterwards one extracs the processed level
sets as the zero-level sets of the evolved images, and assesnthe nal image by
superimposing all evolved level sets [75]. The natural pemne has to pay for the
excellent results is a fairly high computational e ort.

A software package which contains implementations of MCM, MSS and many
other modern techniques such as wavelets, Mumford-Shah segtation, and ac-
tive contour models (cf. 1.6.6) is available under the namdegaWave2®

®MegaWavezhas been developed by Jacques Froment and Sylvain Parrino, EREMADE,
University Paris IX, 75775 Paris Cedex 16, France. More infomation can be found under
http://www.ceremade.dauphine.fr.
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1.6.5 Applications

The special invariances of AMSS are useful for shape recdigm tasks [12, 96, 97,
132], for corner detection [15], and for texture discrimirteon [265, 16]. MCM and
AMSS have also been applied to denoising [305, 304] and bladtesttion [157, 301]
in medical images and to terrain matching [268]. The poterdl of MCM for shape
segmentation [290] has even been used for classifying cantkemum leaves [1].

If one aims to use these equations for image restoration onsually modi es
them by multiplying them with a term that reduces smoothing & high-contrast
edges [13, 364, 365, 304]; see also Fig. 5.6 (b). Adaptingntht® tasks such as tex-
ture enhancement requires more sophisticated and more giblbeature descriptors
than the gradient, for instance an analysis by means of Gab&unctions [72, 234].
Introducing a reaction term as in [102] allows to attract thesolution to speci ed
grey values which can be used as quantization levels [11]. ciner modi cation
results from omitting the factor jr uj in the mean curvature motion (1.94), see e.g.
[126, 127]. This corresponds to nonlinear di usion lters ad a restoration method
by total variation minimization [345] which shall be desched in 1.7.2.

In order to improve images, MCM or AMSS have also been combuheith other
processes such as linear di usion [13], shock ltering ([1,4f. 1.7.1) or global PDEs
for histogramme enhancement [358].

Malladi and Sethian [272] propose to replace MCM by a technig in which
the motion of level curves is based on either min(0) or max(; 0), depending on
the average grey value within a certain neighbourhood. Thiso-calledmin{max
ow produces a restored image as steady-state solution and ra¢egood denoising
properties. Well-posedness results are not known up to nosince the theory of
viscosity solutions is no longer applicable.

All these preceding modi cations are at the expense of rennaing the mor-
phological invariance of the genuine operators (and also ae invariance in the
case of [364, 365, 304], unless an \a ne invariant gradient[231, 315] is used). If
one wants to stay within the morphological framework one cacombine di erent
morphological processes, for instance MCM and dilation/esion. This leads to a
process which is useful for analysing components of shap232230, 383, 384, 453],
and which is calledentropy scale-spacer reaction{di usion scale-space

Recently Steiner et al. proposed a method for caricatureé shape exaggera-
tion [394]. They evolved the boundary curve by means of a bagrd Euclidean
shortening ow with a stabilizing bias term as in (1.56).

It is interesting to note that, already in 1965, Gabor { the irventor of optical
holography and the so-called Gabor functions { proposed a ldlarring algorithm
based on combining MCM with backward smoothing along owlias [149, 260].
This long-time forgotten method is similar to the Perona{Mdik process (1.36) for
large image gradients.
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1.6.6 Active contour models

One of the main applications of curve evolution ideas appeain the context of
active contour models (deformable models2-D versions are also callednakes
while 3-D active models are sometimes namexttive surfacesor active blobsAc-
tive contour models can be used to search image features in iateractive way.
Especially for assisting the segmentation of medical imagthey have become very
popular [282]: The expert user gives a good initial guess of ateresting contour
(organ, tumour, ...), which will be carried the rest of the wg by some energy
minimization. Apart from these practical merits, snake modls incorporate many
ideas ranging from energy minimization over curve evolutioto the Perona{Malik
Iter and di usion{reaction models. It is therefore not surprising that they play an
important role in several generalization and uni cation atempts [356, 380, 452].

Explicit snakes

Kass, Witkin and Terzopoulos proposed the rst active contar model in a journal
paper in 1988 [221]. Their snakes can be thought of as an enyenginimizing spline,
which is attracted by image features such as edges. For thisason, the energy
functional consists of two parts: an internal energy fraatin which controls the
smoothness of the result, and an external energy term attriicg the result to
salient image features.

Such a snake is represented by a cur@(s) = ( X1(S); X2(s))”> which minimizes

the functional
|

E(C(s) = 7ICs(9)i% + 3iCss(8)i®>  jr F(C(s))j? ds: (1.113)
C(s)

The rst summand is a membrane term causing the curve to shri) the second
one is a rigidity term which encourages a straight contour,ral the third term
pushes the contour to high gradients of the imagé. We observe that terms 1
and 2 describe the internal energy, while the third one repsents the external
(image) energy. The nonnegative parameters, and serve as weights of these
expressions. Since this model makes direct use of the snatetour, it is also called
an explicit model.

Minimizing the functional (1.113) by steepest descent gige

@C _

@t

which can be approximated by nite di erences. A 3-D versionof such an active
contour model is presented in [401].

Usually, the result will depend on the choice of the initial erve and a good

segmentation requires an initial curve which is close to theal segment. The main

Css Cussss 1 (ir fi?); (1.114)
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disadvantage of the preceding model is its topological rajty: a classical explicit
shake cannot split in order to segment several objects sirtarieously'’. In practice,
it is also sometimes not easy to nd a good balance between tparameters
and

Implicit snakes

In 1993 some of the inherent di culties of explicit snakes hae been solved by
replacing them by a so-called implicit model. It was discoved by Caselles, Cate,
Coll and Dibos [73], and later on by Malladi, Sethian and Venmu[273].

The idea behind implicit snakes is to embed the initial curv&Cy(s) as a zero
level curve into a functionu, : R? | R, for instance by using the distance
transformation. Then ug is evolved under a PDE which includes knowledge about
the original imagef :

| |

, on ru
@ = g(r f j»)jr uj div i + (1.115)
This evolution is stopped at some timeT, when the process does hardly alter
anymore, and the nal contour C is extracted as the zero level curve af(x; T).
The terms in (1.115) have the following meaning:

jr ujdiv(r ugr uj)is the curvature term of MCM which smoothes level sets;
see (1.94).

jr uj describes motion in normal direction, i.e. dilation or erasn depending
on the sign of . This so-calledballoon force[93] is required for pushing a
level set into concave regions, a compensation for the profyeof MCM to
create convex regions.

g is a stopping function such as the Perona{Malik di usivity (1.32): it be-
comes small for larggr f j = jr K fj. Hence, it slows down the snake as
soon as it approaches signi cant edges of the original imafge

For this model Caselles et al. could prove well-posednesstire viscosity sense
[73]. Whitaker and Chen developed similar implicit active @ntour models for 3-D
images [436, 435], and Caselles and Coll investigated reldtapproaches for image
sequences [74].

An advantage of implicit snake models is their topologicalexibility: The con-
tour may split. This allows simultaneous segmentation of nitiple objects. More-
over, they use essentially only one remaining parameter,dtballoon force . On

"Recently Mclnerley and Terzopoulos have proposed modied plicit deformable models
which allow topological changes [281, 283].
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the other hand, the process does not really stop at the dedireesult, it only slows
down, and it is di cult to interpret implicit snakes in terms of energy minimiza-
tion. In order to address the initialization problem, Tek am Kimia use implicit
active contours starting from randomly chosen seed pointboth in 2-D [399] and
in 3-D [400]. They name this techniqueeaction{di usion bubbles

Geodesic snakes

Geodesic snakemake a synthesis of explicit and implicit snake ideas. Theyake
been proposed simultaneously by Caselles, Kimmel and Sagir6] and by Kichenas-
samy, Kumar, Olver, Tannenbaum and Yezzi [226]. These snakeeplace the con-
tour energy (1.113) by

E(C)= 7iCs(9)i*  g(ir f (C)j%) ds (1.116)
C(s)

whereg denotes again a Perona{Malik di usivity of type (1.32). Under some addi-
tional assumptions they derive that minimizing (1.116) is guivalent to searching
|
rrCI:in gjr f (C(9)j? jCs(s)jds: (1.117)
C(s)

This is nothing else than nding a curve of minimal distancégeodesic)with respect
to some image-induced metric. Embedding the initial curvesaa level set of some
image ug and applying a descent method to the corresponding Euler-geange
equation leads to the image evolution PDE

!
ru

@ = jr ujdiv g(r f j?) TR (1.118)
This active contour model is parameter-free, but often a spd term g (jr f j2)jr uj

is added to achieve faster and more stable attraction to edgeA theoretical analysis
of geodesic snakes concerning existence, uniqueness aabilgy of a viscosity

solution can be found in [76, 226], and extensions to 3-D imegyare studied in [77,
226, 271]. Recently also an a ne invariant analogue to geode active contours has
been proposed [315]. Techniques which can be related to gesid active contours
have also been used for solving 3-D vision problems such asab [134] and motion

analysis [322].

Self-snakes

The properties of geodesic snakes induced Sapiro to use atexl technique for
image enhancement [357]: he replaceg(r f j?) in (1.118) by g(jr u j?). Then the
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snake becomes aelf-snakeno longer underlying external image forces. For =0

this gives
!

@ = jrujdiv ggr ujz)j:—zj (1.119)
= g@r u®du +r” g(ru® ru (1.120)

with 2 r u. Although this equation cannot be cast in divergence form,ewbserve
striking similarities with the Perona{Malik process from &ction 1.3.1: the latter
can be written as

@ = g(r u?® u+r” g(irud ru (1.121)

Thus, it cannot be excluded that a self-snake without spatlaegularization reveals
the same ill-posedness problems as the Perona{Malik IteB%6]. For > 0, how-
ever, Chen, Vemuri and Wong [89] established existence andlslity of a unique
viscosity solution to a modi ed self-snake process. Their aalel contains a reaction
term which inhibits smoothing at edges and keeps the lteretmageu close to the
original imagef ; cf. [380]. The restored image is given by the steady-staté o

|

@ = jr ujdiv g(r u jz)j:—zj + jruj(f u ( > 0): (1.122)
The temporal evolution of a regularized self-snake withouteaction term is de-
picted in Fig. 5.6(c). Generalizations of self-snakes to et®r-valued images [357,
361] can be obtained using Di Zenzo's rst fundamental formof colour images

[114]; see also [414, 422] for related ideas.

1.7 Total variation methods

Inspired by observations from uid dynamics where thdotal variation (TV)
z

TV(u):= jr ujdx (1.123)

plays an important role for shock calculations, one may askit is possible to apply
related ideas to image processing. This would be useful tcstere discontinuities
such as edges.

Below we shall focus on two important TV-based image restaran techniques
which have been pioneered by Osher and Rudin: TV-preservingethods and tech-
niques which are TV-minimizing subject to certain constraits.'8

8 Another image enhancement method that is close in spirit is de to Eidelman, Grossmann
and Friedman [125]. It maps the image grey values to gas dynaival parameters and solves the
compressible Euler equations using shock-capturing totalariation diminishing (TVD) techniques
based on Godunov's method.
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1.7.1 TV-preserving methods

In 1990 Osher and Rudin have proposed to restore blurred imeggbyshock Itering
[317]. These lIters calculate the restored image as the sthastate solution of the
problem

@Qu
u(x; 0)

irouj F(L(u)); (1.124)
f(x): (1.125)

Here, sgnF (u)) = sgn(u), and L (u) is a second-order elliptic operator whose zero-
crossings correspond to edges, e.g. the Laplaciatu) = u or the second-order
directional derivative L (u)=u with kr u.

By means of our knowledge from morphological processes, weagnize that
this Iter aims to produce a ow eld that is directed from the interior of a region
towards its edges where it develops shocks. Thus, the goatdsobtain a piecewise
constant steady-state solution with discontinuities onlyat the edges of the initial
image.

It has been shown that a one-dimensional version of this Itepreserves the
total variation and satis es a maximum{minimum principle, both in the continuous
and discrete case. For the two-dimensional case not many tretical results are
available except for a discrete maximum{minimum principle

Recently van den Boomgaard [52] pointed out that the 1-D veien of (1.124)
with F (u) := sgn(u) arises as the PDE formulation of a classical image enhance-
ment algorithm by Kramer and Bruckner [243]. Kramer and Brukner proved in
1975 that their N -dimensional discrete scheme converges after a nite nuntbef
iterations to a state where each point is a local extremum.

Osher and Rudin have also proposed another TV-preservinglderring tech-
nique [318]. It solves the linear di usion equation backwais in time under the
regularizing constraint that the total variation remains cnstant. This stabiliza-
tion can be realized by keeping local extrema xed during thehole evolution.

From a practical point of view, TV-preserving methods su erfrom the problem
that uctuations due to noise do also create shocks. For thisesason, Alvarez and
Mazorra [14] replace the operatot (u)= u in (1.124) by a Gaussian-smoothed
versionL(K u) = K u and supplement the resulting equation with a noise-
eliminating mean curvature process. They prove that their emi-implicit nite-

di erence scheme has a unique solution which satis es a maxiim{minimum prin-
ciple.

1.7.2 TV-minimizing methods

Total variation is good for quantifying the simplicity of an image since it mea-
sures oscillations without unduly punishing discontinuies. For this reason, blocky
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images (consisting only of a few almost piecewise constaegments) reveal very
small total variation.

In order to restore noisy blocky images, Rudin, Osher and Fani [345] have
proposed to minimize the total variation under constraintsvhich re ect assump-
tions about noise!®

To x ideas, let us study an example. Given an imagé with additive noise of
zero mean and known variance?, we seek a restorationu satisfying

z
muin jr ujdx (1.126)
subject to
z
(u f)2dx = 2% (1.127)
z z
udx = f dx: (1.128)

In order to solve this constrained variational problem, PDEmethods can be

applied: A solution of (1.126){(1.128) veri es necessayilthe Euler equation
|
. ru

div jI’—Uj (u f)=0 (1.129)
with homogeneous Neumann boundary conditions. The (unknoywLagrange mul-
tipliers and have to be determined in such a way that the constraints are
ful lled. Interestingly, (1.129) looks similar to the steady-state equation of the
di usion{reaction equation (1.56), but { in contrast to TV a pproaches { equa-
tion (1.56) is not intended to satisfy the noise constraint xactly [346]. Moreover,
the divergence term in (1.129) is identical with the curvatte, which relates TV-
minimizing techniques to MCM.

In [345] a gradient descent method is proposed to solve (19)21t uses an
explicit nite di erence scheme with central and one-sidedspatial di erences and
adapts the Lagrange multiplier by means of the gradient pregtion method of
Rosen.

One may also reformulate the constrained TV minimization asn uncon-
strained problem [83]: The penalized least square problem

}ku fkPzy + jr ujdx (1.130)

muln >

is equivalent to the constrained TV minimization, if is related to the Lagrange

multiplier via = 1.

PRelated ideas have also been developed by Geman and Reynold$3].
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In recent years, problems of type (1.130) have attracted mhdnterest from
mathematicians working on inverse problems, optimizatigror numerical analysis
[2, 84, 85, 87, 115, 117, 118, 204, 205, 253, 409]. To overctimeproblem that
the total variation integral contains the nondi erentiable argumentjr uj, one ap-
plies regularization strategies or techniques from nonsmih optimization. Much
research is done in order to nd e cient numerical methods fo which convergence
can be established.

TV-minimizing methods have been generalized in di erent wgs:

The constrained TV-minimization idea is frequently adaptd to other con-

straints such as blur, noise with blur, or other types of noes[262, 344, 346,
116, 253, 410, 83]. Lions et al. [262] and Dobson and Santo$a5] have
shown the existence of BV()-solutions for problems of thisype. Recently,

Chambolle and Lions [83] have extended the existence proofrioncompact
operators (which comprises also the situation without blyr and they have

established uniqueness.

The tendency of TV-minimizing to create piecewise constargtructures can

cause undesired e ects such as the creation of staircasesigimoid-like edges
[116, 83]. As a remedy, it has been proposed to minimize thé-horm of

expressions containing also higher-order derivatives fB483]. Another pos-
sibility is to consider the constrainzed minimization of

B(u) := jr ujPlrugx; (1.131)

where p(jr uj) decreases from 2 to 1, as uj ranges from 0 tol ; see [46].

TV-minimizing methods have also been used for estimating stiontinuous
blurring kernels such as motion or out-of-focus blur from aetjraded image.
This leads to TV-based blind deconvolution algorithms [86]

They have been applied to colour images [45], where the gealezed TV
norm is chosen as thé?-norm of the TV norms of the separate channels.

Strong and Chan have identi ed the parameter in (1.130) as a scale para-
meter [396]. By adapting to the local image structure, they establish re-
lations between TV-minimizing methods and nonlinear di ugon techniques

[397].

Total variation methods have been applied to restoring imaes of military rele-
vance [345, 346, 262, 253], to improving material from crimal and civil investiga-
tions as court evidence [344], and to enhancing pictures finoconfocal microscopy
[409] and tomography [115, 396]. They are useful for enhamgireconstruction al-
gorithms for inverse scattering problems [37], and the ided L-norm minimization
has also led to improved optic ow algorithms [245].
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1.8 Conclusions and further scope of the book

Although we have seen that there exists a large variety of PDBRased scale-space
and image restoration methods which o er many advantages,exhave also become
aware of some limitations. They shall serve as a motivatiorif the theory which
will be explored in the subsequent chapters.

Linear di usion and morphological scale-spaces are welbped and have a solid
axiomatic foundation. On the other hand, for some applicatins, they possess the
undesirable property that they do not permit contrast enhanement and that they
may blur and delocalize structures.

Pure restoration methods such as di usion{reaction equatins or TV-based
techniques do allow contrast enhancement and lead to stabdé&ructures but can
su er from theoretical or practical problems, for instanceunsolved well-posedness
guestions or the search for e cient minimizers of nonconverr nondi erentiable
functionals. Moreover, most image-enhancing PDE methodedus on edge detec-
tion and segmentation problems. Other interesting image storation topics have
found less attention.

For both scale-space and restoration methods many questtoooncerning their
discrete realizations are still open: discrete scale-sgaesults are frequently miss-
ing, minimization algorithms can get trapped in a poor locaminimum, or the use
of explicit schemes causes restrictive step size limitatis.

The goal of the subsequent chapters is to develop a theory foonlinear aniso-
tropic di usion lters which addresses some of the aboveméoned shortcomings.
In particular, we shall see that anisotropic nonlinear di tsion processes can share
many advantages of the scale-space and the image enhancdamerld. A scale-
space interpretation is presented which does not excludent@st enhancement,
and well-posedness results are established. Both scalaesp and well-posedness
properties carry over from the continuous to the semidiscie and discrete setting.
The latter comprises for instance semi-implicit techniquefor which unconditional
stability in the L -norm is proved. The general framework, for which the resuit
hold, includes also linear and isotropic nonlinear di usio lters. Finally, speci c
anisotropic models are presented which permit applicatisnbeyond segmentation
and edge enhancement tasks, for instance enhancement oferent ow-like struc-
tures in textures.
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Chapter 2

Continuous di usion ltering

This chapter presents a general continuous model for anisopic di usion lters,
analyses its theoretical properties and gives a scale-spaaterpretation. To this
end, we adapt the diusion process to the structure tensor, avell-known tool
for analysing local orientation. Under fairly weak assumjpns on the class of |-
ters, it is possible to establish well-posedness and regitlaresults and to prove a
maximum{minimum principle. Since the proof does not requ& any monotony as-
sumption it applies also to contrast-enhancing di usion pocesses. After sketching
invariances of the resulting scale-space, we focus on asatg its smoothing prop-
erties. We shall see that, besides the extremum principleJarge class of associated
Lyapunov functionals plays an important role in this contek [414, 415)].

2.1 Basic Iter structure

Let us consider a rectangular image domain :=(Qa;) (0;ay) with boundary
= @ and let an image be represented by a mapping 2 L! (). The class
of anisotropic di usion lters we are concerned with is repesented by the initial

boundary value problem

@ =div(Dr u) on 0;1); (2.1)
ux;0)="f(x) on ; (2.2)
Dr u;ni =0 on 0;1): (2.3)

Hereby, n denotes the outer normal andt; :i the Euclidean scalar product on R.
In order to adapt the di usion tensor D 2 R? 2 to the local image structure, one
would usually let it depend on the edge estimator u (cf. 1.3.3), where

u((xt) = (K o:;50)(x) (>0 (2.4)
and u-denotes an extension af from to R 2, which may be obtained by mirroring
at (cf. [81)).

55
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However, we shall choose a more general structure descriptdhich comprises
the edge detector u , but also allows to extract more information. This will be
presented next.

2.2 The structure tensor

In order to identify features such as corners or to measuredHocal coherence of
structures, we need methods which take into account how theientation of the
(smoothed) gradient changes within the vicinity of any invstigated point.

The structure tensor{ also calledinterest operator, scatter matrix or (windowed
second) moment tensof is an important representative of this class. Matrices of
this type are useful for many di erent tasks, for instance foanalysing ow-like
textures [340, 31], corners and T-junctions [145, 182, 31809], shape cues [256,
pp. 349{382] and spatio{temporal image sequences [209, d@7{153], [168, pp.
219{258]. Related approaches can also be found in [39, 400]22.et us focus on
some aspects which are of importance in our case.

In order to study orientations instead of directions, we ha¥ to identify gra-
dients which di er only by their sign: they share the same odntation, but point
in opposite directions. To this end, we reconsider the vecgtoalued structure de-
scriptor r u within a matrix framework. The matrix Jq resulting from the tensor
product

Joru)=ru r u:=ruru’ (2.5)

has an orthonormal basis of eigenvectorg, v, with vi kr u and v, ?r u .
The corresponding eigenvalueg u j? and 0 give just the contrast (the squared
gradient) in the eigendirections.

Averaging this orientation information can be accomplishe by convolving
Jo(r u ) componentwise with a GaussiarK . This gives the structure tensor

J(ru)=K (ru r u) ( 0): (2.6)
It is not hard to verify that the symmetric matrix J = }ﬁ j;z is positive semidef-
inite and possesses orthonormal eigenvectors v, with
0 1
o
v k@ q 322 2.7)

jo jut (u j2)?+4j%

The corresponding eigenvalues; and , are given by

1. 49— ;
12 = > Juit )22 (i j2)2+4j% ; (2.8)

where the + sign belongs to ;. As they integrate the variation of the grey values
within a neighbourhood of sizeO( ), they describe the average contrast in the
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eigendirections. Thus, thentegration scale should re ect the characteristic win-
dow size over which the orientation is to be analysed. Preswihing in order to
obtain r u makes the structure tensor insensitive to noise and irrelent details
of scales smaller tharO( ). The parameter is calledlocal scaleor noise scale

By virtue of ; , 0; we observe thatv; is the orientation with the highest
grey value uctuations, and v, gives the preferred local orientation, thecoherence
direction. Furthermore, ; and , can be used as descriptors of local structure:
Constant areas are characterized by, = , = 0, straight edges give ; > =0,
corners can be identied by > 0; and the expression

(1 )2 = (i Jj22)? +4j fz (2.9)

becomes large for anisotropic structures. It is a measure tbe local coherence
An example which illustrates the advantages of the struct@rtensor for analysing
coherent patterns can be found in Figure 5.10 (d); see Sectib.2.

2.3 Theoretical results

In order to discuss well-posedness results, let us rst rdcaome useful notations.
Let H'() be the Sobolev space of functionsu(x) 2 L?() with all distributional
derivatives of rst order being in L?(). We equip H () with the norm

[
o Pi=2

X
kUkHl() = kUkEZ() + k@IUkEZ() (210)
1

and identify it with its dual space. Let L?(0; T;H!()) be the space of functions
u, strongly measurable on [0T] with range in H!() (for the Lebesgue measure
dt on [0, T]) such that

0ZT 1=

kUkLZ(o;T;Hl()) = @ kU(t)kal() dtA < 1: (211)
0

In a similar way, C([0; T];L2()) is de ned as the space of continuous functions
u:[0;T]! L?() supplemented with the norm

KukcqoryLzy = rE)aT)]( Ku(t)kpz(y : (2.12)

As usual, we denote by €X;Y ) the set of C-mappings fromX to Y.
Now we can give a precise formulation of the problem we are cenned with.
We need the following prerequisites:
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9
Assume thatf 2L (), 0,and ;T> O.
Let a:=essinff, b:= esssupf , and consider the problem
@ =div(D( (ru))ru on O; T];
u(x; 0) = f (x) on
D@ (ru))ru;ni=0 on O;TI;
where the di usion tensorD = (d;) satis es the following
properties: g

(C1) Smoothness: (Pc)

D 2 C! (R? % R? ?).
(C2) Symmetry:
d12(J)= dyy(J) for all symmetric matricesJ 2 R? 2.

(C3) Uniform positive de niteness:
Forall w2L* ( ;R? with jw(x)] K on ,there
exists a positive lower bound (K ) for the eigenvalue
of D(J (w)).

Under these assumptions the following theorem, which geadizes and extends
results from [81, 414], can be proved.

Theorem 1 (Well-posedness, ! regularity, extremum principle)
The problem @.) has a unique solutionu(x;t) in the distributional sense which
satis es
u2 C(0;TELA() \ LA0;T;HY)) ; (2.13)
@u 2 L%0;T;HY)) : (2.14)

Moreover, u2 C* ( (0;T]): This solution depends continuously of with respect
to k:kiz¢y ; and it ful Is the extremum principle

a u(x;t) b on O; T (2.15)

1For a complete well-posedness proof one also has to establistability with respect to per-
turbations of the di usion equation. This topic will not be a ddressed here.
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Proof:

(a) Existence, uniqueness and regularity

(b)

Existence, unigueness and regularity are straightforwardnisotropic exten-
sions of the proof for the isotropic case studied by Cate, ibns, Morel and
Coll [81]. Therefore, we just sketch the basic ideas of thisqof.

Existence can be proved using Schauder's xed point theoref®ne considers
the solution U(w) of a distributional linear version of (P.) where D depends
on some functionw instead ofu. Then one shows thatU is a weakly contin-
uous mapping from a nonempty, convex and weakly gompact sasN, of

W(O;T) = w2L2%0;T;HY()) ; 4 2 L%0;T;HY()) into itself. Since

W (0; T) is contained in L?(0; T; L?()), with compact inclusion, U reveals a
xed point u 2 Wy, i.e. u= U(u).

Smoothness follows from classical bootstrap arguments atiek general the-
ory of parabolic equations [246]. Sinag(t) 2 H*() forall t> 0, one deduces
that u(t) 2 H?() for all t> 0. By iterating, one can establish thatu is a

strong solution of P;) andu 2 C ((0;T] ).

The basic idea of the uniqueness proof consists of using gyeestimates for
the di erence of two solutions, such that the Gronwall{Belman inequality
can be applied. Then, uniqueness follows from the fact thatoth solutions
start with the same initial values.

Finally an iterative linear scheme is investigated, whosekition is shown to
converge in C([QT]; L2()) to the strong solution of ( P,).

Extremum principle
In order to prove a maximum{minimum principle, we utilize Seampacchia's
truncation method (cf. [58], p. 211).

We restrict ourselves to proving only the maximum principleThe minimum
principle follows from the maximum principle when being apped to the
initial datum .
Let G 2 CY(R) be a function with G(s)=0on (1 ;0]land 0<G{qs) C
on (0; 1 ) for some constantC. Now, we de ne
7s

G()d; s 2 R;
2

H(u(x;t) b dx; t2[0;T]

H(s)

(1)

By the Cauchy{Schwarz inequality, we have
z

iGu(t) b @uxtjdx C ku(t) Bz, k@u(bkz,
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and by virtue of (2.13), (2.14) we know that the right-hand sie of this
estimate exists. Therefore, is di erentiable for t > 0, and we get

Z
G(u b) @u dx

d
dt
z

G(u bdiv(D@ (r u))r u)dx

z
G(u b I‘D(J (r 1{17))r u;ni} ds
7 =0
Go(g b} Ihr u;D(J &r u)r u% dx
0

0 (2.16)

By means ofH(s) $s? we have

z
0 " (1) H(u(x;t) f(x))dx %ku(t) kaz() : (2.17)

Sinceu 2 C([0; T];L2()), the right-hand side of (2.17) tends to 0 = ' (0)
fort ! 0" which proves the continuity of' (t) in 0. Now from
"2 C[O;T]; "(0)=0; "0 on [QT]
and (2.16), it follows that
0 on [QT]:

Hence, for allt 2 [0; T], we obtainu(x;t) b 0 almost everywhere (a.e.) on
. Due to the smoothness of u fort > 0, we nally end up with the assertion

u(x;t) b on O; T

(c) Continuous dependence on the initial image
Let f;h 2 L! () be two initial values and u, w the corresponding solutions.
In the same way as in the uniqueness proof in [81], one showstththere
exists some constant > 0 such that

d
5t ku(t) w(t)k?z(, c kr u(t)kfzy ku(t) w(t)k’, :
Applying the Gronwal{Bellman lemma [57, pp. 156{137] yials
0 1
Zt

ku(t) w(t)kzy, kf hkiz, exp@  kr u(s)kfz, dsA:
0
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By means of the extremum principle we know thati is bounded on  [O; T].
Thus, r u is also bounded, and prerequisite (C3) implies that there &sts
some constant = (; kfk.: () ) > 0, such that

7t
kr u(s)kfz(, ds

0

z
kr u(s)kfz(, ds

0

17 2

— hr u(x;s); D(J (r u (x;s)))r u(x;s)i dx ds
0

1Zr Y4

= - u(x;s) div D(J (r u (x;s)))r u(x;s) dx ds

0
zZ

1
— kU(S)kLZ() k@J(S)kLZ() ds
0

1
— Kukizo:m5m2())  K@UKL20;7;H1())

By virtue of (2.13), (2.14), we know that the right-hand of ths estimate
exists. Now, let > 0 and choose
c

= exp 5

Kuki2riniy) K@UKL20TiH1()
Then for kf  hk. 2y < , the preceding results imply
ku(t) w(t)kez) < 8t2[0;T];
which proves the continuous dependence on the initial data. 2

Remarks:

(&) We observe a strong smoothing e ect which is charactetis for many dif-
fusion processes: under fairly weak assumptions on the ialtimage f 2
L ()) we obtain an in nitely often di erentiable solution fo r arbitrary small
positive times. More restrictive requirements { for instase f 2 BUC(R?)

in order to apply the theory of viscosity solutions { are not ecessary in our
case.

(b) Moreover, our proof does not require any monotony assurtign. This has the
advantage that contrast-enhancing processes are permitas well. Chapter
5 will illustrate this by presenting examples where contrass enhanced.
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(c) The continuous dependence of the solution on the initidmage has signif-
icant practical impact as it ensures stability with respectto perturbations
of the original image. This is of importance when considegnstereo image
pairs, spatio-temporal image sequences or slices from noadliCT or MRI
sequences, since we know that similar images remain simiédter Itering. 2

(d) The extremum principle o ers the practical advantage that, if we start for
instance with an image within the range [0255], we will never obtain results
with grey value such as 257. It is also closely related to sntbimg scale-space
properties, as we shall see in 2.4.2.

(e) The well-posedness results are essentially based on fhet that the regu-
larization by convolution with a Gaussian allows to estimatkr u k.1 () by
kuk_: (y . This property is responsible for the uniform positive de iteness
of the di usion tensor.

2.4 Scale-space properties

Let us now investigate scale-space properties of the claBg)(and juxtapose the re-
sults to other scale-spaces. To this end, we shall not focus foirther investigations
of architectural requirements like recursivity, regulaty and locality, as these qual-
ities do not distinguish nonlinear di usion scale-spacesdm other ones. We start
with brie y discussing invariances. Afterwards, we turn toa more crucial task,
namely the question in which sense our evolution equation {rich may allow con-
trast enhancement { can still be considered as a smoothingyformation-reducing
image transformation.

2.4.1 Invariances

Let u(x;t) be the unique solution of P.) and de ne the scale-space operatdr, by
Tif = u(t); t O (2.18)

whereu(t) := u(:;t).

The properties we discuss now illustrate that an invariancef T; with respect to
some image transformatiorP is characterized by the fact thatT; and P commute.
Much of the terminology used below is borrowed from [12].

2This does not contradict contrast enhancement: In the case btwo similar images, where
one leads to contrast enhancement and the other not, the redarization damps the enhancement
process in such a way that both images do not di er much after ltering.
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Grey level shift invariance

Since the di usion tensor is only a function ofJ (r u ), but not of u, we may shift
the grey level range by an arbitrary constaniC, and the Itered images will also
be shifted by the same constant. Moreover, a constant funoti is not a ected by
di usion ltering. Therefore, we have

T(0) = O; (2.19)
T(f+C) = T(f)+C 8t O (2.20)

Reverse contrast invariance

FromD(J (r u))= D(J (r u)), it follows that
T( )= T(f) 8t O (2.22)

This property is not ful lled by classical morphological sale-space equations like
dilation and erosion. When reversing the contrast, the rolef dilation and erosion
has to be exchanged as well.

Average grey level invariance

Average grey level invariance is a further property in whicldi usion scale-spaces
di er from morphological scale-spaces. In general, the dution PDEs of the latter
ones are not of divergence form and do not preserve the meaeygralue. A con-
stant average grey level is essential for scale-space basegmentation algorithms
such as the hyperstack [307, 408]. It is also a desirable gtafor applications
in medical imaging where grey values measure physical qtiak of the depicted
object, for instance proton densities in MR images.

Proposition 1 (Conservation of average grey value).

The average grey level 7

= Jij f (x) dx (2.22)

is not a ected by nonlinear di usion lItering:
1 Z

j—_ th dx = 8t> 0O: (223)

Proof:
R
Dene I(t) := u(x;t)dx for all t 0. Then the Cauchy{Schwarz inequality



64 CHAPTER 2. CONTINUOUS DIFFUSION FILTERING
implies
ji) 1) = uix;t) f(x) dx j jPku(t) ke :

Sinceu 2 C([0; T]; L2()), the preceding inequality gives the continuity of I (t) in
0.

For t > 0, Theorem 1, the divergence theorem and the boundary condms yield
z z
dl .
at = @udx = MDA (ru))rundS=0:
Hence,l (t) must be constant for allt 0. 2

Average grey level invariance may be described by commutingerators, when
introducing an averaging operatoM : L'() ! L*() which maps f to a constant
image with the same mean grey level:

z
1
(Mf )(y) = J_J f (x) dx 8y2 (2.24)
Then Proposition 1 and grey level shift invariance imply thathe order of M and
T, can be exchanged:

M(Tf)= Ty(Mf) 8t O (2.25)
When studying di usion ltering as a pure initial value problem in the domain

R?, it also makes sense to investigate Euclidean transformatis of an image. This
leads us to translation and isometry invariance.

Translation invariance
De ne a translation , by ( ,f)(x) := f (x + h). Then di usion ltering ful Is
Ti(nf)= n(Tf) 8t O (2.26)

This is a consequence of the fact that the di usion tensor demds onJ (r u )
solely, but not explicitly on x.

Isometry invariance

Let R 2 R? 2 be an orthogonal transformation. If we applyR to f by de ning

Rf (x) := f (Rx), then the eigenvalues of the di usion tensor are unalterednd
any eigenvectorv is transformed into Rv. Thus, it makes no di erence whether
the orthogonal transformation is applied before or after dision Itering:

T(Rf)= R(T:f) 8t O (2.27)
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2.4.2 Information-reducing properties
Nonenhancement of local extrema

Koenderink [240] required that a scale-space evolution siid not create new level
curves when increasing the scale parameter. If this is sa#id, iso-intensity linking
through the scales is possible and a structure at a coarselgsoean (in principle) be
traced back to the original image(causality). For this reason, he imposed that at
spatial extrema with nonvanishing determinant of the Hesan isophotes in scale-
space are upwards convex. He showed that this constraint che written as

sgn(@u) =sgn( u): (2.28)

A su cient condition for the causality equation (2.28) to hold is requiring that

local extrema with positive or negative de nite Hessians & not enhanced: an
extremum in at time satises @u > O if is a minimum, and @u < O if

is a maximum. This implication is easily seen: In the rst cas, for instance, the
eigenvalues ;, , of the Hessian Hessl) are positive. Thus,

u = trace(Hessu)) = 1+ , > 0 (2.29)

giving immediately the causality requirement (2.28).

Nonenhancement of local extrema has rst been used by Babaed al. [30] in
the context of linear di usion Itering. However, it is also satis ed by nonlinear
di usion scale-spaces, as we shall see néw.

Theorem 2 (Nonenhancement of local extrema).
Let u be the unique solution off.) and consider some > 0. Suppose that 2
is a local extremum ofu(:; ) with nonvanishing Hessian. Then,

@(; )< 0 if is a local maximum, (2.30)
@(; ) > O if is a local minimum. (2.31)

Proof:
Let D(J (r u))=:(dj(J (r u))). Then we have

X X X X

@Qu = @d;j(J(ru)) Qu + i (ru))@yu: (2.32)

i=1j=1 i=1j=1

Sincer u(; ) =0and @d;(J (ru(; )) is bounded, the rst term of the
right-hand side of (2.32) vanishes in ( ).

3As in the linear di usion case, nonenhancement of local extema generally does not imply
that their number is nonincreasing, cf. 1.2.5 and [342].
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We know that the di usion tensor D := D(J (r u (; ))) is positive de nite.
Hence, there exists an orthogonal matris 2 R? 2 such that

S'DS = diag( i1; 2) =:

with ;, , being the positive eigenvalues db.
Now, let us assume that (; ) is a local maximum whereH := Hess(u( ; ))
and, thus, B := (b;) := STHS are negative de nite. Then we have

hi <0 (1=1;2)

and by the invariance of the trace with respect to orthogonaransformations it
follows that

@(; ) trace (DH)

trace (STDS STHS)

trace( B)
X2

= i i

i=1

< O

If is a local minimum ofu(x; ), one proceeds in the same way utilizing the
positive de niteness of the Hessian. 2

Nonenhancement of local extrema distinguishes anisotregli usion from clas-
sical contrast enhancing methods such as high-frequency @masis [163, pp. 182{
183], which do violate this principle. Although possibly bleaving like backward
di usion across edges, nonlinear di usion is always in theofward region at ex-
trema. This ensures its stability.

It should be noted that nonenhancement of local extrema is $ti one possibil-
ity to end up with Koenderink's causality requirement. Anoher way to establish
causality is via the extremum principle (2.15) following Hmmel's reasoning; see
[189] for more details.

Lyapunov functionals and behaviour for t!'l

Since scale-spaces are intended to subsequently simplifyimage, it is desirable
that, for t ! 1 , we obtain the simplest possible image representation, naiy a
constant image with the same average grey value as the origione. The following
theorem states that anisotropic di usion Itering always leads to a constant steady-
state. This is due to the class of Lyapunov functionals assated with the di usion
process.
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Theorem 3 (Lyapunov functionals and behaviour for tr1 ).
Suppose thau is the solution of P.) and leta, b andM be de ned as in f.),
(2.22) and (2.24), respectively. Then the following propges are valid:

(@) (Lyapunov functionals)
For all r 2 C?[a;d with r® 0 on [a; d, the function
z
V()= ( ut):= r(u(x;t)) dx (2.33)

is a Lyapunov functional:

() (u®) (Mf)forallt O
(i) V2C[01)\ CY0;1)andVYt) Oforallt> 0.
Moreover, if r°% 0 on [a; d, then V(t) = ( u(t)) is a strict Lyapunov func-
tional:
(

_ u(t)= Mf  on (if t> 0)
(i Cu@y= M0 ut)= Mf  ae. on (if t =0)
(iv) If t> 0, thenV{t) =0 if and only if u(t) = Mf on

f = Mf a.e.on and

(v) V(@O)=V(T) forT>0 u(t)= Mf on (0:T]

(b) (Convergence)

i) Jimkut) Mfkey =0 for p2[L1).

(i)  In the 1D case, the convergencet}'ilm u(x;t) = is uniform on

Proof:

(@) (i) Sincer 2 C?[a;i with r® 0 on [a; 4, we know that r is convex on
[a; B. Using the average grey level invariance and Jensen's inafity we
obtain, forallt O,

z %,z !

r @jij u(x;t) dxA dy

( Mf)

z% .z !

@jij F(u(xt)) dxA dy

z
= r(u(x;t)) dx

( u(t)): (2.34)
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(i) Let us start by proving the continuity of V(t) in 0. Thanks to the
maximum{minimum principle, we may choose a constant

L= : :
max Jr{s)]
such that for all t > 0, the Lipschitz condition

jruCct)) r(f)i Ljulxt) ()]

is veried a.e. on . From this and the Cauchy{Schwarz inequdity, we
get

V) VO k) r(f ke
j j1=2 L kU(t) kaZ() ;

and by virtue of u 2 C([0; T];L?()), the limit t! 0" gives the an-
nounced continuity in 0.
By Theorem 1 and the boundedness a@f on [a; k], we know that V is
di erentiable for t> 0 andV{t) =  rYu) u,dx. Thus, the divergence
theorem yields
z

ru)div(D(J (r u ))r u)dx

vqt)

z

ru) |rD(J (r " Nr u;n% ds
7 =0

0

0 . :
[_{?Zu; hru;D(J {%: u)r uj dx

(i) Let ( u(t) = ( Mf).
If t> 0, thenu(t) is continuous in . Let us now show that equality in
the estimate (2.34) implies thatu(t) = const. on . To this end, assume
that u is not constant on . Then, by the continuity of u, there exists
a partition = [ o withj 4j;j 2j2 (0;] j) and
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< L ys LYy

J |

17 174

— r(u)dx+j—j r(u) dx
1

J
J

V4
J

—

= — r(udx

—

If we utilize this result in the estimate (2.34) we observe tht, for t> 0O,
(u(t)) = ( Mf) implies that u(t) = const. on . Thanks to the
average grey value invariance we nally obtairu(t) = Mf on .

So let us turn to the caset = 0. From (i) and (ii), we conclude that
(u())=( Mf)forall > 0. Thus, we haveu( ) = Mf forall > O.
For > 0, the Cauchy{Schwarz inequality gives

z
jux; ) jdx j jPku() Mfkey = 0:

Sinceu 2 C([0; T]; L2()), the limit I 0" nally yields u(0) = Mf
a.e.on .

Conversely, it is obvious thatu(t) = Mf (a.e.) on implies ( u(t)) =
( Mf).

(iv) Let t> 0 andV{t) = 0. Then from
z
0=VY) = [Oﬁu&x;t)i hr u(x;t);D(J (r u (x;t)))r u(x;t)i dx
>0

and the smoothness ofi we obtain
hru;D(J (r u ))rui =0 on

By the uniform boundedness oD, there exists some constant > 0,
such that

jr uji> hr u:D@J (r u))rui on (0:1):

Thus, we haver u(x;t) = 0 a.e. on . Due to the continuity of r u,
this yields u(x;t) = const. for all x 2 , and the average grey level
invariance nally gives u(x;t) = on .
Conversely, letu(x;t) = on . Then,

z
vqt) = ru)hru; D@ (r u ))r uidx = O:
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(v) Suppose thatV(T) = V(0). SinceV is decreasing, we have

V (t) = const. on [0; T].

Let > 0. Then for anyt 2 [;T], we haveV{t) = 0, and part (iv)
implies that u(t) = Mf on . Now, the Cauchy{Schwarz inequality
gives 7

if Mfjdx j PP u(tkee

As u 2 C([0; T];L%()), the limit t! O' yieldsf = Mf a.e. on .

Conversely, ifu(t) = Mf (a.e.) on holds forall t 2 [0; T], itis evident
that V(0) = V(T).

() By the grey level shift invariance we know thatv := u Mf satis es the

di usion equation as well. We multiply this equation by v, integrate,
and use the divergence theorem to obtain
z z
vy dx = hrv;D(J (r v ))r vidx:

Sincer v is bounded, we nd some > 0 such that

id

2dt
For t > O, there exists somey with v(xg) = 0. Therefore, Poincae's
inequality (cf. [9, p. 122]) may be applied giving

(kvkZz(y ) kr vkfz(y

kvk?a Cokr vkZz(,

with some constantCy = Co() > 0. This yields

d 2 2
a kaLZ() 2 C 0 kaLZ()

and hence the exponential decay ddvk 2, to O.

By the maximum principle, we know that kv(t)k.: (y is bounded by
ki Mf k(). Thus, forg2 N, g 2, we get

kv(kle, kT MFKhLZ, kv(ki, ! O
and Helder's inequality gives, forl p<q<1,
kV(t)kLp() J j(l:p) (1=q) kV(t)qu() IO

This proves the assertion.
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(i) To prove uniform convergence in the one-dimensional tieg, we can
generalize and adapt methods from [202] to our case.

R
Let = (0 ;a). From part (a) we know that V(t) := u?(x;t)dx is

0
nonincreasing and bounded from below. Thus, the sequendé(())izn
converges.

SinceV 2 C[0;1 )\ C(0;1 ) the mean value theorem implies
9t; 2 (i: i +1) : Vat) = V(@i+1)  V():

Thus, (tj))ion ' 1 and from the convergence of\((i))i.n it follows
that
vqt) ! o (2.35)

Thanks to the uniform positive de niteness oD there exists some > 0
such that, fort> 0,

7a
VIt) = 2 u2DW (@u ) dx

0: (2.36)
Equations (2.35) and (2.36) yield
kux(ti)kLZ() I 0:

Hence,u(t;) is a bounded sequence inH0; a). By virtue of the Rellich{
Kondrachov theorem [7, p. 144] we know that the embedding fro
H(0; a) into C% [O0; a], the space of Helder-continuous functions on [@]
[7, pp. 9{12], is compact for 2 (0; 3). Therefore, there exists a subse-
quence {;)!'1  and someu with

u(ty)! u in C% [0l

This also givesu(t;; ) ! uin L2(0; a). Since we already know from (b)(i)
that u(t;) ! Mf in L2(0; a), it follows that u= Mf . Hence,

J_I'ilm ku(ti) Mfkp( =0: (2.37)
Part (a) tells us that ku(t) Mf kfp() is a Lyapunov function forp 2.

Thus,
ku(t) Mf ko = ILilrln ku(t) Mf Kkee(y
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is also nonincreasing. Therefor(%,l lireu(t) Mf k.1 () exists and from
(2.37) we conclude that

tI!ilm ku(t) Mf k() =0:
The smoothness ofi establishes nally that the convergence
tI!llm u(x;t) =
is uniform on . 2

Since the classR.) does not forbid contrast enhancement it admits processes
where forward di usion has to compete with backward di usim. Theorem 3 is
of importance as it states that the regularization by conveing with K tames
the backward di usion in such a way that forward di usion wins in the long run.
Moreover, the competition evolves in a certain direction althe time: although
backward di usion may be locally superior, the global resul{ denoted by the
Lyapunov functional { becomes permanently better for forwal di usion.

Let us have a closer look at what might be the meaning of thisabal result in
the context of image processing. Considering the Lyapunourfctions associated
with r(s) := jsj®, r(s) := (s )2 andr(s) := sIns, respectively, the preceding
theorem gives the following corollary.

Corollary 1 (Special Lyapunov functionals).
Let u be the solution of P.) and a and be de ned as in P.) and (2.22). Then
the following functions are decreasing far2 [0; 1 ):

(@  ku(t)kie( forallp 2.

z
(b) Mo [u(t)] := Jij (u(x;t)  )*dx foralln2 N.
z
(c) HJu()] = u(x;t) In(u(x;t)) dx, if a> 0.

Corollary 1 o ers multiple possibilities of how to interprd nonlinear anisotropic
di usion ltering as a smoothing transformation.

As a special case of (a) it follows that the energyu(t)kfz() is reduced by
di usion.

Part (b) gives a probabilistic interpretation of anisotrogc di usion lItering.
Consider the intensity in an imagef as a random variableZ; with distribution
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F: (2), i.e. F; (2) is the probability that an arbitrary grey value Z; of f does not
exceedz. By the average grey level invariance, is equal to the expected value
z

EZu(t) = Y4 dFu(t)(Z); (238)
R

and it follows that M, [u(t)] is just the even central moment
Z

2n
V4 EZu(t) dFu(t)(Z): (239)
R

The second central moment (the variance) characterizes tispread of the intensity
about its mean. It is a common tool for constructing measurefor the relative
smoothness of the intensity distribution. The fourth momenis frequently used to
describe the relative atness of the grey value distributin. Higher moments are
more di cult to interpret, although they do provide importa nt information for
tasks like texture discrimination [163, pp. 414{415]. All dcreasing even moments
demonstrate that the image becomes smoother during di usio Itering. Hence,
local e ects such as edge enhancement, which object to inase central moments,
are overcompensated by smoothing in other areas.

If we choose another probabilistic model of images, then pdc) characterizes
the information-theoretical side of our scale-space. Prioked the initial imagef is

strictly positive on , we may regard it also as a two-dimensbnal density? Then,
z

S[u(t)] := u(x;t) In(u(x; t)) dx (2.40)

is called theentropy of u(t), a measure of uncertainty and missing information [63].
Since anisotropic di usion lIters increase the entropy thecorresponding scale-space
embeds the genuine imagé into a family of subsequently likelier versions of it
which contain less information. Moreover, fot ! 1 |, the process reaches the state
with the lowest possible information, namely a constant inge. This information-
reducing property indicates that anisotropic di usion might be generally useful in
the context of image compression. In particular, it helps texplain the success of
nonlinear di usion ltering as a preprocessing step for sukampling as observed in
[144]. The interpretation of the entropy in terms of Lyapun@ functionals carries
also over to generalized entropies; see [390] for more detai

From all the previous considerations, we recognize that, iapite of possible
contrast-enhancing properties, anisotropic di usion doe really simplify the ori-
ginal image in a steady way.

Let us nally point out another interpretation of the Lyapun ov functionals. In
a classic scale-space representation, the tineplays the role of the scale para-
meter. By increasingt, one transforms the image from a local to a more global

4Without loss of generality we omit the normalization.
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representation. We have seen in Chapter 1 that, for linear dision scale-spaces
and morphological scale-spaces, it is possible to assoeiatith the evolution time
a corresponding spatial scale.

In the nonlinear di usion case, however, the situation is me@ complicated.
Since the smoothing is nonuniform, one can only de ne an awge measure for
the globality of the representation. This can be achieved gking some Lyapunov
function ( u(t)) and investigating the expression

(f)  (u®).
(T (M7) (2.41)

We observe that (t) increases from 0 to 1. It gives the average globality aft) and
its value can be used to measure the distanceufft) from the initial state f and the
nal state Mf . Prescribing a certain value for provides us with an a-posgriori
criterion for the stopping time of the nonlinear di usion process. Experiments in
this direction can be found in [431, 308].

(u(®) =



Chapter 3

Semidiscrete di usion ltering

The goal of this chapter is to study a semidiscrete frameworfor di usion scale-

spaces where the image is sampled on a nite grid and the scadarameter is

continuous. This leads to a system of nonlinear ordinary derential equations

(ODEs). We shall investigate conditions under which one casstablish similar

properties as in the continuous setting concerning well-gedness, extremum prin-
ciples, average grey level invariance, Lyapunov functionand convergence to a
constant steady-state. Afterwards we shall discuss whethie is possible to obtain

such lters from spatial discretizations of the continuousmodels that have been
investigated in Chapter 2. We will see that there exists a rie stencil on which

a di erence approximation of the spatial derivatives are inaccordance with the
semidiscrete scale-space framework.

3.1 The general model

A discrete image can be regarded as a vectb2z RN, N 2, whose components
f;, ] =1,...,N represent the grey values at each pixel. We denote the indegts
f1;:::;Ng by J. In order to specify the requirements for our semidiscretelter
class we rst recall a useful de nition of irreducible matrces [407, pp. 18{20].

De nition 1 (Irreducibility). A matrix A =(a;) 2 R" N is called irreducible
if for any i;j 2 J there existko,...,k; 2 J with kg = i and k, = j such that
Ak, 80 for p=0,...,r 1L

The semidiscrete problem classP{) we are concerned with is de ned in the
following way:

75
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initial value problem of type

du
dt
u(0)

A(u) u;
f;

9
Let f 2 RN. Find a function u 2 C*([0;1 ); R") which satis es an
whereA = (g; ) has the following properties: §

(S1) Lipschitz-continuity of A 2 C(R™; R ") for every bounded  (p,)
subset of R',

(S2) symmetry: aj(u)= a;(u) 8i;j 2J;, 8u2 RV,
. P .

(S3) vanishing row sums: 208 (u)=0 8i2J; 8u2 RV,

(S4) nonnegative o -diagonals: a;(u) O 8i6j, 8u2 RV,

(S5) irreducibility for all u2 RN,

Not all of these requirements are necessary for every thetical result below.
(S1) is needed for well-posedness, the proof of a maximum{imum principle
involves (S3) and (S4), while average grey value invarianeses (S2) and (S3).
The existence of Lyapunov functions can be established by ames of (S2){(S4),
and strict Lyapunov functions and the convergence to a corett steady-state
require (S5) in addition to (S2){(S4).

This indicates that these properties reveal some interesty parallels to the
continuous setting from Chapter 2: In both cases we need sntbiwess assumptions
to ensure well-posedness; (S2) and (S3) correspond to thedp structure of the
divergence expression with a symmetric di usion tensod, while (S4) and (S5)
play a similar role as the nonnegativity of the eigenvaluesf ® and its uniform
positive de niteness, respectively.

3.2 Theoretical results

Before we can establish scale-space results, it is of impaorte to ensure the ex-
istence of a unique solution. This is done in the theorem b&owhich also states
the continuous dependence of the solution and a maximum{mmum principle.
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Theorem 4 (Well-posedness, extremum principle).

For every T > 0 the problem Ps) has a unique solutionu(t) 2 C([0; T]; RV).
This solution depends continuously on the initial value anithe right-hand side of
the ODE system, and it satis es the extremum principle

a u; (t) b 8i2J;, 8t2][0T] (3.1)

where
a:= rjnzlr} fi; (3.2)
b:= rrj12aJx f: (3.3)

Proof:

(a) Local existence and uniqueness

Local existence and unigueness are proved by showing thatrgoroblem
satis es the requirements of the Picard{Lindelf theorem[432, p. 59].
Letto:=0and > 0. Evidently, (t;u):= (u):= A(u)u is continuous on

n (0]

Bo:=[0;T] u2R™ kuk, kfky + ;

since it is a composition of continuous functions. Moreoveby the compact-
ness ofB, there exists some > 0 with

kK (tuky ¢ 8(t;u) 2 Bo:

In order to prove existence and uniqueness of a solution ¢] in

n [0}
Ro:= (tu) t2[to;to+min( ;T)]; ku fk; Bo

we have to show that (t;u) satis es a global Lipschitz condition onRy with
respect tou. However, this follows directly from the fact thatA is Lipschitz-
continuous onfu 2 RN jku fk; g.

(b) Maximum{minimum principle

We prove only the maximum principle, since the proof for the mimum
principle is analogous.

Assume that the problem Ps) has a unique solution on [P ]. First we show
that the derivative of the largest component ofu(t) is nonpositive for every
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t 2 [0; ]. Let uk(#) = max u (#) for some arbitrary # 2 [0; ]. If we keep
j
this k xed we obtain, for t = #,

dUk _ X

ot ay; (u) u;

j2J

X
+ .
akk(U) Uk j2J3nfkg ?ﬁ{%ﬂ; I{%l}

k

X
Uk ayj (u)
j2J

) o (3.4)

Let us now prove that this implies a maximum principle (cf. [R1]).

Let "> 0 and set 0 1
"t
u-(t) := u(t) % : §:
"t

Moreover, letP := fp2J ju(0) = rrjlgle us (0)g. Then, by (3.4),

! !

at 0 "< 0 8p2P: (3.5)

| —{z—}
0

By means of

o L ©) Xt 0);

and the continuity of u there exists someé; 2 (0; ) such that

max u- (t) < rpza}xuuj (0) 8t 2 [0;ty): (3.6)

i2JnP

Next, let us consider some 2 P. Due to (3.5) and the smoothness ai we
may nd a #, 2 (0; ) with

!

du"p

ot (t)y <0 8t 2 [0;#p):

Thus, we have
Up(t) < u-(0) 8t 2 (0;#)p)

and, fort, := mzig #,, it follows that
p

r&%xu--p(t) < rjnzajxuuj (0) 8t 2 (0;ty): (3.7)
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()

Hence, fortg := min(ty;t,), the estimates (3.6) and (3.7) give

rpza}xuuj (1) < rjnza}xu--j (0) 8t 2 (0;tp): (3.8)

Now we prove that this estimate can be extended to the case (0; ). To
this end, assume the opposite is true. Then, by virtue of thentermediate
value theorem, there exists somg which is the smallest time in (0 ) such
that

rjnZaunuj (t3) = rTgle u (0):

Let uy := max u (t3). Then the minimality of t3 yields
j

Uy (t) <un(ts) 8t 2 (0;ta); (3.9)

and inequality (3.4) gives

| |
dus duy
—K (t3) = d—tk (tz) "< O

dt
| —{z—}
0

Due to the continuity of ‘é—‘t‘ there exists somd, 2 (0;t3) with
|

d;‘—'t'k ) < 0 8t2 (tyts]: (3.10)

The mean value theorem, however, implies that we nd & 2 (t4; t3) with

!
duy Uy (t3) U (tg) 3:9) 0

dt (ts) = ty t4 ’

which contradicts (3.10). Hence, (3.8) must be valid on thenére interval
;).

Together with u = I,i,ImO u- and the continuity of u this yields the announced
maximum principle

rpza}xuj (1) rjnza}xuj (0) 8t210; |

Global existence and uniqueness

Global existence and uniqueness follow from local existenand uniqueness
when being combined with the extremum principle.

Using the notations and results from (a), we know that the prblem (Ps) has
a unique solutionu(t) for t 2 [to; to + min( ; T)I.
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Now let t; := to + min( £; T), g := u(ty), and consider the problem

du _
o A(u) u;
u(ty) = o

Clearly, (t;u) = A(u)u is continuous on
0

n
B;:=[0;T] u2RY kuk; kgky + ;
and by the extremum principle we know thatB;  Bj,. Hence,
k (tu)k; ¢ 8(t;u) 2 By:

with the samec as in (a). Using the same considerations as in (a) one shows
that is Lipschitz-continuous on

n
Ry, = (t;U) t2 [tl;t1+min( E;T)]; ku gkl

Hence, the considered problem has a unique solution di; {1 + min( -; T)].
Therefore, Ps) reveals a unique solution on [,Onin(%; T)], and, by iterating
this reasoning, the existence of a unique solution can be erted to the
entire interval [0; T]. As a consequence, the extremum principle is valid on
[0; T] as well.

Continuous dependence
Let u(t) be the solution of

du
dt
u) = f

(t;u);

fort2[0;T]and (u;t)= (u)= A(u)u. In order to show that u(t) depends
continuously on the initial data and the right-hand side of he ODE system,
it is su cient to prove that (t; u) is continuous, and that there exists some

> 0 such that (t;u) satis es a global Lipschitz condition on
[0}

n
S = (tv) t2][0;T]; kv uky

with respect to its second argument. In this case the resulia [412, p. 93]
ensure that for every” > 0 there exists a > 0 such that the solution u-of
the perturbed problem

det
dt
&(0)

(t ),
o~
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with continuous ~ and

kf~ fky < ;
k™(t;v) (t,v)ky < for kv uk; <

exists in [Q T] and satis es the inequality

ke(t)  u(t)ky <™

Similar to the the local existence and unigueness proof, tlggobal Lipschitz
condition on S follows direcly from the fact that A is Lipschitz-continuous
onfv2 RN jkv uk; g. 2

3.3 Scale-space properties

It is evident that properties such as grey level shift invagnce or reverse contrast
invariance are automatically satis ed by every consistensemidiscrete approxima-
tion of the continuous lter class (P.). On the other hand, translation invariance

only makes sense for translations in grid direction with mtiples of the grid size,

and isometry invariance is satis ed for consistent schemegp to an discretization

error. So let us focus on average grey level invariance now.

Proposition 2 (Conservation of average grey value).
The average grey level

1 X
N

f; (3.11)
j23
is not a ected by the semidiscrete di usion lter:

1 X _
5oum= 8t O (3.12)
j2J

Proof:
By virtue of (S2) and (S3) we haveP ax(u)y=0forall k2 J. Thus, fort O,
j23

X duy; X X X X
prl gk (U) ux = ak (u) u = 0;
j23d j2J3 k23 k2J j2J
: P .
which shows that  u;(t) is constant on [Q1 ) and concludes the proof. 2
j23

This property is in complete accordance with the result fortie continuous Iter
class.
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Similar to the continuous setting, it is possible to nd a lage class of Lyapunov
functions which establish smoothing scale-space propedi and ensure that the
image tends to a constant steady-state with the same averageey level as the
initial image.

Theorem 5 (Lyapunov functions and behaviour for trl ).
Let u(t) be the solution of Py), let a, b, and be de ned as in (3.2), (3.3), and
(3.11), respectively, and lec:=( ; ;:;; )> 2 RV,

Then the following properties are valid:

(&) (Lyapunov functions)
For all r 2 C'[a; J with increasingr®on [a; , the function

X
V()= (u@®):=  r(u(t))
i2J
is a Lyapunov function:
0] (u (o¢forallt O
(i) V2CY0;1)andVqt) Oforallt O.
Moreover, if r%is strictly increasing on[a; d, then V(t) = ( u(t)) is a strict
Lyapunov function:
i) —(w=(09 0 u=c
(iv) VvVI)=0 | u=c

(b) (Convergence)
tIlilm u(t) = c.

Proof:

(@) (i) SincerCisincreasing ond;d we know thatr is convex on §; Ij. Average
grey level invariance and this convexity yield, for alt 0,
0 1

(0 = re WuiA

1
—~
[
~

(3.13)
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(i) Sinceu 2 CX([0;1 );RN)andr 2 C[a; 1, it follows that V 2 C[0;1 ).
Using the prerequisites (S2) and (S3) we get

X du
vt = — rqu)
= Ot |
S3
2 a (U) (U up) ru)
i=1 =1
1
X X k1
- @ + 0 Ay (u) (U u) rqu)
=1 j=i+l =1
U@L
= i +k(U) (Uie U) Tquy)
i=1 k=1
W
+ Qi (U) (Ui Uirg) T U k)
i=1 k=1
s XX

ai;i+k(u)(ui+k Ui) rO(Ui) I'O(Ui+k): (314)

i=1 k=1
Sincer?is increasing, we always have
(Uivk  Uj) rO(Ui) rO(Ui+k) 0:
With this and (S4), equation (3.14) implies thatVYt) O0fort O.
(i) Let us rst prove that equality in the estimate (3.13) i mplies that all
components ofu are equal.
To this end, suppose thatu;, := min u; < maxu; =: u;, and let
i j
o1
— N
a1
]

.J=
i6io

Uj

1
N

Then, <u j,. Sincer®is strictly increasing on B; 4, we know thatr is

strictly convex. Hence, we get
|

r X 1u-. = 7 1u- 1 L
N N e N
1 1
< T LG ()
1 X1
Wr(ujo) + . Wr(uj)
i8io
X1
= —r(u;):
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This shows that equality in (3.13) implies thatu, = ::: = uy. By virtue
of the grey level shift invariance we conclude that = c.
Conversely, it is trivial that ( u)= ( c)foru=c
(iv) Let VYt) =0. From (3.14) we have
XK

0= V) = aiivic(U) (Ui U) rqu) rYuisk)
i=1 k=1 | {z }

0
and by virtue of the symmetry of A(u) it follows that
a (u) (i uw) rquw) ru) =0  8ij 2 (3.15)

Now consider two arbitraryig;jo 2 J. The irreducibility of A(u) implies
that there exist ko,...,k; 2 J with ko = ig, ky = jo, and

A,k (U) 6 0; p=0;:5r L
As r0is strictly increasing we have, fop=0,...,r 1,
(U Ukpo) MUk ) qu) =0 Uk, = Uk,,, -
From this and (3.15) we get
Uiy = Uy = Uk, = 111 = U, = Uyt

Sinceig and jo are arbitrary, we obtain u; = const. for all i 2 J,
and the average grey level invariance givas= c. This proves the rst
implication.

Conversely, letu; = const. for all i 2 J. Then from the representation
(3.14) we immediately conclude thatvqt) = 0.

(b) The convergence proof is based on classical Lyapunov senings, see e.g.

[180] for an introduction to these techniques.

Consider the Lyapunov functionV (t) := ( u(t)) := ju(t) d¢?, which results
from the choicer(s) := (s )2. SinceV (t) is decreasing and bounded from
below by 0, we know thattlllimV(t) =: exists and 0.

Now assume that > O.

Sinceju(t) ¢ is bounded from above by := jf ¢ we have
ju(t) g 8t O (3.16)
By virtue of ( X) = jx 2 we know that, for 2 (0;" ),

( x) < 8x2RY; jx g<:
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Let w.lo.g. < . Since (u(t)) we conclude that

ju(t) ¢ 8t O (3.17)

So from (3.16) and (3.17) we have

ut)2fx2RYj jx g g=S 8t O

By (a)(ii),(iv), the compactness of S, and > 0 there exists someM > 0
such that
Vt) M 8t O

Therefore, it follows
Zt
V() = VO)+ VY)d V() tM
0

which impliestlljm V()= 1 and, thus, contradicts (a)(i).

Hence the assumption > is wrong and we must have =
According to (a)(iii) this yields tIlllrn u(t) = c 2

As in the continuous case, we can consider the Lyapunov furats associated
with r(s) := jsi’, r(s) :==(s )?" andr(s) := sIns, respectively, and obtain the
following corollary.

Corollary 2 (Special Lyapunov functions).
Let u be the solution of Ps) and a and be de ned as in (3.2) and (3.11). Then
the following functions are decreasing far2 [0; 1 ):

(@ ku(t)k, forall p 2.

()  Ma[u(t)] := Nij'jl(uj(t) )2 forall n2 N.

(c) H[u(t)] := _Nl uj (t) In(u; (t)), if a>0.

Since allp-norms (p 2) and all central moments are decreasing, while the
discrete entropy
X
S[u(t)] = u; (t) In(uy; (t)) (3.18)
j=1
IS increasing with respect tot, we observe that the semidiscrete setting reveals
smoothing scale-space properties which are closely rethte the continuous case.
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3.4 Relation to continuous models

In this section we investigate whether it is possible to usepatial discretizations of
the continuous lter class (P) in order to construct semidiscrete di usion models
satisfying (S1){(S5). First we shall verify that this is eady done for isotropic
models. In the anisotropic case, however, the mixed deriveg terms make it more
di cult to ensure nonnegative o -diagonal elements. A congructive existence proof
is presented showing that for a su ciently large stencil it 6 always possible to nd
such a nonnegative discretization. This concept is illusited by investigating the
situation on a (3 3)-stencil in detail.

3.4.1 Isotropic case

Let the rectangle = (0 ;a;) (0;ay) be discretized by a grid ofN = n; n, pixels

such that a pixel (;j )with1l i nipand1 | n;represents the locationX;;y;)
where
i = (i 3)hg (3.19)
yi = (i 3)hz (3.20)

and the grid sizesh,, h, are given byh; := a;=n; and h, := a,=n,, respectively.
These pixels can be numbered by means of an arbitrary bijeat

p: fL:;mg f Lanng P f L1 Ng (3.21)

Thus, pixel (i;j ) is represented by a single indep(i; | ).

Let us now verify that a standard FD space discretization ofraisotropic variant
of (P.) leads to a semidiscrete Iter satisfying the requirementgS1){(S5). To
this end, we may replace the di usion tensoD (J (r u )) by some scalar-valued
function g(J (r u )). The structure tensor requires the calculations of convwations
with r K and K , respectively. In the spatially discrete case this comeswn to
speci ¢ vector{matrix multiplications. For this reason, we may approximate the
structure tensor by some matrixH (u) = ( h; (u)) whereH 2 C* (RV; R? ?).

Next, consider some pixek = p(i;j ). Then a consistent spatial discretization of
the isotropic di usion equation with homogeneous Neumanndundary conditions

can be written as ,
du X X +
dtk - I Ju u; (3.22)

2h?
where N, (k) consists of the one or two neighbours of pixé along the n-th coor-
dinate axis (boundary pixels have only one neighbour) angk := g ((H (u))).
In vector{matrix notation (3.22) becomes

du _ .
i A(u) u; (3.23)

n=1 2N , (k)
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where the matrix A(u) = (ax (u))k is given by

|
8
3 %7 (12 N o (K);
R P
a = g;h# (I = k); (3.24)
5 n=1 (2N, (k) ™"
0] (else)

Let us now verify that (S1){(S5) are ful lled.
SinceH 2 C' (RV;R? ?) and g2 C' (R? ?), we haveA 2 C* (RN; RN V),
This proves (S1).
The symmetry of A follows directly from (3.24) and the symmetry of the neigh-
bourhood relation:
I 2Nnq(k) ( k2N,(l):

By the construction of A it is also evident that all row sums vanish, i.e. (S3)
is satis ed. Moreover, sinceg is positive, it follows that a,; 0 for all k 6 | and,
thus, (S4) holds.

In order to show that A is irreducible, let us consider two arbitrary pixelk and
|. Then we have to nd Ko,....k; 2 J with ko= k and k; = | such that ax,., 6 0
forg=0,...,r 1.1f k=1, we already know from (3.24) thata, < 0. In this case

we have the trivial path k = ko = k, = I. For k 6 |, we may choose any arbitrary
path Ko,...,K;, such that k; and kq+1 are neighbours forg=0,...,r 1. Then,
— Skt Gkgu
aquq+1 - quq >0

for somen 2 f 1; 2g. This proves (S5).

Remarks:

(a) We observe that (S1){(S5) are properties which are validor all arbitrary
pixel numberings.

(b) The lter class (P.) is not the only family which leads to semidiscrete I-
ters satisfying (S1){(S5). Interestingly, a semidiscret&ersion of the Perona{
Malik Iter { which is to a certain degree ill-posed in the corinuous setting
(cf. 1.3.1) { also satis es (S1){(S5) and, thus, reveals alhe discussed well-
posedness and scale-space properties [425]. This is duehi fact that the
extremum principle limits the modulus of discrete gradienapproximations.
Hence, the spatial discretization implicitly causes a redarization. These
results are also in accordance with a recent paper by Pollak al. [332].
They study an image evolution under an ODE system with a disotinuous
right hand side, which has some interesting relations to thEmit case of a
semidiscrete Perona{Malik model. They also report stabledhaviour of their
process.
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3.4.2 Anisotropic case

If one wishes to transfer the results from the isotropic cade the general aniso-
tropic setting the main di culty arises from the fact that, d ue to the mixed deriva-
tive expressions, it is not obvious how to ensure (S4), the noegativity of all o -
diagonal elements ofA(u). The theorem below states that this is always possible
for a su ciently large stencil.

Theorem 6 (Existence of a nonnegative discretization).

Let D 2 R? ? be symmetric positive de nite with a spectral condition nutver
. Then there exists somen( )2 N such thatdiv(D r u) reveals a second-order

nonnegative FD discretization on g2m+1) (2m+1)-stencil.

Proof:
Let us consider somen 2 N and the corresponding (In+1) (2m+1)-stencil. The

\boundary pixels" of this stencil de ne 4m principal orientations ; 2 ( 3;5],
i = 2m+1;::;2m according to
8 .
3 arctan % Gij m);
; = _ arccot 7(?’?71h'3h1 (m<i 2m);
arccot {2t ( 2m+1 i< m):
Now let J, := f1;:::;2m 1g and de ne a partition of ( 5; 5] into 4m 2 subin-
tervals 1y, jij2 I
[1 2r[1 1
( E’E] B i= 2m+1 f_l;{ |I+_l; [ i=1 f_l_{}l:;,
where
8 ,
% 0 (I = 0),
zarctan e — (i2f1m52m 20, i+ v < 5);
| = 2 (i2fLz52m 29, i+ i+ = 3);
% §+ %arctan m (| 2f 1,,2m Zg, it i > 5),
T3 (i=2m 1);
and

i = i (i12f 2m+1;::; 1g):
It is not hard to verify that ;21; for jij2 Jn,.
Let > > 0 be the eigenvalues oD with corresponding eigenvectors
(cos; sin )~ and ( sin; cos )”, where 2 ( 5;3]. Now we show that for
a suitablem there exists a stencil direction , jkj 2 Jn, such that the splitting

dv(Dru)= @, @Qu +@, «@Qu +@, @,u (3.25)
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with e . := (cos ;sin ;) reveals nonnegative \directional di usivities" o, «,
om along the stencil orientations ¢, &, 2m. This can be done by proving the
following properties:

(@) Let 2 1lgandD = EE . Then a nonnegative splitting of type (3.25) is
possible if

min a bcot ;¢ btan 0: (3.26)
(b) Inequality (3.26) is satis ed for

1

— min cot( x )tan ; cot( x k)cot x = km (3.27)
2
with (
_ K (kj2f 1;:::2m  29);
“ W+ ) (ki=2m 1y,
_ b (k=D
k K 1 (kj2f 2 ::;2m  1g):
© Jn o =1

Once these assertions are proved a nonnegative second-odieretization of (3.25)
arises in a natural way, as we shall see at the end of this chapt So let us now

verify (a){(c).

(&) In order to use subsequent indices, |6ty :=0, ' 1 := ¢ where 2 Iy, and
' 2 := 3. Furthermore, let o := o, 1:= y,and ;:= .n. Then (3.25)
requires that

q ! ! !
. ab X @ @u
div ru = —_— =
b c - @€ @e
X2
= @@& cos i i(uxcos ;+ uysin';)
=0
X2
+ @@y sin' i i(uxcos i+ uysin' )
i O . 1 1
i cos" ~ysin'jcos'
= d|v%%F2 '=°F2 - §ru§:

i=0
By comparing the coe cients and using the de nition of ' o, ' ; and ' , we
obtain the linear system

0 10 1 0 1
1 cog
%}O sin  COS 02%} 2—%}bg

0 Sire 1 2
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which has the unique solution

o = a becot y; (3.28)
b

= — 3.29

! SIN k COS ( )

» = C btan : (3.30)

From the structure of the eigenvalues and eigenvectors Df it is easily seen
that
b=( 1 2)sin cos:

Now, > 0,andsince; 2 I we conclude that and ¢ belong to
the same quadrant. Thus, ; is always nonnegative. In order to satisfy the
nonnegativity of o and , we need that

min a bcot ¢; ¢ btan 0:

(b) Let -+ km and consider the case 8 < 5. By de ning

B(') = cos® sin' cos cot y;
C(') := sin? +sin' cos cot
we get
!
C . C(
1 cot( x k)tan | = () _ min L
2

B(«) 200 B()
SinceB(' ) < 0 on ( x; ) we have
1B( )+ 2CC) 0 8" 2( 4 ) (3.31)
Because of
B(") O 8' 2[ 3 «b;
C') O 8" 2 [0 5];

and the continuity of B(" ) and C(' ) we may extend (3.31) to the entire
interval 1, = ( « 1; «]. In particular, since 2 Iy, we have

0 1B( )+ 2C()
= ( ,co€ + ,siP) (1 ,)sin cos cot y:
By the representation

! ! ! !
ab cos sin 1 0 cos sin

b ¢ sin cos 0 sin  cos
!
108 + ,sinP (1 ) sin cos
(1 ) sin cos LSiP + ,cog
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we recognize that this is just the desired condition
a bcot 0: (3.32)

For the case 5 < < 0 a similar reasoning can be applied leading also to
(3.32).

In an analogous way one veri es that

= cot( x k) cot =) c btan 0:
2

(c) Letus rstconsiderthecasel i 2m 2.Then, ; = ;, and the de nition
of ; implies that

cot tan ; = cot ; tan i1

Solving for cot ; and tan ;, respectively, yields

1 q
cot ; = > cot | tan i + (cot ; tan j;1)2+4
1 q
tan ; = 5 cot j+tan 4 + (cot ; tan 4)2+4
By means of these results we obtain
cot ; +tan 2
cot(; Htan | = ————L = 1+ ¢ :
cot ; cot (cot j+tan j.+1)2 1
(cot | tan 41 )2+4
Let us now assume that1 i m 1. Then we have
(i+1) h;
tan | = —— =
i+1 mhl
cot | mh,
' ih,
This gives
(cot ;+tan i41)2 1 _ 1 (iy:
(cot | tan ;1)2+4 1 Am?i ;1 gn(i) ~ ™

Ny, iinay D
m2L+i(i+1) =2
ho ( )hl

For m > %ﬂ—i the function g (x) is bounded and attains its global maximum
in r

=

Xm = i+ 1 1+12m2ik

141
6 6

NN
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Thus,forl i m 1,
gm (i) On(Xm) ! 0" for m!1l ;
which yields
fm(i) é! 1" for m!1
1 On(Xm)
This gives

. 2
min  cot( ; ) tan 1+g—— 11 for m!1l
1 i m1

Form i 2m 2 similar calculations show that by means of

mh2 ]
@m i Dhy’
@m i)h,
mh2

tan i+1

cot

one obtains
min cot(; )tan ; ! 1 for m!1l

m i 2m 2

Fori=2m 1 we have

cot 2m 1 2m 1 tan 2m 1 = cot —

= tan® -+
4 2

1 for m!1l

It is not hard to verify that for 2m+1 i 1 the preceding results
carry over. Hence,

m|I!ETl “rjrznﬂ cot( i ) tan = 1: (3.33)

Now, in a similar way as above, one establishes that
!

n!l!gn JIrjrznjrnl1 cot( ; ) cot ; = 1: (3.34)

From (3.33) and (3.34) we nally end up with the assertion

im mn ;, = 1:
ml!l jfii2dm
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Remarks:

(@)

(b)

(©)

We observe that the preceding existence proof is constitive. Moreover,

only three directions are su cient to guarantee a nonnegatie directional

splitting. Thus, unlessm is very small, most of the stencil coe cients can be
set to zero.

Especially for largem, a (2n+l) (2m+l)-stencil reveals much more directions
than those 4n that are induced by the 8n \boundary pixels". Therefore,

even if we use only 3 directions, we may expect to nd stricteestimates
than those given in the proof. These estimates might be impred further by

admitting more than 3 directions.

For a speci ed di usion tensor function D it is possible to give a-priori es-
timates for the required stencil size: using the extremum prciple it is not
hard to show that

it u et = 0K Wi 4—‘%‘;_—“ on  (O1);

where the notations from Chapter 2 have been used. Thanks the uniform
positive de niteness ofD there exists an upper limit for the spectral condition
number of D. This condition limit can be used to x a suitable stencil sie.

(d) The existence of a nonnegative directional splitting ditinguishes the lter

class P.) from morphological anisotropic equations such as mean eature
motion. In this case it has been proved that it is impossibleot nd a nonneg-
ative directional splitting on a nite stencil [13]. As a remedy, Crandall and
Lions [104] propose to study a convergent sequence of regaktions which
can be approximated on a nite stencil.

Let us now illustrate the ideas in the proof of Theorem 6 by apping them
to a practical example: We want to nd a nonnegative spatial ccretization of
div(Dr u) on a (3 3)-stencil, where

!
ab

D =
bc

and a, band ¢ may be functions ofJ (r u ).
Sincem = 1 we have a partition of ( ;5] into 4m 2 = 2 subintervals:

(2330 =(C z0[ @3] = 1] Iu



94 CHAPTER 3. SEMIDISCRETE DIFFUSION FILTERING

| , and I, belong to the grid angles

h>

1 = arctan —
hy

= arctan hy =

1 - hl —-.

First we focus on the case 2 I, where (cos; sin ) denotes the eigenvector to
the larger eigenvalue ; of D. With the notations from the proof of Theorem 6 we
obtain

1 = E;
1= 1712 5
2 4 2
1 = 51
Therefore, we get
| |
cot( ) tan = cot tan + _ Ll+sin
vt to 4 2 42 ~ 1 sin’
' 1+ cos
cot cot ; = cot? -~ = T ——;
( 1 l) 1 2 1 cos

which restricts the upper condition number for a nonnegate discretization with
21,10 ]
— min 1+sin _1+cos
b 1 sin "1 cos

(3.35)

Thanks to the symmetry we obtain the same condition restricon for 2 | ;.
These bounds on the condition number attain their maximal Vae for h; = h,. In
this case = ; gives

p

11 = 11 = T—%p—g -3+2"2 58284 (3.36)
2
By virtue of (3.28){(3.30) we obtain as expressions for theigkctional di usivities
241 K2
L= b I
o= aib
241 K2
L= dgeb
;=i
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b1+ b o141

jbier 1 jtbier g

+Jbi 1 jtibier ity aj+iby 1 j+2jby
2h1h>

Cij 1+20Cij +Cij +1

4h1h2 Cij +1 + Cij ibij o+ j+ by 4nihz
- 2 s -
+ jbij j by + jbij j+ by
4h1ho 4hih;
ai 1) *t2aij taiv g
2h?
b1+ b gy tiber g jtberga
4h1ho
ai 1 *ay ai+1 5 *aj
2h . . . . 2h
1 jb o1 ajtb o1y 1tibeag 1 bBeig o2 1
. Lo . 4h1ho . - .
jb 1 i+iby jbi+a i+l
2h1hso 2hihs

2h32
b1y 1jtb o1y 1 jbivr 1j b+ 2
4hih; Cij 1%Ci by aj+iby g 4h1hz
. I b .
+ jbij j+ by + jbi by
4h1ho 4h1ho
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This induces in a natural way the following second-order disetization for div(Dr u):

All nonvanishing entries of thep-th row of A(u) are represented in this stencil,
wherep(i;j ) is the index of some inner pixeli(j ). Thus, for instance, the upper
left stencil entry gives the element§(i;j ); p(i 1;j +1)) of A(u). The other nota-
tions should be clear from the context as well, e.dp; denotes a nite di erence
approximation of b(J (r u )) at some grid point (X;;y;).

The problem of nding nonnegative di erence approximatiors to elliptic expres-
sions with mixed derivatives has a long history; see e.g. 2920, 170]. Usually it
is studied for the expression

a(x;y) @u+2h(x;y) @ u+ c(x;y) @yu:

The approach presented here extends these results to
@ a(xy)@u + @ bix;y)@u + @ b(x;y)@u + @ c(x;y) Qu

and establishes the relation between the condition numbef of)g and the non-
negativity of the di erence operator. Recently Kocan desdoed an interesting al-
ternative to obtain upper bounds for the stencil size as a fation of the condition
number [238]. His derivation is based on the diophantine pbotem of approximating
irrationals by rational numbers.
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Chapter 4

Discrete di usion ltering

This chapter presents a discrete class of di usion process®r which one can estab-
lish similar properties as in the semidiscrete case concemg existence, uniqueness,
continuous dependence of the solution on the initial imagepaximum-minimum
principle, average grey level invariance, Lyapunov sequees and convergence to a
constant steady-state. We shall see that this class comps -semi-implicit dis-
cretizations of the semidiscrete Iter class®s) as well as certain variants of them
which are based on an additive operator splitting.

4.1 The general model

As in Chapter 3 we regard a discrete image as a vectb2 RN, N 2, and denote
the index setf 1;::;; Ng by J. We consider the following discrete lter classRy):

of f by means of

u©
u(k+1)

f;
Q(u®y u®; 8k 2 Ny:

.9
Letf 2 RN . Calculate a sequenceu(¥),,n, of processed version
whereQ = ( g; ) has the following properties: 3

(D1) continuity in its argument: Q2 C(RN;RN Ny, -
(D2) symmetry: g (V)= qgi(v) 8i;j 2J; 8v2RNY,
(D3) unit row sum: PjZJ g (v)=1 8i2J 8v2RNY,
(D4) nonnegativity: g(v) O 8i;j 2J;, 8v2RW,

(D5) irreducibility for all v2 RN,

(D6) positive diagonal: Gi(v)>0 8i2J; 8v2RN.:

97
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Remarks:

(a) Although the basic idea behind scale-spaces is to have antinuous scale
parameter, it is evident that fully discrete results are ofmportance since, in
practice, scale-space evolutions are evaluated exclugvat a nite number
of scales.

(b) The requirements (D1){(D5) have a similar meaning as the semidiscrete
counterparts (S1){(S5). Indeed, (D1) immediately gives weposedness re-
sults, while the proof of the extremum principle requires (B) and (D4),
and average grey value invariance is based on (D2) and (D3)h& existence
of Lyapunov sequences is a consequence of (D2){(D4), strlcgapunov se-
quences need (D5) and (D6) in addition to (D2){(D4), and the onvergence
to a constant steady-state utilizes (D2){(D5).

(c) Nonnegative matricesQ = (¢g;)2 RM N satisfying P 200 =1 forall i2J
are also calledstochastic matricesMoreover, if Q is stochastic andP i21Gj =
1 for all ] 2 J, then Q is doubly stochastic This indicates that our discrete
di usion processes are related to the theory of Markov chain[370, 223].

4.2 Theoretical results

It is obvious that for a xed Iter belonging to the class (P4) every initial image
f 2 RN generates a unique sequencea).n,. Moreover, by means of (D1) we
know that, for every nite k, u®) depends continuously orfi . Therefore, let us now
prove a maximum{minimum principle.

Proposition 3 (Extremum principle).
Let f 2 RN and let (u®),,n, be the sequence of ltered images according tByj.
Then,

a u®¥ b 8i2J 8k2Ng (4.1)

where
a:= rpzlr} fi; (4.2)
b:= rrj12aJx f: (4.3)

Proof:

The maximum{minimum principle follows directly from the fact that, for all i2J
and k2 Ny, the following inequalities hold:

: k+y _ P oy CY « P (k)y (23 K)-
| U; = i U; axu i = ax uy’:
(O J_ZJCh( )% maxup, j2Jqj( ) max up
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i k) = P i ® PP w0 P g0y @3 i (0
(i) oy mqj (ut)y; min up, mqj (ut) min ug’:

4.3 Scale-space properties

All statements from Chapter 3 with respect to invariances ar valid in the discrete
framework as well. Below we focus on proving average greydeinvariance.

Proposition 4 (Conservation of average grey value).
The average grey level

= 1 f (4.4)
. —_— J .
N j2d
is not a ected by the discrete di usion lter:
1 X
N ul = 8k 2 No: (4.5)

j23

Proof:

: P . :
By virtue of (D2) and (D3) we have ,; g; (u®¥)=1forall j 2J andk2 Ng. This
so-calledredistribution property [164] ensures that, for alk 2 Ny,

X X X X X X
k+1) _ k k) _ k k) _ k).
u = G W)y = G W®) u = " uf;
i2J 12323 j23 23 j23
which proves the proposition. 2

As one might expect, the classKy) allows an interpretation as a transformation
which is smoothing in terms of Lyapunov sequences. These ¢tions ensure that
u®) converges to a constant image as! 1 . However, we need less regularity
than in the semidiscrete case: The convex functian which generates the Lyapunov
sequences, needs only to be continuous, but no more di ergtile.

Theorem 7 (Lyapunov sequences and behaviour for k!l ).

Assume that(u®),,n, Satis es the requirements of Py), let a, b, and be de ned
as in (4.2), (4.3), and (4.4), respectively, and let:=( ; ;= )> 2 RN.

Then the following properties are ful lled:

(a) (Lyapunov sequences)
For all convexr 2 C[a; g the sequence

X
VO = u®y = T r®y; k 2 No
i2J

is a Lyapunov sequence:
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@) (u®) (o 8k2Ng
(i) V& vo 0 8k2 N,

Moreover, if r is strictly convex, thenV® = ( u) is a strict Lyapunov

sequence:
(i) (uUY=(o 0 uk = ¢
(iv) vk (k) =0 0 uk) = ¢
(b) (Convergence)
I(Ililm u = ¢,

Proof:

(@) (i) Average grey level invariance and the convexity of give

X 0)(\' :
(o = r @ iuj(")A
i=1O j=1 N 1
X1
@=" r(uHA
i=1 Nj:l J
= 7 )
j=1
= (uY) (4.6)
(i) For i;j 2 J we de ne
(
. (k) . - .
g (uy.= G 1 (=) @.7)

g; (u®) (i6]):

Using the convexity ofr, the preceding de nition, and the prerequisites
(D2) and (D3) we obtain

0 0 1 1
R X
vk oy = Qr @ g (u(k))uj(k)A r(ui(k))A
i=10 i=1 1
conv. )t\l )(\I
k k
@ g (u)r®) ri)A
i=1  j=1
@7

X!
3 (u®) r(uf)
i=1j=1
XX
(D3)
= a; (u) ru) )
i=1j=1
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XN i
= asmi (UM) r(U™)
i=1 m=1
XX
+ i+ m(U®) r(uly)  r)
i=1 m=1
®2 o: (4.8)

(i) This part of the proof can be shown in exactly the same maner as in
the semidiscrete case (Chapter 3, Theorem 5): Equality in ¢hestimate
(4.6) holds due to the strict convexity ofr if and only if u® = c.

(iv) In order to verify the rst implication, let us start wit h a proof that
V& = v jmpliesul = 1 = ul¥. To this end, assume thatu® is
not constant:

K) o i

k k
7= min ui(k) < maxu-( )= g
0 i2J j23 lo

u
Then, by the irreducibility of Q(u®), we nd lo;:::; 1, 2 J with g = o,
li = joand g,,, 6 0 for p=0;:r 1. Hence, there exists some
Po 2 fO;:;r 1g such thatn = Iy, m = Iy, Ghm(u®) 6 0, and
ul 6 uk), Moreover, the nonnegativity ofQ(u®) gives gy, (u®) > 0,
and by (D6) we haveq,, (u®)) > 0. Together with the strict convexity
of r these properties lead to
0 " 1
r@ gy (u®)uAa
o 1

R
k
(@ oy (u9) U + g (UR) Ul + Gy (UW) UK
=1
j

6 n;m

X
< 7 g U+ g (U9 r(ul) + g (U r(ul)

j&nm

X
oy (u) r(u):

j=1

If we combine this with the results in (4.8), we obtain
00 1 1
(k+1) (k) X X Ky (,(K) (k)
v ve = @@ g u)u A r(u)A
it =1
|§6 1

X
+ 1@ gy ) uPA ()
j=1
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0 1
XX K K
< @ g urY?) A
=1 j=1
“ 0
This establishes thatv®*D) = v®) implies ul = :: = u{’. Then, by

virtue of the grey value invariance, we conclude than® = c.

Conversely, letu® = c. By means of prerequisite (D3) we obtain
0 1
X X X
vk oy = T @ g u®) A r()=0:
1

i=1 j=l i=

(c) Inorder to prove convergence to a constant steady-stat&e can argue exactly
in the same way as in the semidiscrete case if we replace Lyapu functions
by Lyapunov sequences and integrals by sums. See Chapter Bedrem 5 for

more detalils. 2

In analogy to the semidiscrete case the preceding theoremngmwises many
Lyapunov functions which demonstrate the information-redcing qualities of our
lter class. Choosing the convex functionsr(s) := jsi®, r(s) := (s )% and
r(s) .= siIns, we immediately obtain the following corollary.

Corollary 3 (Special Lyapunov sequences).
Let (u®),2n, be a di usion sequence according toRy), and leta and be de ned
as in (4.2) and (4.4). Then the following functions are decasing in k:
(@ ku®k, forall p 1.
. M

(b) Mzpu®] = 27 W ) forall n2N.
j=1

© HL® = " u®inu®), i a> o0
j=1

An interpretation of these results in terms of decreasing engy, decreasing
central moments and increasing entropy is evident.

4.4 Relation to semidiscrete models

4.4.1 Semi-implicit schemes

Let us now investigate in which sense our discrete lter clascovers in a natural
way time discretizations of semidiscrete lters. To this ed, we regardu® as an
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approximation of the solutionu of (Ps) at time t = k , where denotes the time

step size. We consider a nite di erence scheme with two timéevels where the
operator A { which depends nonlinearly onu { is evaluated in an explicit way,

while the linear remainder is discretized in an -implicit manner. Such schemes
are called -semi-implicit. They reveal the advantage that the linear implicit part

ensures good stability properties, while the explicit evahtion of the nonlinear

terms avoids the necessity to solve nonlinear systems of atjans. The theorem

below states that this class of schemes is covered by the dite framework, for

which we have established scale-space results.

Theorem 8 (Scale-space interpretation for -semi-implicit schemes).
Let 2[0;1], > 0, and letA = (g): R" ! RN N satisfy the requirements
(S1){(S5) of section 3.1. Then the -semi-implicit scheme

(k+1) (k)
U o A®) u®D e yu® (4.9)
ful Is the prerequisites (D1){(D6) for discrete di usion m odels provided that

1
(1 ) maxja; (u®)j
i2J

(4.10)

for 2 (0;1). In the explicit case( =0) the properties (D1){(D6) hold for

1

maxias (W] -

and the semi-implicit casg( =1) satis es (D1){(D6) unconditionally.

Proof: Let

B(u®) :
C(u®)y :

I A (u®)y;
l+@ ) A@u®);

(b (u®y)
(g (u®y)

wherel 2 RN denotes the unit matrix. Since (4.9) can be written as

B(u®) u®*D = c(u®)y®

we rst have to show that B (u®) is invertible for all u® 2 RN . Henceforth, the
argumentu® is suppressed frequently since the considerations belove amlid for
all u® 2 RN,

If =0, then B =1 and hence invertible. Now assume that> 0. ThenB is
strictly diagonally dominant, since

(S3) X X (s4) X

hi =1 aj; = 1+ a; > aj jhij 8i2J
j23 j23 j23

isi jsi jsi
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This also shows thath; > 0 for all i 2 J, and by the structure of the o -diagonal
elements ofB we observe that the irreducibility of A implies the irreducibility of
B. Thanks to the fact that B is irreducibly diagonally dominant, b 0 for all
i 6j,andb; > 0foralli2 J, we know from [407, p. 85] thaB ' =: H =: (h;)
exists andh; > 0 for alli;j 2 J. Thus, Q :=(g;) := B !C exists and by (S1) it
follows that Q 2 C(RN; RN N). This proves (D1).

The requirement (D2) is not hard to satisfy: SinceB ! and C are symmetric
and reveal the same set of eigenvectors { namely those Af{ it follows that
Q = B IC is symmetric as well.

Let us now verify (D3). By means of (S3) we obtain

X X ]
hj =1= Gij 8i2J. (4.12)
j23 j23

Let v:=(1;::1) 2 RN. Then (4.12) is equivalent to

Bv = v=Cy; (4.13)
and the invertibility of B gives
v=B v=Hv: (4.14)
Therefore, from
Qv = Hov “&Y py “29

P . .
we conclude that qg; =1 forall i 2 J. This proves (D3).
j2d
In order to show that (D4) is ful lled, we rst check the nonnegativity of C.

Fori 6 j we have
(S4)
G =@ )aj

The diagonal entries yield
G =1+1 ) aj:

If =1wehavegi =1foralli2J.For0 < 1, however, nonnegativity ofC
is not automatically guaranteed: Using (S3){(S5) we obtain

(s3) X (S4);(S5)
Qi = gjj <
j23
j6i

0 8i2J (4.15)

Hence,C(u®) is nonnegative if

1

@ ymaxjaoy - “
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SinceH is nonnegative, we know that the nonnegativity ofC implies the nonneg-
ativity of Q=HC.

Now we want to prove (D5). If =1, then C = |, and by the positivity of H
we haveq; > O for alli;j 2 J. Thus, Q is irreducible.

Next let us consider the case ® < 1 and (u®)). Then we know that
C is nonnegative. Using this information, the positivity ofH, the symmetry of C,
and (4:12) we obtain

X X o
g = Nik Cij min hi G > 0 8ij 2

k2J |k_J{z_} \<_ z_}

which establishes the irreducibility ofQ.
Finally, for = 0, we haveQ = C. For i;j 2 J with i 6 ] we know that
a; (u®) > 0 implies¢; (u®) > 0. Now for

1
ia. (11(K)Yi
maxja; (u®))j

it follows that ¢;(u®) > 0 for all i 2 J and, thus, the irreducibility of A(u®)
carries over toQ(u®).

In all the abovementioned cases the time step size restrimtis for ensuring irre-

ducibility imply that all diagonal elements of Q(u®)) are positive. This establishes
(D6). 2

Remarks:

(&) We have seen that the discrete lter class Ry) { although at rst glance
looking like a pure explicit discretization { covers the -semi-implicit case as
well. Explicit two-level schemes are comprised by the chaic =0. Equation
(4.11) shows that they reveal the most prohibitive time steize restrictions.

(b) The conditions (4.10) and (4.11) can be satis ed by meanef an a-priori
estimate. Since the semi-implicit scheme ful Is (D1){(D6)we know by The-
orem 3 that the solution obeys an extremum principle. This nans that u®
belongs to the compact sefv 2 RN kvk; k fky gforall k 2 Ng. By
A2 C(R"Y; RN M) it follows that

n (0]
Ki :=max jai(v)j i2J;v2 RN; kvk; Kk fk;

exists, and (4.15) shows thaK; > 0. Thus, choosing

1
(1 )Kx¢
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ensures that (4.10) is always satis ed, and

1

<
Ky

guarantees that (4.11) holds.

If > 0, alarge linear system of equations has to be solved. Its ®m matrix
is symmetric, diagonally dominant, and positive de nite. Wually, it is also
sparse: For instance, if it results from a nite di erence dscretization on a
(2p+1) (2p+1)-stencil it contains at most 4p?+4 p+1 nonvanishing entries
per row. One should not expect, however, that in thé-th row these entries
can be found within the positionsifi 2p?> 2p] to [i;i +2p?+2p]. In general,
the matrix reveals a much larger bandwidth.

Applying standard direct algorithms such as Gaussian elimation would
destroy the zeros within the band and would lead to an immenstorage and
computation e ort. Modi cations in order to reduce these problems [122] are
quite di cult to implement.

Iterative algorithms appear to be better suited. Classicamethods such as
Gau {Seidel or SOR [447] are easy to code, they do not need amohal
storage, and their convergence can be guaranteed for the cpéstructure of
A. Unfortunately, they converge rather slowly. Faster iterive methods such
as preconditioned conjugate gradient algorithms [348] nesigni cantly more
storage, which can become prohibitive for large images. Adigal problem of
iterative methods is that their convergence slows down foailger , since this
increases the condition number of the system matrix. Multigd methods [59,
179] are one possibility to circumvent these di culties; awther possibility
will be studied in Section 4.4.2.

For =1 we obtain semi-implicit schemes which do not su er from tne
step size restrictions. In spite of the fact that the nonlinarity is discretized
in an explicit way they are absolutely stable in the maximum arm, and
they inherit the scale-space properties from the semidigte setting regard-
less of the step size. Compared to explicit schemes, this adtage usually
overcompensates for the additional e ort of resolving a lear system.

By the explicit discretization of the nonlinear operato A it follows that all
schemes in the preceding theorem are of rst order in time. T$ should not
give rise to concern, since in image processing one is in gahenore inter-
ested in maintaining qualitative properties such as maximm principles or
invariances rather than having an accurate approximation fothe continu-
ous equation. However, if one insists in second-order sclesnone may for
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instance use the predictor{corrector approach by Douglasd Jones [121]:

k=2 k)
=2
kD k)

A(u(k)) u(k+l =2);

A(u(k+1=2)) %u(k+l) + %u(k) :

This scheme satis es the properties (D1){(D6) for  2=Kj.

(f) The assumptions (S1){(S5) are su cient conditions for the -semi-implicit
scheme to full (D1){(D6), but they are not necessary. Nonngativity of
Q(u™) may also be achieved using spatial discretizations whetgu®)) has
negative o -diagonal elements (see [55] for examples).

4.4.2 AOS schemes

We have seen that, for > 0, the preceding -semi-implicit schemes require to
solve a linear system with the system matrixl( A (u®)). Since this can be
numerically expensive, it would be nice to have an e cient dernative. Suppose
we know a splitting

xXn

Ay =" AuM); (4.16)

1=1
such that the m linear systems with system matricesl( m A (u®))), 1 =1,....,m
can be solved more e ciently. Then it is advantageous to stugl instead of the -
semi-implicit scheme

xXn xXn
kD = AUP) e ) T AW U @17
I=1 1=1

its additive operator splitting (AOS) variant [424]

1 X0
uk = =T mA @) T @ mA ) U@ (4.18)

=1

By means of a Taylor expansion one can verify that, althoughdbh schemes are not
identical, they have the same approximation order in spacend time. Hence, from
a numerical viewpoint, they are both consistent approximabns to the semidiscrete
ODE system from (s).

The following theorem clari es the conditions under which ®S schemes create
discrete scale-spaces.
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Theorem 9 (Scale-space interpretation for AOS schemes).
Let 2(0;1], > O, and letA = (a;); :RY! RY N I1=1,..m gatisfy the
requirements (S1){(S4) of section 3.1. Moreover, assumeahA(u) = 2, A(u)
is irreducible for all u 2 RN, and that for eachA, there exists a permutation
matrix P, 2 RN N such thatP,AP" is block diagonal and irreducible within each
block. Then the following holds:

For 2 (0;1), the AOS scheme (4.18) ful Is the prerequisites (D1){(D6) b
discrete di usion scale-spaces provided that

1
(L) m maxjay (ut)j '
[N

(4.19)

In the semi-implicit case( =1), the properties (D1){(D6) are unconditionally
satis ed.

Proof: The reasoning is similar to the proof of Theorem 8. Let

(byr (u9));
(cyr (u));

B, (u®) :
Ci(u®) -

I mA (u®);
l+@  )m A, (u®):

B, is invertible because of its strict diagonal dominance:

X X X
(S3) (S4)
iy = 1+ m i > m aj =

jbyj  8i2d
j23 j23 j23
i6i i6i i6i
SinceA,(u) is continuous inu by virtue of (S1), it follows that
X 1
B, “(u) Gi(u)

=1

Q(u) :=

1
m
is also continuous inu. This proves (D1).

The symmetry property (D2) of Q results directly from the fact that B, * and
C, are symmetric and share their eigenvectors with those 85 .

In the same way as in the proof of Theorem 8 one shows th&t 'C; has only
unit row sums for alll. Thus, the row sums ofQ are 1 as well, and (D3) is satis ed.

To verify (D4), we utilize that B, is strictly diagonally dominant, b > 0 for
alli,andby Ofori & j. Under these circumstances it follows from [284, p. 192]
that H, := B, * is nonnegative in all components. Thus, a su cient conditio for
proving (D4) is to ensure thatC, is nonnegative for alll. For i 6 | we have

(S4)
Gi = (1 )may 0:
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The diagonal entries yield
Gi =1+(1 )may:

If =1wehaveg; =1foralli2J. ForO< < 1, however, nonnegativity of
C is not automatically guaranteed: Sincé, satis es (S3) and (S4), we know that
aj O, for all i. Moreover, by (4.15) it follows that for everyi there exists anl
with a; < 0. Thus, requiring

1

_. (k)
© @ mmaa oy O
1

guarantees that
Gi >0 8i2J; 8l=1;::m: (4.20)

Next we prove (D5), the irreducibility of Q. Suppose thata;;;, 6 0 for some
i0;jo 2 J. Then there exists anly 2 f 1;:::;mg such that a;,;,, 6 0. Denoting B, *
by H, = (hj )i , we show now thata;,;,, 6 O implies h;,, > O.

This can be seen as follows: There exist permutation matre®,, | = 1;::;;m
such thatP,B,P," is block diagonal. Each block is irreducible and strictly digonally
dominant with a positive diagonal and nonpositive o -diagmals. Thus, a theorem
by Varga [407, p. 85] ensures that the inverse of each blockntains only positive

elements. As a consequenca;,i, 6 0 implies hjgj,, > O.
Together with (4.20) this yields
0 1
1 X
. - . . + hi . . g > 0O
obe = m %(,_n)g(,o_jo) [y g ™ [ligely figely
’ ' 0 0 >0 >0

Recapitulating, this means that, for <  (u®),
Aijio 60 :) Gojo = 0: (421)

Thus, the irreducibility of A carries over toQ, and (D5) is proved.

Moreover, (4.21) also proves (D6): By virtue of (4.15) we hava; < O for all
i 2 J. Therefore,Q must have a positive diagonal. 2

Remarks:

(a) In analogy to the unsplit -semi-implicit schemes, the case = 1 is especially
interesting, because no time step size restriction occur8gain, it is also
possible to construct a predictor{corrector scheme of Dolag{Jones type
[121] within the AOS framework:

_ X 1
u(k+l =2) = | %m A I(u(k)) u(k)’

1=1

- 1 -
gkt = | %m A (uk+1=2) | + %m A (uket=2y Y.

S|l 3|k

1
=
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It satis es (D1){(D6) for < 2=K;, whereK; is determined by the a-priori
estimate

n [0}
Ki:= mmax jag (v)j i2J3;12f1:5mg v2 RY; kvk, k fkg

However, the AOS{Douglas{Jones scheme is only rst order aarate in time.

(b) The fact that AOS schemes use aadditive splitting ensures that all coordi-

(©)

nate axes are treated in exactly the same manner. This is inmoast to the
various conventional splitting techniques from the literture [120, 277, 286,
354, 442]. They aranultiplicative splittings. A typical representative is

Gy = T Au®)  tu®;

1=1
Since in the general nonlinear case the split operatofg, | = 1,..., m do not
commute, the result of multiplicative splittings will depend on the order of
the operators. In practice, this means that these schemesogluce di erent
results if the image is rotated by 90 degrees. Moreover, masultiplicative
splittings lead to a nonsymmetric matrix Q(u®). This violates requirement
(D2) for discrete scale-spaces.

The result u**) of an AOS scheme can be regarded as the averagerof
Iters of type

VU= T mA ) T )mA®) u® (1 =15mm):

Sincev,(k+l) , 1 =1,...,m can be calculated independently from each other, it
is possible to distribute their computation to di erent processors of a parallel

machine.

(d) AOS schemes with =1 have been presented in [424, 430] as e cient dis-

cretizations of the isotropic nonlinear di usion Iter of Cate et al. [81]. In
Section 1.3.2 we have seen that this lter is based on the PDE

@u =div(g(jr u j?) r u):

. - P
In this case, a natural operator splittingA = = 2, A, results from a decom-
position of the divergence expression into one-dimensidriarms of type

@(g@r uj @u)  (I=1;:;m):

This separation is very e cient: There exist permutation matrices P, (pixel
orderings) such thatP,A|P," is block diagonal and each block is diagonally
dominant and tridiagonal. Hence, the corresponding lineaystems can be
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(€)

solved in linear e ort by means of a simple Gaussian algorith. The resulting
forward substitution and backward elimination can be regated as a recursive
Iter.

A parallel implementation assigning these tridiagonal sigystems to di erent
processors is described in [431]. The denoising of a med@d) ultrasound
data set with 138 208 138 voxels on an SGI Power Challenge XL with
eight 195 MHz R10000 processors was possible in less than tute.

The idea to base AOS schemes on decompositions into om&e&hsional op-
erators can also be generalized to anisotropic di usion #rs: Consider for
instance the discretization on a (3 3)-stencil at the end of Section 3.4.2. If
it ful Is (S1){(S5), then a splitting of such a 2-D lter into 4 one-dimensional
di usion processes acting along the 4 stencil directions tsaes all prerequi-
sites of Theorem 9.



112 CHAPTER 4. DISCRETE DIFFUSION FILTERING



Chapter 5

Examples and applications

The scale-space theory from Chapters 2{4 also covers metoslich as linear or
nonlinear isotropic di usion Itering, for which many inte resting applications have
already been mentioned in Chapter 1. Therefore, the goal dig¢ present chapter is
to show that a generalization to anisotropic models with diusion tensors depend-
ing on the structure tensor o ers novel properties and apptation elds. Thus, we
focus mainly on these anisotropic techniques and juxtaposiee results to other
methods. In order to demonstrate the exibility of anisotrgic di usion Itering,
we shall pursue two di erent objectives:

smoothing with simultaneous edge-enhancement,
smoothing with enhancement of coherent ow-like textures.

All calculations for diusion ltering are performed using semi-implicit FD
schemes with time steps t 2 [2;5]. In order to compare anisotropic di usion to
other methods, morphological scale-spaces and modi cat® of them have been
discretized as well. For MCM and AMSS this is achieved by mearof explicit FD
schemes (cf. 1.6.4) with t :=0:1and t :=0:01, respectively. Dilation with a at
structuring element is approximated by an Osher-Sethian Beme of type (1.88)
with t := 0:5, and dilation with a quadratic structuring function is performed
in a noniterative way using van den Boomgaard's algorithm &m [51]. On an
HP 9000/889 workstation it takes less than 0.3 CPU seconds talculate one
nonlinear di usion step for a 256 256 image, and MCM, AMSS or dilation with
a disc require approximately 0.06 seconds per iteration. pical dilations with a
guadratic structuring function take less than 0.3 seconds.

113
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5.1 Edge-enhancing di usion

5.1.1 Filter design

In accordance with the notations in 2.2, let 1, -, with 4 » be the eigenvalues
of the structure tensorJ , and v;, v, the corresponding orthonormal eigenvectors.
Since the di usion tensor should re ect the local image strature it ought to be
chosen in such a way that it reveals the same set of eigenvestu,, v, asJ . The
choice of the corresponding eigenvalues, , depends on the desired goal of the
Iter.

If one wants to smooth preferably within each region and aim® inhibit dif-
fusion across edges, then one can reduce the di usivity perpendicular to edges
the more the higher the contrast ; is, see 1.3.3 and [415]. This behaviour may be
accomplished by the following choicenf 2 N, C,, > 0, > 0):

1( 1) = 9 1); (5.1)
2 .= 1 (52)
with 8
<1 (s 0
o(s) = 1 exp (szcg“m (s> 0): (5.3)

This exponentially decreasing function is chosen in ordeo tful | the smoothness
requirement stated in @), cf. 2.3. Sincer u remains bounded on  [0;1 ) and

1= jr u j?, we know that the uniform positive de niteness oD is automatically
satis ed by this lter.

The constant C, is calculated in such a way that the ux (s) = sg(s) is
increasing fors 2 [0; ] and decreasing fois 2 (; 1 ). Thus, the preceding lIter
strategy can be regarded as an anisotropic regularizatiorf the Perona{Malik
model.

The choicem := 4 (which implies C4, = 3:31488) gives visually good results
and is used exclusively in the examples below. Since in thiscion we are only
interested in edge-enhancing di usion we may set the integtion scale of the
structure tensor equal to 0. Applications which require noranishing integration
scales shall be studied in section 5.2.

5.1.2 Applications

Figure 5.1 illustrates that anisotropic di usion lItering is still capable of possessing
the contrast-enhancing properties of the Perona{Malik ler (provided the regu-
larization parameter is not too large). It depicts the temporal evolution of a
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Figure 5.1: Anisotropic di usion ltering of a Gaussian-type function,
= (0 ;256f¢, =3:6, = 2.From top left to bottom right: t =0,
125, 625, 3125, 15625, 78125.
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Gaussian-like function and its isolines.It can be observed that two regions with
almost constant grey value evolve which are separated by arfg steep edge. Edge
enhancement is caused by the fact that, due to the rapidly dezasing di usivity,
smoothing within each region is strongly preferred to di uen between the two
adjacent regions. The edge location remains stable over aywéong time interval.
This indicates that, in practice, the determination of a suiable stopping time is
not a critical problem. After the process of contrast enhamsnent is concluded, the
steepness of edges decreases very slowly until the gradreaiches a value where no
backward di usion is possible anymore. Then the image comges quickly towards
a constant image.

Let us now compare the denoising properties of di erent di gion Iters. Figure
5.2(a) consists of a triangle and a rectangle with 70 % of alixels being completely
degraded by noise. This image is taken from the software page MegaWave
Test images of this type have been used to study the behavioof Iters such
as [13, 15, 16, 99, 102]. In Fig. 5.2(b) we observe that linedrusion lItering
is capable of removing all noise, but we have to pay a price:ghimage becomes
completely blurred. Besides the fact that edges get smootheso that they are
harder to identify, the correspondence problem appears: ges become dislocated.
Thus, once they are identi ed at a coarse scale, they have tceltraced back in
order to nd their true location, a theoretically and practically rather di cult
problem.

Fig. 5.2(c) shows the e ect when applying the isotropic nomear di usion
equation [81]

@u =div(g(r u j?)r u) (5.4)

with g as in (5.3). Since edges are hardly aected by this processpniinear
isotropic di usion does not lead to correspondence problesmwhich are charac-
teristic for linear ltering. On the other hand, the drastically reduced di usivity
at edges is also responsible for the drawback that noise atges is preserved.

Figure 5.2(d) demonstrates that nonlinear anisotropic lering shares the ad-
vantages of both methods. It combines the good noise elimtmay properties of
linear di usion with the stable edge structure of nonlinearisotropic ltering. Due
to the permitted smoothing along edges, however, cornerstgeore rounded than
in the nonlinear isotropic case.

The scale-space behaviour of di erent PDE-based methods jisxtaposed in
Figures 5.3{5.6, where an MRI slice of a human head is procedq414, 423].

LExcept for Figs. 5.1, 5.3{5.6, where contrast enhancementsito be demonstrated, all images
in the present work are depicted in such a way that the lowest ®@lue is black and the highest one
appears white. They reveal a range within the interval [Q 255] and all pixels have unit length in
both directions.
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Figure 5.2: Restoration properties of di usion lters. (a) Top Left:
Test image, = (0 ;128Y. (b) Top Right: Linear diusion, t = 80.

(c) Bottom Left: Nonlinear isotropic diusion, = 35, =3,
t = 80. (d) Bottom Right: Nonlinear anisotropic di usion, = 3:5,
=3, t =80.

Again we observe that linear di usion (Fig. 5.3(a)) does nobnly blur all struc-
tures in an equal amount but also dislocates them more and newith increasing

scale.

A rst step to reduce these problems is to adapt the di usivily to the gradient
of the initial image f [147]. Fig. 5.3(b) shows the evolution under

@u =div (g(ir fi%) r u); (5.5)
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where a di usivity of type [88]

) ) 1
aiir fj?) = g——"ouo——o ( > 0): (5.6)
1+jr fj2=2

is used. Compared with homogeneous linear di usion, edgeswain better localized
and their blurring is reduced. On the other hand, for largd the Itered image
reveals some artifacts which re ect the di erential strucure of the initial image.

A natural idea to reduce the artifacts of inhomogeneous liae di usion ltering
would be to introduce a feedback in the process by adapting éhdi usivity g to
the gradient of the actual imageu(x;t) instead of the original imagef (x). This
leads to the nonlinear di usion equation [326]

@u =div(g(r ujd) r u): (5.7)

Figure 5.3(c) shows how such a nonlinear feedback is usefalihcrease the edge
localization in a signi cant way: Structures remain well-bcalized as long as they
can be recognized. Also blurring at edges is reduced very mudhe absolute
contrast at edges, however, becomes smaller.

The latter problem can be avoided using a di usivity which dereases faster
than (5.6) and leads to a nonmonotone ux function. This is lustrated in Figure
5.4(a) where the regularized isotropic nonlinear di usioniter (5.4) with the di u-
sivity (5.3) is applied. At the chin we observe that this equion is indeed capable
of enhancing edges. All structures are extremely well-ldcaed and the results are
segmentation-like. On the other hand, also small structuseexist over a long range
of scales if they di er from their vicinity by a su ciently la rge contrast. One can
try to make this lter faster and more insensitive to small-s&ze structures by in-
creasing the regularizing Gaussian kernel size(cf. Fig. 5.4(b)), but this also leads
to stronger blurring of large structures, and it is no longepossible to enhance the
contour of the entire head.

Anisotropic nonlinear di usion (Fig. 5.4(c)) permits di u sion along edges and
inhibits smoothing across them. As in Figure 5.2(d), this asses a stronger round-
ing of structures, which can be seen at the nose. A positivensequence of this
slight shrinking e ect is the fact that small or elongated aml thin structures are
better eliminated than in the isotropic case. Thus, we recogge that most of the
depicted \segments" coincide with semantically correct gbcts that one would ex-
pect at these scales. Finally the image turns into a silhouet of the head, before
it converges to a constant image.

The tendency to produce piecewise almost constant regiomglicates that dif-
fusion scale-spaces with nonmonotone ux are ideal preprssing tools for seg-
mentation. Unlike di usion{reaction models aiming to yield one segmentation-like
result fort ' 1 (cf. 1.4), the temporal evolution of these models generates
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complete hierarchical family of segmentation-like images. The contrast-enhancing
quality distinguishes nonlinear di usion lters from most other scale-spaces. It
should be noted that contrast enhancement is a local phenonman which cannot
be replaced by simple global rescalings of the grey value ggn Therefore, it is
generally not possible to obtain similar segmentation-l&k results by just rescaling
the grey values from a scale-space which is only contrastiteing.

The contrast and noise parameters and give the user the liberty to adapt
nonlinear di usion scale-spaces to the desired purpose imder to reward inter-
esting features with a longer lifetime. Suitable values fahem should result in a
natural way from the speci c problem. In this sense, the timd is rather a para-
meter of importance, with respect to the speci ed task, thara descriptor of spatial
scale. The traditional opinion that the evolution paramete t of scale-spaces should
be related to the spatial scale re ects the assumption that acale-space analysis
should be uncommitted. Nonlinear di usion Itering renounces this requirement by
allowing to incorporate a-priori information (e.g. about he contrast of semantically
important structures) into the evolution process. The basi idea of scale-spaces,
however, is maintained: to provide a family of subsequentlsimpli ed versions of
the original image, which gives a hierarchy of structures anallows to extract the
relevant information from a certain scale.

Besides these speci c features of nonlinear di usion scadpaces it should be
mentioned that, due to the homogeneous Neumann boundary abtion and the
divergence form, both linear and nonlinear di usion Iters preserve the average
grey level of the image.

This is not true for the morphological Iters and their modi cations which are
depicted in Fig. 5.5 and 5.6.

Figure 5.5(a) and (b) show the result under continuous-saalilation with a at
disc-shaped structuring element and a quadratic structung function, respectively.
From Section 1.5.3 and 1.5.6 we know that their evolution e@tions are given by

@ = jr uj; (5.8)

for the disc, and by
@ = jr uj? (5.9)

for the quadratic structuring function. In both cases the nmber of local maxima
is decreasing, and maxima keep their location in scale-spagntil they disappear
[206, 207]. The fact that the maximum with the largest grey Vae will dominate

at the end shows that these processes can be sensitive to eadisiaxima might

be caused by noise), and that they usually do not preserve tlawerage grey level.
It is not very dicult to guess the shape of the structuring function from the

scale-space evolution.



120 CHAPTER 5. EXAMPLES AND APPLICATIONS

Figure 5.3: Evolution of an MRI slice under di erent PDEs.Top: Original im-
age, = (0;236Y. (a) Left Column: Linear di usion, top to bottom: t = 0,
125, 50, 200.(b) Middle Column: Inhomogeneous linear diusion ( = 8),
t =0, 70, 200, 600.(c) Right Column: Nonlinear isotropic di usion with the
Charbonnier di usivity ( =3), t =0, 70, 150, 400.
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Figure 5.4: Evolution of an MRI slice under di erent PDEs.Top: Original image,

= (0 ;236Y. (a) Left Column: Isotropic nonlinear diusion ( =3, =
1), t = 0, 25000, 500000, 700000@Qb) Middle Column: Isotropic nonlinear
diusion ( =3, =4), t =0, 40, 400, 1500.(c) Right Column: Edge-

enhancing anisotropic diusion ( =3, =1), t=0, 250, 875, 3000.
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Figure 5.5: Evolution of an MRI slice under di erent PDEs.Top: Original image,

= (0 ;236Y. (a) Left Column: Dilation with a disc, t = 0, 4, 10, 20.(b)
Middle Column:  Dilation with a quadratic structuring function, t = 0, 0:25,
1, 4. (c) Right Column: Mean curvature motion,t =0, 70, 275, 1275.
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Figure 5.6: Evolution of an MRI slice under di erent PDEs.Top: Original image,

= (0 ;236Y. (a) Left Column: A ne morphological scale-space,t = 0, 20,
50, 140.(b) Middle Column:  Modi ed mean curvature motion ( =3, =1),
t =0, 100, 350, 1500(c) Right Column: Self-snakes (=3, =1),t=0,
600, 5000, 40000.
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A completely di erent morphological evolution is given by he mean curvature
motion (1.90) depicted in Fig. 5.5(c). Since MCM shrinks leat lines with a ve-
locity that is proportional to their curvature, low-curved object boundaries are
less a ected by this process, while high-curved structure®.g. the nose) exhibit
roundings at an earlier stage. This also explains its exaefit noise elimination
gualities. After some time, however, the head looks almogké a ball. This is in
accordance with the theory which predicts convergence ofl alosed level lines to
circular points.

A similar behaviour can be observed for the a ne invariant mophological scale-
space (1.108) shown in Fig. 5.6(a). Since it takes the time = Zs% to remove
all isolines within a circle of radiuss { in contrast to T = %sz for MCM { we
see that, for a comparable elimination of small structure,hie shrinking e ect of
large structures is stronger for AMSS than for MCM. Thus, thecorrespondence
problem is more severe than for MCM. Nevertheless, the advage of having a ne
invariance may counterbalance the correspondence probl@émcertain applications.
Since the AMSS involves no additional parameters and o ers one invariances
than other scale-spaces, it is ideal for uncommitted imagenalysis and shape
recognition. Both MCM and AMSS give signi cantly sharper edes than linear
di usion ltering, but they are not designed to act contrast-enhancing.

One possibility to reduce the correspondence problem of npbiological scale-
spaces is to attenuate the curve evolution at high-contrastdges. This is at the
expense of withdrawing morphology in terms of invariance aler monotone grey-
scale transformations.

One possibility is to use the damping functiorutsidethe divergence expression.
Processes of this type are studied in [13, 364, 365, 304]. Asiraple prototype for
this idea, let us investigate the modi ed MCM

|

@ = gir udjr ujdv = (5.10)
Iru
with g(jr u j?) asin (1.32). The corresponding evolution is depicted in §i 5.6(b).
We observe that structures remain much better localized thrain the original MCM.
On the other hand, the experiments give evidence that this press is probably
not contrast-enhancing, see e.g. the chin. As a consequertbe results appear less
segmentation-like than those for nonlinear di usion Itering.

Using g(jr u j?) inside the divergence expression leads to
|
ru

= jr ujdi jir u j? _ 5.11
@u = jr ujdiv g(JrUJ)JrUIJ (5.11)
In Section 1.6.6 we have seen that processes of this type aadledl self-snakes
[357]. Since they di er from isotropic nonlinear di usion lters by the jr uj terms

inside and outside the divergence expression, they will npteserve the average
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Figure 5.7: Preprocessing of a fabric image. (deft: Fabric, =
(0; 257Y. (b) Right: Anisotropic diusion, =4, =2, t=240.

grey value. The evolution in Fig. 5.6(c) indicates thag(jr u j2) gives similar edge-
enhancing e ects as in a nonlinear di usion lIter, but one can observe a stronger
tendency to create circular structures. This behaviour wikh resembles MCM is
not surprising if one compares (1.120) with (1.121).

Let us now study two applications of nonlinear di usion Itering in computer
aided quality control (CAQ): the grading of fabrics and woodsurfaces (see also
[413)).

The quality of a fabric is determined by two criteria, namelyclouds and stripes.
Clouds result from isotropic inhomogeneities of the dengitdistribution, whereas
stripes are an anisotropic phenomenon caused by adjacentrds pointing in the
same direction. Anisotropic di usion lters are capable ofvisualizing both quality-
relevant features simultaneously (Fig. 5.7). For a suitabl parameter choice, they
perform isotropic smoothing at clouds and di use in an anidoopic way along -
bres in order to enhance them. However, if one wants to visiusd both features
separately, one can use a fast pyramid algorithm based onder di usion lter-
ing for the clouds [417], whereas stripes can be enhanced bgpeecial nonlinear
di usion Iter which is designed for closing interrupted lines and which shall be
discussed in Section 5.2.

For furniture production it is of importance to classify the quality of wood
surfaces. If one aims to automize this evaluation, one has poocess the image in
such a way that quality relevant features become better visie und unimportant
structures disappear. Fig. 5.8(a) depicts a wood surface ggessing one defect. To
visualize this defect, equation (5.4) can be applied with gal success (Fig. 5.8(b)).



126 CHAPTER 5. EXAMPLES AND APPLICATIONS

Figure 5.8: Defect detection in wood. (aleft: Wood surface, =
(0;256Y. (b) Right: Isotropic nonlinear diusion, =4, = 2,
t = 2000.

In [413] it is demonstrated how a modi ed anisotropic di uson process yields even
more accurate results with less roundings at the corners.

Fig. 5.9(a) gives an example for possible medical applicatis of nonlinear dif-
fusion ltering as a preprocessing tool for segmentation ¢g also [415] for another
example). It depicts an MRI slice of the human head. For detdng Alzheimer's
disease one is interested in determining the ratio betweehe ventricle areas, which
are given by the two white longitudinal objects in the centreand the entire head
area.

In order to make the diagnosis more objective and reliablet is intended to
automize this feature extraction step by a segmentation abgithm. Figure 5.9(c)
shows a segmentation according to the following simpli caan of the Mumford{
Shah functional (1.58):

Z
Es(u;K)= (u f)?dx + jKj: (5.12)

It has been obtained by aMlegaWaverogramme using a hierarchical region grow-
ing algorithm due to Koep er et al. [239]. As is seen in Fig. 9(d), one gets a better

segmentation when processing the original image slightlyy bmeans of nonlinear

di usion ltering (Fig. 5.9(b)) prior to segmenting it.
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Figure 5.9: Preprocessing of an MR slice. (d)op Left: Head, =
(0; 256Y. (b) Top Right: Di usion- ltered, =5 =0:1,t=
2:5. (c) Bottom Left: Segmented original image, = 8192. (d)
Bottom Right: Segmented ltered image, = 8192.

5.2 Coherence-enhancing di usion

5.2.1 Filter design

In this section we shall investigate how the structure tensanformation can be
used to design anisotropic di usion scale-spaces which emite the coherence of
ow-like textures [418]. This requires a nonvanishing intgration scale .

Let again ;, , with » be the eigenvalues ofl , and v, v, the cor-
responding orthonormal eigenvectors. As in 5.1 the diusiotensor D(J (r u ))
ought to possess the same set of eigenvectorslag u ).

If one wants to enhance coherent structures, one should sntto@referably
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Figure 5.10: Local orientation in a ngerprint image. (a)Top Left:

Original ngerprint, = (0 ;256Y. (b) Top Right: Orientation
of smoothed gradient, = 0:5. (c) Bottom Left: Orientation of
smoothed gradient, = 5. (d) Bottom Right: Structure tensor
orientation, =0:5, =4.

along the coherence direction, with a di usivity  , which increases with respect
to the coherence (1  ,)?. This may be achieved by the following choice for the
eigenvalues of the di usion tensorC > 0, m 2 N):

< if 1= o
27 0+ )expﬁ else,

where the exponential function was chosen to ensure the sniotess ofD and the
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Figure 5.11: Anisotropic equations applied to the ngerpnt image.
(a) Left: Mean-curvature motion,t = 5. (b) Right. Coherence-
enhancing anisotropic diusion, =0:5, =4, t=20.

small positive parameter 2 (0;1) keepsD(J (r u )) uniformly positive de nite. 2
All examples below are calculated usin€ :=1, m:=1,and :=0:001.

5.2.2 Applications

Figure 5.10 illustrates the advantages of local orientatio analysis by means of
the structure tensor. In order to detect the local orientatbn of the ngerprint
depicted in Fig. 5.10(a), the gradient orientation of a sligtly smoothed image has
been calculated (Fig. 5.10(b)). Horizontally oriented stictures appear black, while
vertical structures are represented in white. We observe yehigh uctuations in
the local orientation. When applying a larger smoothing kerel it is clear that
adjacent gradients having the same orientation but oppostdirection cancel out.
Therefore, the results in (c) are much worse than in (b). Thetsicture tensor,
however, averages the gradient orientation instead of itsirdction. This is the
reason for the reliable estimates of local orientation thatan be obtained with this
method (Fig. 5.10(d)).

To illustrate how the result of anisotropic PDE methods depads on the direc-
tion in which they smooth, let us recall the example of mean cwature motion (cf.
1.6.1):

@ = u = jr ujcurv(u) (5.13)

with  being the direction perpendicular tor u. Since MCM smoothes by prop-
agating level lines in inner normal direction we recognizéhat its smoothing di-

2Evidently, lters of this type are not regularizations of th e Perona{Malik process: the limit
I 0, ! Oleadsto a linear diusion process with constant di usivity
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Figure 5.12: Scale-space behaviour of coherence-enhaganusion
( =0:5, =2).(a) Top Left: Original fabric image, = (0 ;257Y.
(b) Top Right: t =20. (c) Bottom Left: t = 120. (d) Bottom
Right: t = 640.

rection depends exclusively om u. Thus, although this method is in a complete
anisotropic spirit, we should not expect it to be capable oflasing interrupted
line-like structures. The results in Fig. 5.11(a) con rm ths impression.

The proposed anisotropic di usion lter, however, biaseshe di usive ux to-
wards the coherence orientatiorv, and is therefore well-suited for closing inter-
rupted lines in coherent ow-like textures, see Fig. 5.11(b Due to its reduced
di usivity at noncoherent structures, the locations of thesemantically important
singularities in the ngerprint remain the same. This is an mportant prerequisite
that any image processing method has to satisfy if it is to bepplied to ngerprint
analysis.
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Figure 5.13:(a) Top: High resolution slipring CT scan of a femural bone,

= (0 ;300) (0;186).(b) Bottom Letft: Filtered by coherence-enhancing
anisotropic diusion, =0:5, =6, t=16. (c) Bottom Right: Dito with
t=128.

Figure 5.12 depicts the scale-space behaviour of coheremnbancing aniso-
tropic di usion applied to the fabric image from Fig. 5.7. The temporal behaviour
of this di usion lter seems to be appropriate for visualizng coherent bre agglom-
erations (stripes) at di erent scales, a di cult problem for the automatic grading
of nonwovens [299].

Figure 5.13 illustrates the potential of CED for medical aplications. It depicts
a human bone. Its internal structure has a distinctive textue through the presence
of tiny elongated bony structural elements, thdrabeculae There is evidence that
the trabecular formation is for a great deal determined by té external load. For
this reason the trabecular structure constitutes an impo#nt clinical parameter in
orthopedics. Examples are the control of recovery after ggical procedures, such
as the placement or removal of metal implants, quantifyinghte rate of progression
of rheumatism and osteoporosis, the determination of leftght deviations of sym-
metry in the load or establishing optimal load corrections Y physiotherapy. From
Figure 5.13(b),(c) we observe that CED is capable of enhang the trabecular
structures in order to ease their subsequent orientation atysis.
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Figure 5.14: Image restoration using coherence-enhancegisotropic

diusion. (a) Left: \Selfportrait” by van Gogh (Saint-Remy, 1889;

Paris, Musee d'Orsay), = (0 ;215) (0;275). (b) Right: Filtered,
=05, =4,t=6.

Let us now investigate the impact of coherence-enhancingulion on images,
which are not typical texture images, but still reveal a owdike character. To this
end, we shall process impressionistic paintings by Vincemwan Gogh.

Fig. 5.14 shows the restoration properties of coherencehancing anisotropic
di usion when being applied to a selfportrait of the artist [L61]. We observe that
the di usion Iter can close interrupted lines and enhance he ow-like character
which is typical for van Gogh paintings.

The next painting we are concerned with is called \Road with ¢press and
Star" [162, 429]. It is depicted in Fig. 5.15. In order to demustrate the in uence
of the integration scale , all Iter parameters are xed except for . Fig. 5.15(b)
shows that a value for which is too small does not lead to the visually dominant
coherence orientation and creates structures with a lot ofndesired uctuations.
Increasing the value for improves the image signi cantly (Fig. 5.15(c)). Interest-
ingly, a further increasing of does hardly alter this result (Fig. 5.15(d)), which
indicates that this van Gogh painting possesses a uniformakture scale" re ecting
the characteristic painting style of the artist.

In a last example the temporal evolution of ow-like imagess illustrated by
virtue of the \Starry Night" painting in Fig. 5.16 [160, 419]. Due to the established
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Figure 5.15: Impact of the integration scale on coherencefancing
anisotropic diusion ( = 0:5,t = 8). (a) Top Left: \Road with
Cypress and Star" by van Gogh (Auvers-sur-Oise, 1890; Otter Ri-
jksmuseum Kmller{Maller), = (0 ;203) (0;290). (b) Top Right:
Filtered with = 1. (c) Bottom Left: = 4. (d) Bottom Right:

= 6.
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Figure 5.16: Scale-space properties of coherence-enhama@nisotropic di usion
( =05, =4).(a) Top Left: \Starry Night" by van Gogh (Saint-Remy,
1889; New York, The Museum of Modern Art), =(0;255) (0;199). (b) Top
Right: t =8. (c) Bottom Left: t = 64. (d) Bottom Right: t =512.

scale-space properties, the image becomes gradually senph many aspects, be-
fore it nally will tend to its simplest representation, a constant image with the

same average grey value as the original one. The ow-like claater, however, is
maintained for a very long time?

3Results for AMSS ltering of this image can be found in [305].



Chapter 6

Conclusions and perspectives

While Chapter 1 has given a general overview of PDE-based sntleing and restora-
tion methods, the goal of Chapters 2{5 has been to present aase-space framework
for nonlinear diusion Itering which does not require any monotony assump-
tion (comparison principle). We have seen that, besides tHact that many global
smoothing scale-space properties are maintained, new pbsisies with respect to
image restoration appear.

Rather than deducing a unique equation from rst principleswe have ana-
lysed well-posedness and scale-space properties of a garfamily of regularized
anisotropic di usion Iters. Existence and uniqueness radts, continuous depen-
dence of the solution on the initial image, maximum{minimumprinciples, invari-
ances, Lyapunov functionals, and convergence to a constattady-state have been
established.

The large class of Lyapunov functionals permits to regard #se lters in many
ways as simplifying, information-reducing transformatios. These global smooth-
ing properties do not contradict seemingly opposite localects such as edge en-
hancement. For this reason it is possible to design scaleasps with restoration
properties giving segmentation-like results.

Prerequisites have been stated under which one can prove wmsedness and
scale-space results in the continuous, semidiscrete andatete setting. Each of
these frameworks is self-contained and does not require tbthers. On the other
hand, the prerequisites in all three settings reveal many mailarities and, as a
consequence, representatives of the semidiscrete class lva obtained by suitable
spatial discretizations of the continuous class, while repsentatives of the discrete
class may arise from time discretizations of semidiscretdters.

The degree of freedom within the proposed class of Iters cdre used to tailor
the Iters towards speci c restoration tasks. Therefore, hese scale-spaces do not
need to be uncommitted; they give the user the liberty to inaporate a-priori
knowledge, for instance concerning size and contrast of esglly interesting fea-
tures.

135
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The analysed class comprises linear di usion Itering andhe nonlinear iso-
tropic model of Cate et al. [81] and Whitaker and Pizer [438 but also novel ap-
proaches have been proposed: The use of di usion tensorsté&asl of scalar-valued
di usivities puts us in a position to design real anisotropt di usion processes
which may reveal advantages at noisy edges. Last but not léathe fact that these
Iters are steered by the structure tensor instead of the ragarized gradient allows
to adapt them to more sophisticated tasks such as the enhameent of coherent
ow-like structures.

In view of these results, anisotropic di usion deserves toebregarded as much
more than an ad-hoc strategy for transforming a degraded irga into a more
pleasant looking one. It is a exible and mathematically sond class of methods
which ties the advantages of two worlds: scale-space anadyand image restoration.

It is clear, however, that nonlinear di usion Itering is a young eld which has
certainly not reached its nal state yet. Thus, we can expect lot of new results
in the near future. Some of its future developments, howeveare likely to consist
of straightforward extensions of topics presented in thisekt:

While the theory and the examples in the present book focus @D grey-
scale images, it is evident that most of its results can eagibe generalized to
higher dimensions and vector-valued images. The need forckuextensions
grows with the rapid progress in the development of faster ogputers, the
general availability of a ordable colour scanners and priers, and the wish
to integrate information from di erent channels. Some of tle references in
Chapter 1 point in directions how this can be accomplished.

The various possibilities to include semilocal or global farmation constitute
another future perspective. This could lead to speci callyuned lters for
topics such as perceptual grouping. Coherence-enhancingsatropic di u-
sion is only a rst step in this direction. New Iter models might arise using
other structure descriptors than the (regularized) gradiet or the structure
tensor. Interesting candidates could be wavelets, Gabortdrs, or steerable
Ilters.

In contrast to the linear di usion case, the relation betwea structures at
di erent scales has rarely been exploited in the nonlineamatext. Although
this problem is less severe, since the avoidance of correggence problems
was one of the key motivations to study nonlinear scale-spes; it would cer-
tainly be useful to better understand the deep structure in onlinear di usion
processes. The scale-space stack of these Iters appearb¢owell-suited to
extract semantically important information with respect to a speci ed task.
This eld o ers a lot of challenging mathematical questions
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Most people working in computer vision do not have a speci criowledge
on numerical methods for PDEs. As a consequence, the most alidused
numerical methods for nonlinear di usion ltering are still the simple, but
ine cient explicit (Euler forward) schemes. Novel, more tme-critical appli-
cation areas could be explored by applying implicit schemesplitting and
multigrid techniques, or grid adaptation strategies. In this context it would be
helpful to have software packages, where di erent nonlineali usion lters

are implemented in an e cient way, and which are easy to use faveryone.

The price one has to pay for the exibility of nonlinear di usion ltering is
the speci cation of some parameters. Since these parametdrave a rather
natural meaning, this is not a very di cult problem for someone with ex-
perience in computer vision. Somebody with another primarinterest, for
instance a physician who wants to denoise ultrasound imagesay be fright-
ened by this perspective. Thus, more research on nding songgiidelines
for automatic parameter determination for a task at hand wold encourage
also people without a speci ¢ image processing backgrouna apply nonlin-
ear di usion lters. Several useful suggestions for paranter adaptation can
already be found in [328, 36, 431, 270, 444].

There are not yet many studies which explore the potential afonlinear dif-

fusion ltering when being combined with other image procesng techniques.
Especially combinations with concepts such as data compsem, segmenta-
tion algorithms, tomographic reconstruction techniquesor neural networks
for learning a-priori information might lead to novel applcation areas for
these techniques.

Thus, there still remains a lot of work to be done. It would be e if this book has
inspired its readers to contribute to the solution of some dahe remaining open
problems.
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