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The use.of energy-minimizing curves, known as “snakes,” to 
extract features of interest in images has been introduced by Kass, 
Witkhr & Terzopoulos (Znt. J. Comput. Vision 1, 1987,321-331). 
We present a model of deformation which solves some of the 
problems encountered with the original method. The external 
forces that push the curve to the edges are modified to give more 
stable results. The original snake, when it is not close enough to 
contours, is not attracted by them and straightens to a line. Our 
model makes the curve behave like a balloon which is inflated by 
an additional force. The initial curve need no longer be close to the 
solution to converge. The curve passes over weak edges and is 
stopped only if the edge is strong. We give examples of extracting 
a ventricle in medical images. We have also made a first step 
toward 3D object reconstruction, by tracking the extracted con- 
tour on a series of successive cross sections. 0 1991 Academic press, 1~. 

I. INTRODUCTION 

We introduce a new model for active contours, which 
significantly improves the detection quality of closed 
edges. Our model was used to segment automatically 
noisy ultrasound and magnetic resonance images of the 
beating heart, in both 2 and 3 dimensions. We present the 
features of this new model, with a number of various 
significant experimental results, and we discuss future 
research. 

The use of deformable contour models to extract fea- 
tures of interest in images was introduced by Kass and 
co-workers [I, 21. These models are known as “snakes” 
or energy-minimizing curves. 

We are looking for mathematical descriptions of the 
shapes of objects appearing in images. We assume that 
the objects we are looking for are smooth. We thus define 
an elastic deformable model as in [I]. The model is placed 
on the image and is subject to the action of “external 
forces” which move and deform it from its initial position 
to best fit it to the desired features in the image. 

We are interested in extracting good edges. Usually in 
edge detection, after the gradient of the image is com- 
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puted, the maxima are extracted and then edges are 
linked together. Here we do it another way; we start with 
a continuous curve model and we try to localize it on the 
maxima of the gradient. We draw a simple curve close to 
the intended contours and let the action of the image 
forces push the curve the rest of the way. The final posi- 
tion corresponds to the equilibrium reached at the mini- 
mum of the model’s energy. 

The external forces are derived from the image data or 
imposed as constraints. Internal forces define the physi- 
cal properties of the model. 

If this original idea is due to [l, 3, 41, our model 
presents the following interesting new features which can 
solve some of the problems encountered with the original 
snake method: 

l The external image forces applied on the curve to 
push it to the high gradient regions are modified to give 
more stable results. 

l The original “snake” model, when it is not submit- 
ted to any external forces, finds its equilibrium at a point 
or a line according to the internal parameters and bound- 
ary conditions. Also, a snake which is not close enough 
to contours is not attracted by them. We define a new 
active contour model by adding an inflation force which 
makes the curve behave well in these cases. The curve 
behaves like a balloon which is inflated. When it passes 
by edges, it is stopped if the edge is strong, or passes 
through if the edge is too weak with respect to the infla- 
tion force. This avoids the curve’s being “trapped” by 
spurious isolated edge points, and makes the result much 
more insensitive to the initial conditions. 

l We take into account edge points previously ex- 
tracted by a local edge detector. This allows to combine 
the quality of a good local edge detector, e.g. a Canny- 
Deriche edge extractor [5-71, with a global active model. 

After the main ideas of “snakes” are reviewed in the 
next section, the following section describes the new as- 
pects of our method. We illustrate our technique by 
showing the results of feature extraction in medical im- 
ages. Finally, we give the first 3D reconstruction results 
obtained by propagating the segmentation in a series of 
successive slices. 
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2. ENERGY MINIMIZING CURVES 

2.1. Active Contour Model 

Snakes are a special case of deformable models as pre- 
sented in [2]. 

The deformable contour model is a mapping: 

R = [O, I] + !H2 

.s H u(s) = (x(s), Y(S)). 

We define a deformable model as a space of admissible 
deformations Ad and a functional E to minimize. This 
functional represents the energy of the model and has the 
form 

E: Ad+% 

v H E(u) = I, w,Iv’(s)I* + w*Iv”(s)(* + P(u(s))ds, 

where the primes denote differentiation and where P is 
the potential associated to the external forces. It is com- 
puted as a function of the image data according to the 
desired goal. So if we want the snake to be attracted by 
edge points, the potential should depend on the gradient 
of the image. In the following, the space of admissible 
deformations Ad is restricted by the boundary conditions 
v(O), v’(O), u(l), and u’(l) given. We can also use periodic 
curves or other types of boundary conditions. 

The mechanical properties of the model are controlled 
by the functions wj. Their choice determines the elastic- 
ity and rigidity of the model. 

If v is a local minimum for E, it satisfies the associated 
Euler-Lagrange equation: 

i 

-(w*u’)’ + (w#), + VP(v) = 0 

v(O), v’(O), v(l), and v’(1) being given. 
(1) 

In this formulation each term appears as a force ap- 
plied to the curve. A solution can be seen either as realiz- 
ing the equilibrium of the forces in the equation or as 
reaching the minimum of the energy. 

Thus the curve is under control of two forces: 

l The internal forces (the first two terms) which im- 
pose the regularity of the curve. wI and w2 impose the 
elasticity and rigidity of the curve. 

l The image force (the potential term) pushes the 
curve to the significant lines which correspond to the 
desired attributes. It is defined by a potential of the shape 
.fA P(u(s))ds where 

P(v) = -pz(v)p. 

I denotes the image. The curve is then attracted by the 
local minima of the potential, which means the local max- 
ima of the gradient, that is edges (see 181 for a more 
complete relation between minimizing the energy and lo- 
cating contours). 

l other external forces can be added to impose con- 
straints defined by the user. 

2.2. Numerical Solution 

We discretize the equation by finite differences. 
If F(u) = (F,(v), F2(u)) = -VP(v) + . . . is the sum of 

image and external forces, the equation 

-(w,u’)’ + (w*v”)I) = F(v) 

becomes after finite differences in space (step h) 

i (ai(Vi - Ui-1) - ai+l(Ui+l - Vi)) 

+ + (Ui-2 - 2Vi-* + Vi) 

-2 2 (IJ-1 - 2Ui + Vi+l) 

+ + (Vi+* - 2Ui+l + Ui) 

where we defined ui = u(ih); ai = w,(ih)lh; bi = w2(ih)/h2. 
This can be written in the matrix form 

AV=F, 

where A is pentadiagonal and V and F denote the vectors 
of positions vi and forces at these points F(s). 

Since the energy is not convex, there are many local 
minima of E. But we are interested in finding a good 
contour in a given area. We suppose in fact we have a 
rough estimate of the curve. We impose the condition to 
be “close” to this initial data by solving the associated 
evolution equation 

i 
f$ - (wp’)’ + (w~v”)” = F(u) 

We find a solution of the static problem when the pre- 
vious solution v(t) stabilizes. Then the term au/at tends to 
0 and we achieve a solution of the static problem. 
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The evolution problem becomes after finite differences 
in time (step 7) and space (step h): 

(Id -I- 7A)uf = (uf-’ + TF(u’-I)) (3) 

where Id denotes the identity matrix. 
Thus, we obtain a linear system and we have to solve a 

pentadiagonal banded symmetric positive system. We 
compute the solution using a LU decomposition of (Zd + 
r A). The decomposition need be computed only once if 
the Wi remain constant through time. We stop iterating 
when the difference between iterations is small enough. 

3. IMPROVING THE MODEL 

Solving the formulation described in the previous sec- 
tion leads to two difficulties for which we give solutions 
in this section. In both cases we give a new definition of 
the forces, focusing on the evolution equation formula- 
tion even though the forces no longer derive from a po- 
tential. 

3.1. Instability due to Image Forces 

Let us examine the effect of the image force F = -VP 
as defined in the previous section. 

The direction of F implies steepest descent in P, which 
is natural since we want to get a minimum of P. Equilib- 
rium is achieved at points where P is a minimum in the 
direction normal to the curve. 

However, even though the initial guess can be close to 
an edge, instabilities can occur due to the discretization 
of the evolution problem. We see from Eq. (3) that the 
position at time t, u’, is obtained after moving u’-’ along 
vector rF(u’-‘) and then solving the system, which can be 
seen as smoothing the curve. This leads to the following 
remarks: 

Time Discretization. If TF(u’-I) is too large the point 
u’-’ can be moved too far across the desired minimum 
and never come back (see Fig. 1). So the curve can pass 
through the edge and then make large oscillations without 
reaching equilibrium, or stabilize to a different minimum. 
This problem was avoided by the authors of [l] by man- 
ual tuning of the time step. 

If we choose T small enough such that the move 
TF(u’-I) is never too large, for example never larger than 
a pixel size, then the previous problem is avoided. 

However, only very few high gradient points will at- 
tract the curve and small F will not affect much the curve 
(see Fig. 5) since they are too small compared with the 
internal forces. So instead of acting on the time step, we 
modify the force by normalizing it, taking F = -k VP/ 
]]VP](, where Tk is on the order of the pixel size. So the 
steps cannot be too large, and since the magnitude for F 

- 
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FIG. 1. Instability due to time discretization. Starting from x0, 
#(.x0) is too large and we go away from the good minimum to x2 which 
is also an equilibrium. 

is about one pixel, when a point of the curve is close to an 
edge point, it is attracted to the edge and stabilizes there 
if there is no conflict with the smoothing process. Thus, 
smaller and larger image gradients have the same influ- 
ence on the curve. This is not a difficulty since, in either 
case, the points on the curve find their equilibrium at 
local minima of the potential, along edge points. 

Space Discretization. The force F is known only on a 
discrete grid corresponding to the image, and therefore, 
there can be a zero-crossing without any zero in the grid. 
This means that in the best case a point always oscillates 
between the pixels neighboring the minimum (see Fig. 2). 
This problem is simply solved by bilinear interpolation of 
F at noninteger positions. Thus we have a continuous 
definition of F and equilibrium points correspond to the 
zeros of F. 

Accounting for Previous Local Edge Detection. We 
want to account for a previous local edge detection, ob- 
tained for instance with a Canny-Deriche edge detector 

FIG. 2. Instability due to space discretization. On the left, with the 
discrete force there is no equilibrium point. There is an oscillation be- 
tween the points x0 and xl. On the right, after continuous interpolation 
of F, there is convergence after a few iterations. 
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[5-71. We would like the curve to be attracted by these 
detected edges. To do this, we define the attraction 
forces by simulating a potential defined by convolving the 
binary edge image with a Gaussian impulse response. 
This can be used either as the only image forces or to- 
gether with an intensity-gradient image to enforce the 
detected edges. This is useful when the detected edges 
are broken into small segments which are not linked to- 
gether. Using energy-minimizing curves in this case is a 
way to close contours. For example if we use a high 
threshold in order to keep only the points that are very 
likely to be real contours, the curve both closes and 
smooths the contour. 

Remark that even though the equation changed, the 
curve is still pushed to minimize the potential and the 
energy. 

We give below examples of results applying this 
method, first to a drawn line and then to medical images. 
In Fig. 3, we see how the corners are slightly smoothed 
due to the regularization effect. The corner on the left 
seems to be better, but it is due to the discretization 
needed to superimpose the curve on the image; the right 
angle is more precise in the horizontal-vertical corner 
than in the rotated one. 

In Fig. 4, the top image is taken from a time sequence 
of ultrasound images during a cardiac cycle and the prob- 
lem is to detect and follow the deformation of the mitral 
valve in the heart. As mentioned above, we used the 
Canny detector [51 as implemented recursively by De- 
riche [6] to compute the image gradient. 

The other image is a slice from a 3D NMR image in the 
heart area. We want to extract the left ventricle. We use 
here the 30 edge detector [7] obtained by generalization 
of the 2D Canny-Deriche filter. 

We give in comparison examples of what happens 
when we do not normalize the image force (Fig. 5). If the 
time step is too large, the force ~F(u’-r) is too large and 
beginning from the result in Fig. 4, we get instabilities. 
These are such that points that are slightly on one side of 

FIG. 3. Left: initial curve; right: result. 

FIG. 4. Above: ultrasound image. Left: initial curve; right: the 
valve is detected. Below: NMR image of the heart. Left: initial curve; 
right: the ventricle is detected. 

a contour are moved far away on the other side. On the 
contrary, when the time step is too small, we see that, 
taking the same initial curve as in Fig. 4, in the left region 
of the curve, the image forces are too small and smooth- 
ing occurs only. 

FIG. 5. Instabilities. Above: time step too large. Left: initial curve; 
right: result after one iteration. Below: time step too small. Left: initial 
curve; right: result. In the left part of the curve the regularization forces 
were dominant. 



CONTOUR MODELS AND BALLOONS 215 

FIG. 6. Rectangle. Left: initial curve; Right: result is only the effect 
of regularization since no edges are close enough. 

3.2. Localization of the Initial Guess. 
The Balloon Model 

To make the snake find its way, an initial guess of the 
contour has to be provided manually. This has many con- 
sequences for the evolution of the curve (see Fig. 6). 

l If the curve is not close enough to an edge, it is not 
attracted by it. 

l If the curve is not submitted by any forces, it shrinks 
on itself. 

The finite difference formulation of the problem makes 
the curve behave like a set of masses linked by zero 
length strings. This means that if there is no image force 
(F = 0), the curve shrinks on itself and vanishes to a point 
or straightens to a line depending on the boundary condi- 
tions. This happens if the initial curve or part of it is 
placed in a constant area. 

Suppose we have an image of a black rectangle on a 
white background and a curve is placed inside the rectan- 
gle. Even though we have a perfect edge detection, the 
curve vanishes. If a point is close enough to an edge 
point, it is attracted by it and neighboring curve points 
also stick to the edge. If there are enough such points, 
eventually the rest of the curve follows the edge little by 
little. On the contrary, if the initial curve is surrounding 
the rectangle, even if it is far from the edges, it will shrink 
and, as it does so, stick to the rectangle. Let us also note 

that, often, due to noise, some isolated points are gradi- 
ent maxima and can stop the curve when it passes by (see 
Fig. 7). 

All these remarks suggest we add another force which 
makes the contour have a more dynamic behavior. We 
now consider our curve as a “balloon” (in 2D) that we 
inflate. From an initial oriented curve we add to the pre- 
vious forces a pressure force pushing outside as if we 
introduced air inside. The force F now becomes 

F = b(s) - k & 

where n(s) is the normal unitary vector to the curve at 
point u(s) and kl is the amplitude of this force. If we 
change the sign of kl or the orientation of the curve, it will 
have an effect of deflation instead of inflation. k, and k are 
chosen such that they are of the same order, which is 
smaller than a pixel size, and k is slightly larger than kl so 
an edge point can stop the inflation force. The curve then 
expands and it is attracted and stopped by edges as be- 
fore. But since there is a pressure force, if the edge is too 
weak the curve can pass through this edge if it is a singu- 
larity with regard to the rest of the curve being inflated. 
This means that it tends to create a tangent discontinuity 
at this point. The smoothing effect with the help of the 
inflation force then removes the discontinuity and the 
curve passes through the edge. (See bottom left of Fig. 
11). 

In the gradient image of the rectangle above, we have 
removed some edges and added some spurious ones to 
illustrate those remarks. Starting from the same small 
curve as in the previous examples, we obtain the whole 
rectangle (see Fig. 8). When the curve passes by a noise 
point in the rectangle image, it sticks to the point. But 
since the curve is expanding, the noise point becomes a 
singular point of the curve and it is removed by the regu- 
larization effect after a few iterations. When the balloon 
reaches an equilibrium, the points which stick to edges 
are slightly outside of the real contour since the edge 
force has to be in equilibrium with the inflation and regu- 

FIG. 7. Rectangle. Left: initial curve; right: result is stopped at one 
edge point. 

FIG. 8. Rectangle. Left: initial curve; right: result after the balloon, 
is inflated. 
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FIG. 9. Ultrasound image. Left: initial cavity; right: result. 

larization forces. We can then reduce the inflation force 
to localize the position of the curve. 

3.3. Optimizing Elasticity and Rigidity Coefjkients 

The coefficients of elasticity and rigidity have great 
importance for the behavior of the curve along time itera- 
tions. If w1 and w2 are around unity, the internal energy 
has a major influence and the image forces have small 
effect. In this case the curve is only regularized. 

A correct choice for parameters is guided by numerical 
analysis considerations. We wish that the coefficients of 
the rigidity matrix all have the same order of magnitude. 
We obtain good results when the parameters are of the 
order of h2 for wI and h4 for w2, where h is the space 
discretization step. 

4. APPLICATIONS AND FUTURE DIRECTIONS 

When we have an initial curve detected which is 
known to lie inside the object, our balloon technique is 
particularly efficient. For example, we are looking for the 
boundary of a cavity in an ultrasound image of the heart 
(see Fig. 9). An approximation of the cavity is given by 
thresholding the image at a low value after applying 
mathematical morphology operations. We know that this 
approximation lies inside the real cavity. By taking the 
approximated boundary as the initial value for U, we ex- 
pand the balloon and it comes to stick more precisely to 
the cavity boundary. 

In Fig. 10 we give another application of balloons to 
the same problem as in Fig. 4, but we now take a curve 
which is not close to the ventricle, either in shape or in 
position. After a few steps of evolution of the balloon, we 
obtain almost the same final result as before, but it takes 
more iterations. In fact the final curve in Fig. 10 is slightly 
external to the ventricle. As we noted above, if we now 
cancel the expansion force, we obtain the same result as 
in Fig. 4. 

We show in Fig. 11 the same steps as in Fig. 10, but 
superimposed on the potential image. We can see in the 
two middle steps how a point of the curve is stuck to an 
edge and creates a singularity there. This is removed af- 
ter a few iterations by the cumulative effect of the pres- 
sure force and smoothing. 

The directions of our research after contour extraction 
is surface extraction in 3D images. 

A first step is to follow the contour from one slice to 

FIG. 10. NMR image. Evolution of the balloon curve to detect the 
left ventricle. 

FIG. 11. NMR image. Evolution of the balloon curve to detect the 
left ventricle superimposed on the potential image. 
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FIG. 12. Two views of the reconstructed inside cavity of the left ventricle. 

the other. With our method, we experimented with the 
reconstruction of a 3D surface by initializing a balloon 
model in an intermediate cross section, and by propagat- 
ing the result to neighboring cross-sections, initializing 
the curve in a cross-section with the result obtained in the 
previously processed connected section (as was done for 
motion tracking in [I]). We made a first approach to 3D 
reconstruction by extracting the contour slice by slice (as 
in [9] where the curves were extracted by hand, on each 
slice, using an image of edges). Figures 12 and 13 show 
the reconstruction of the left and right ventricles. This 
reconstruction is almost automatic. Indeed, when the 

contour undergoes a big change from one slice to the 
next, the initial curve in that slice may have to be rede- 
fined in order to obtain a good contour, a problem which 
can be avoided by adding interpolated slices when neces- 
sary. 

The next step is to follow the deformation in time of 
this surface. This can be done either slice by slice or 
globally by generalizing to a 3D surface model as in [ 101, 
or to a 3D balloon. This is possible since the active con- 
tour model is a particular case of deformable models as 
seen in [2, 41. In [IO], the surface was a tube around a 
spine and an inflation force was used to control expan- 

FIG. 13. Two views of the reconstructed inside cavity of the right ventricle. 
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sion and contraction of the tube around the spine. The 
two ends of the tube were cinched shut using contraction 
force and inflation was used to counteract smoothing. So 
the use of an inflation force in our “balloon” model is 
significantly different from that in [lo]. 

We can add internal forces to control the deformation 
so as to follow the desired contours. This is possible if we 
have a physical model of the desired object (for example, 
to follow the deformation of a ventricle during a cycle), 
or to make the curve expand or collapse from the initial 
data using some knowledge of the deformation. 

Another application of our research is the elastic 
matching of extracted features to an atlas, which is re- 
lated to the work in [ll]. This was also studied in [ 121 
with simple geometric shapes as templates which are de- 
formed to match the image. 

5. CONCLUSION 6. 

We presented a model of deformation which can solve 
some of the problems encountered with the “snake” 
model of [l]. We modified the definition of external 
forces deriving from the gradient of the image to obtain 
more stable results. We also introduced a pressure force 
which makes the curve model behave like a balloon. This 
enables us to give an initial guess of the curve which is far 
from the desired solution. We showed promising results 
of our model on MR (magnetic resonance) and ultrasound 
images to extract features like the contour of a heart 
ventricle on 2D slices. Using a series of such contours in 
successive cross sections, we made a 3D reconstruction 
of the inside surface of the ventricles. This method has 
been tested for several applications in medical image 
analysis. Our main goal is to generalize this method to 
obtain surface boundaries in 3D images. 
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