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Scale-Space and Edge Detection Using Anisotropic 
Diffusion 

PIETRO PERONA AND JITENDRA MALIK 

Abstracf-The scale-space technique introduced by Witkin involves 
generating coarser resolution images by convolving the original image 
with a Gaussian kernel. This approach has a major drawback: it is 
difficult to obtain accurately the locations of the “semantically mean- 
ingful” edges at coarse scales. In this paper we suggest a new definition 
of scale-space, and introduce a class of algorithms that realize it using 
a diffusion process. The diffusion coefficient is chosen to vary spatially 
in such a way as to encourage intraregion smoothing in preference to 
interregion smoothing. It is shown that the “no new maxima should be 
generated at coarse scales” property of conventional scale space is pre- 
served. As the region boundaries in our approach remain sharp, we 
obtain a high quality edge detector which successfully exploits global 
information. Experimental results are shown on a number of images. 
The algorithm involves elementary, local operations replicated over the 
image making parallel hardware implementations feasible. 

Zndex Terms-Adaptive filtering, analog VLSI, edge detection, edge 
enhancement, nonlinear diffusion, nonlinear filtering, parallel algo- 
rithm, scale-space. 

1. INTRODUCTION 
HE importance of multiscale descriptions of images T has been recognized from the early days of computer 

vision, e.g., Rosenfeld and Thurston [20]. A clean for- 
malism for this problem is the idea of scale-space filtering 
introduced by Witkin [21] and further developed in Koen- 
derink [ l l ] ,  Babaud, Duda, and Witkin [l], Yuille and 
Poggio [22], and Hummel [71, [SI. 

The essential idea of this approach is quite simple: 
embed the original image in a family of derived images 
I ( x ,  y, t )  obtained by convolving the original image 
I o ( x ,  y )  with a Gaussian kernel G ( x ,  y; t )  of variance t :  

Z ( X ,  Y ,  f) = 41(x, y )  * G ( x ,  y ;  f). (1) 
Larger values of t ,  the scale-space parameter, corre- 

spond to images at coarser resolutions. See Fig. 1. 
As pointed out by Koenderink [ 111 and Hummel [7], 

this one parameter family of derived images may equiv- 
alently be viewed as the solution of the heat conduction, 
or diffusion, equation 

I,  = AZ = (Zxx + IJy) ( 2 )  
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Fig. 1. A family of l -D signals I ( x ,  t )  obtained by convolving the original 
one (bottom) with Gaussian kernels whose variance increases from bot- 
tom to top (adapted from Witkin [21]). 

with the initial condition I ( x ,  y, 0)  = Zo(x, y ) ,  the orig- 
inal image. 

Koenderink motivates the diffusion equation formula- 
tion by stating two criteria. 

I )  Causality: Any feature at a coarse level of resolu- 
tion is required to possess a (not necessarily unique) 
“cause” at a finer level of resolution although the reverse 
need not be true. In other words, no spurious detail should 
be generated when the resolution is diminished. 

2) Homogeneity and Isotropy: The blurring is required 
to be space invariant. 

These criteria lead naturally to the diffusion equation 
formulation. It may be noted that the second criterion is 
only stated for the sake of simplicity. We will have more 
to say on this later. In fact the major theme of this paper 
is to replace this criterion by something more useful. 

It should also be noted that the causality criterion does 
not force uniquely the choice of a Gaussian to do the blur- 
ring, though it is perhaps the simplest. Hummel [7] has 
made the important observation that a version of the max- 
imum principle from the theory of parabolic differential 
equations is equivalent to causality. We will discuss this 
further in Section IV-A. 

This paper is organized as follows: Section I1 critiques 
the standard scale space paradigm and presents an addi- 
tional set of criteria for obtaining ‘‘semantically meaning- 
ful” multiple scale descriptions. In Section I11 we show 
that by allowing the diffusion coefficient to vary, one can 
satisfy these criteria. In Section IV-A the maximum prin- 
ciple is reviewed and used to show how the causality cri- 
terion is still satisfied by our scheme. In Section V some 
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experimental results are presented. In Section VI we com- 
pare our scheme with other edge detection schemes. Sec- 
tion VI1 presents some concluding remarks. 

11. WEAKNESSES OF THE STANDARD SCALE-SPACE 
PARADIGM 

We now examine the adequacy of the standard scale- 
space paradigm for vision tasks which need “semanti- 
cally meaningful” multiple scale descriptions. Surfaces 
in nature usually have a hierarchical organization com- 
posed of a small discrete number of levels [ 131. At the 
finest level, a tree is composed of leaves with an intricate 
structure of veins. At the next level, each leaf is replaced 
by a single region, and at the highest level there is a single 
blob corresponding to the treetop. There is a natural range 
of resolutions (intervals of the scale-space parameter) cor- 
responding to each of these levels of description. Fur- 
thermore at each level of description, the regions (leaves, 
treetops, or forests) have well-defined boundaries. 

In the standard scale-space paradigm the true location 
of a boundary at a coarse scale is not directly available in 
the coarse scale image. This can be seen clearly in the 
1-D example in Fig. 2. The locations of the edges at the 
coarse scales are shifted from their true locations. In 2-D 
images there is the additional problem that edge junc- 
tions, which contain much of the spatial information of 
the edge drawing, are destroyed. The only way to obtain 
the true location of the edges that have been detected at a 
coarse scale is by tracking across the scale space to their 
position in the original image. This technique proves to 
be complicated and expensive [SI. 

The reason for this spatial distortion is quite obvious- 
Gaussian blurring does not “respect” the natural bound- 
aries of objects. Suppose we have the picture of a treetop 
with the sky as background. The Gaussian blurring pro- 
cess would result in the green of the leaves getting 
“mixed” with the blue of the sky, long before the treetop 
emerges as a feature (after the leaves have been blurred 
together). Fig. 3 shows a sequence of coarser images ob- 
tained by Gaussian blurring which illustrates this phe- 
nomenon. It may also be noted that the region boundaries 
are generally quite diffuse instead of being sharp. 

With this as motivation, we enunciate [18] the criteria 
which we believe any candidate paradigm for generating 
multiscale “semantically meaningful” descriptions of 
images must satisfy. 

I )  Causaliry: As pointed out by Witkin and Koender- 
ink. a scale-space representation should have the property 
that no spurious detail should be generated passing from 
finer to coarser scales. 

2) Immediate Localization: At each resolution, the re- 
gion boundaries should be sharp and coincide with the 
semantically meaningful boundaries at that resolution. 

3)  Piecewise Smoothing: At all scales, intraregion 
smoothing should occur preferentially over interregion 
smoothing. In the tree example mentioned earlier, the leaf 
regions should be collapsed to a treetop before being 
merged with the sky background. 

Fig. 2 .  Position of the edges (zeros of the Laplacian with respect to x )  
through the linear scale space of Fig. 1 (adapted from Witkin [21]). 

Fig. 3 .  Scale-space (scale parameter increasing from top to bottom, and 
from left to right) produced by isotropic linear diffusion (0. 2. 4, 8, 16. 
32 iterations of a discrete 8 nearest-neighbor implementation. Compare 
to Fig. 12. 

111. ANISOTROPIC DIFFUSION 
There is a simple way of modifying the linear scale- 

space paradigm to achieve the objectives that we have put 
forth in the previous section. In the diffusion equation 
framework of looking at scale-space, the diffusion coef- 
ficient c is assumed to be a constant independent of the 
space location. There is no fundamental reason why this 
must be so. To quote Koenderink [ 1 1, p. 3641, “ . . . I do 
not permit space variant blurring. Clearly this is not es- 
sential to the issue, but it simplifies the analysis greatly.” 
We will show how a suitable choice of c ( x ,  y, t )  will 
enable us to satisfy the second and third criteria listed in 
the previous section. Furthermore this can be done with- 
out sacrificing the causality criterion. 

Consider the anisotropic diffusion equation 

I,  = div ( c ( x ,  y, t ) V l )  = c ( x ,  y. r ) A l  + V c  V I  ( 3 )  

where we indicate with div the divergence operator, and 
with V and A respectively the gradient and Laplacian op- 
erators, with respect to the space variables. It reduces 
to the isotropic heat diffusion equation I ,  = cAZ if 
c ( x ,  y, t )  is a constant. Suppose that at the time (scale) 
t ,  we knew the locations of the region boundaries appro- 
priate for that scale. We would want to encourage 
smoothing within a region in preference to smoothing 
across the boundaries. This could be achieved by setting 
the conduction coefficient to be 1 in the interior of each 
region and 0 at the boundaries. The blurring would then 
take place separately in each region with no interaction 
between regions. The region boundaries would remain 
sharp. 

Of course. we do not know in advance the region 
boundaries at each scale (if we did the problem would 
already have been solved!). What can be computed is a 
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Fig. 4. The qualitative shape of the nonlinearity g ( . ). 

current best estimate of the location of the boundaries 
(edges) appropriate to that scale. 

Let E ( x ,  y ,  t )  be such an estimate: a vector-valued 
function defined on the image which ideally should have 
the following properties: 

1) E ( x ,  y ,  t )  = 0 in the interior of each region. 
2) E ( x ,  y ,  t) = Ke(x, y ,  t )  at each edge point, where 

e is a unit vector normal to the edge at the point, and K 
is the local contrast (difference in the image intensities on 
the left and right) of the edge. 

Note that the word edge as used above has not been 
formally defined-we mean here the perceptual subjective 
notion of an edge as a region boundary. A completely 
satisfactory formal definition is likely to be part of the 
solution, rather than the problem definition! 

If an estimate E ( x ,  y ,  t )  is available, the conduction 
coefficient c ( x ,  y ,  t )  can be chosen to be a function c = 
g ( )I E 11 ) of the magnitude of E .  According to the previ- 
ously stated strategy g (  ) has to be a nonnegative 
monotonically decreasing function with g ( 0 )  = 1 (see 
Fig. 4). This way the diffusion process will mainly take 
place in the interior of regions, and it will not affect the 
region boundaries where the magnitude of E is large. 

It is intuitive that the success of the diffusion process 
in satisfying the three scale-space goals of Section I1 will 
greatly depend on how accurate the estimate E is as a 
“guess” of the position of the edges. Accuracy though is 
computationally expensive and requires complicated al- 
gorithms. We are able to show that fortunately the sim- 
plest estimate of the edge positions, the gradient of the 
brightness function, i.e.,  E ( x ,  y, t )  = VZ(x, y ,  t ) ,  gives 
excellent results. 

There are many possible choices for g ( ), the most ob- 
vious being a binary valued function. In the next section 
we show that in case we use the edge estimate E ( x ,  y ,  t )  
= VZ(x, y ,  t )  the choice of g(  ) is restricted to a subclass 
of the monotonically decreasing functions. 

IV. PROPERTIES OF ANISOTROPIC DIFFUSION 
We first establish that anisotropic diffusion satisfies the 

causality criterion of Section I1 by recalling a general re- 
sult of the partial differential equation theory, the maxi- 
mum principle. In Section IV-B we show that a diffusion 
in which the conduction coefficient is chosen locally as a 
function of the magnitude of the gradient of the brightness 
function, i.e., 

will not only preserve, but also sharpen, the brightness 
edges if the function g ( . ) is chosen properly. 

A .  The Maximum Principle 
The causality criterion requires that no new features are 

introduced in the image in passing from fine to coarse 
scales in the scale-space. If we identify “features” in the 
images with “blobs” of the brightness function Z(x, y ,  t )  
for different values of the scale parameter t ,  then the birth 
of a new “blob” would imply the creation of either a 
maximum or a minimum which would have to belong 
either to the interior or the top face Z(x, y ,  tf) of the scale 
space ( q  is the coarsest scale of the scale-space). There- 
fore the causality criterion can be established by showing 
that all maxima and minima in the scale-space belong to 
the original image. 

The diffusion equation (3) is a special case of a more 
general class of elliptic equations that satisfy a maximum 
principle. The principle states that all the maxima of the 
solution of the equation in space and time belong to the 
initial condition (the original image), and to the bound- 
aries of the domain of interest provided that the conduc- 
tion coefficient is positive. In our case, since we use adi- 
abatic boundary conditions, the maximum principle is 
even stronger: the maxima only belong to the original im- 
age. A proof of the principle may be found in [17]; to 
make the paper self-contained we provide an easy proof 
in the Appendix, where the adiabatic boundary case is also 
treated, and weaker hypotheses on the conduction coeffi- 
cient are used. A discrete version of the maximum prin- 
ciple is proposed in Section V.  

B. Edge Enhancement 
With conventional low-pass filtering and linear diffu- 

sion the price paid for eliminating the noise, and for per- 
forming scale space, is the blurring of edges. This causes 
their detection and localization to be difficult. An analysis 
of this problem is presented in [4]. 

Edge enhancement and reconstruction of blurry images 
can be achieved by high-pass filtering or running the dif- 
fusion equation backwards in time. This is an ill-posed 
problem, and gives rise to numerically unstable compu- 
tational methods, unless the problem is appropriately con- 
strained or reformulated [9]. 

We will show here that if the conduction coefficient is 
chosen to be an appropriate function of the image gradient 
we can make the anisotropic diffusion enhance edges while 
runningfonvard in time, thus enjoying the stability of dif- 
fusions which is guaranteed by the maximum principle. 

We model an edge as a step function convolved with a 
Gaussian. Without loss of generality, assume that the edge 
is aligned with the y axis. 

The expression for the divergence operator simplifies 
to 

a 
ax 

div ( c ( x ,  y ,  t)VZ) = - ( ~ ( x ,  Y ,  t ) & ) .  
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Fig. 6.  A choice of the function 4 ( . ) that leads to edge enhancement. 

negative. This may be a source of concern since it is 
known that constant-coefficient diffusions running back- 
wards are unstable and amplify noise generating ripples. 
In our case this concern is unwarranted: the maximum 
principle guarantees that ripples are not produced. Exper- 

quickly shrink, and the process keeps stable. 
imentally one observes that the areas where 4r (1,) < O 

V 

-T- 
Fig. 5 .  (TOP to bottom) A mollified step edge and its 1st. 2nd, and 3rd 

derivatives. 

V .  EXPERIMENTAL RESULTS 
Our anisotropic diffusion, scale-space, and edge detec- 

tion ideas were tested using a simple numerical scheme 
that is described in this section. 

Equation (3) can be discretized on a square lattice, with 
brightness values associated to the vertices, and conduc- 

We choose c to be a function of the gradient of I :  c ( x ,  
g ( z x )  . I, 

Then the 1-D version of the diffusion equation (3) be- 

y, t )  = g(z,(x, y, t ) )  as in (4). Let 4(z,) 
denote the flux c I,. 

comes 

( 5 )  
a 

ax 4 = - 4(Ix) = 4r(4)  4,. 

We are interested in looking at the variation in time of 
the slope of the edge: a/at(Z,) .  If c( ) > 0 the function 
I (  ) is smooth, and the order of differentiation may be 
inverted: 

I:, + 4' * L,. ( 6 )  = 4 r r  . 
Suppose the edge is oriented in such a way that I, > 0. 
At the point of inflection I,, = 0, and I,,, << 0 since the 
point of inflection corresponds to the point with maximum 
slope (see Fig. 5). Then in a neighborhood of the point 
of inflection a/at(Z,)  has sign opposite to 4r(Z,).  If 
4r ( I , )  > 0 the slope of the edge will decrease with time; 
if, on the contrary 4' (I ,)  < 0 the slope will increase with 
time. 

Notice that this increase in slope cannot be caused by a 
scaling of the edge, because this would violate the max- 
imum principle. The edge becomes sharper. 

There are several possible choices of 4 ( . ), for exam- 
ple, g(Z,) = C / (  1 + ( I , / K ) ' + " )  with a > 0 (see Fig. 
6 ) .  Then there exists a certain threshold value related to 
K ,  and a ,  below which 4(  - ) is monotonically increasing, 
and beyond which 4 ( ) is monotonically decreasing, giv- 
ing the desirable result of blurring small discontinuities 
and sharpening edges. Notice also that in a neighborhood 
of the steepest region of an edge the diffusion may be 
thought of as running "backwards" since +' ( I , )  in (5) is 

tion coefficients to the arcs (see Fig. 7). A 4-nearest- 
neighbors discretization of the Laplacian operator can be 
used: 

I!:,;' = r: , j  + h [ C N  V N I  + cs V s I  

+ CE . VEI + cw o W l ] : , j  (7)  

where 0 I X I 1 / 4  for the numerical scheme to be sta- 
ble, N ,  S, E ,  Ware the mnemonic subscripts for North, 
South, East, West, the superscript and subscripts on the 
square bracket are applied to all the terms it encloses, and 
the symbol V (not to be confused with V, which we use 
for the gradient operator) indicates nearest-neighbor dif- 
ferences: 

V N I ; , j  E Ii- 1.j - 1j.j 

V S 1 i . j  E I l + ~ , j  - ';,I 

V E Z j , j  = Zi , j+I  - z;,j 

v U / z ; , j  = I ; , j - l  - z ; , j .  (8) 

The conduction coefficients are updated at every itera- 
tion as a function of the brightness gradient (4): 

(9) 
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Fig. 7 .  The structure of the discrete computational scheme for simulating 
the diffusion equation (see Fig. 8 for a physical implementation). The 
brightness values I, , ,  are associated with the nodes of a lattice, the con- 
duction coefficients c to the arcs. One node of the lattice and its four 
North, East, West, and South neighbors are shown. 

Fig. 8 .  The structure of a network realizing the implementation of aniso- 
tropic diffusion described in Section V, and more in detail in [19]. The 
charge on the capacitor at each node of the network represents the bright- 
ness of the image at a pixel. Linear resistors produce isotropic linear 
diffusion. Resistors with an I-V characteristic as in Fig. 6 produce an- 
isotropic diffusion. 

The value of the gradient can be computed on different 
neighborhood structures achieving different compromises 
between accuracy and locality. The simplest choice con- 
sists in approximating the norm of the gradient at each arc 
location with the absolute value of its projection along the 
direction of the arc: 

cb,l = g (  1 v N 1 : , ~ l )  

CktJ  = g (  I VsI:,Jl) 

ck, = 8(  1 V E Z , J I )  

clv,, = s(l VwC,,I). (10) 
This scheme is not the exact discretization of (3), but 

of similar diffusion equation in which the conduction ten- 
sor is diagonal with entries g ( I I, \ ) and g ( I Iy  1 ) instead 
of g ( 11 V I  11 ) and g ( )I V I  ( 1  ). This discretization scheme 
preserves the property of the continuous equation ( 3 )  that 
the total amount of brightness in the image is preserved. 
Additionally the “flux” of brightness through each arc of 
the lattice only depends on the values of the brightness at 
the two nodes defining it, which makes the scheme a nat- 
ural choice for analog VLSI implementations [19]. See 
Fig. 8.  Less crude approximations of the gradient yielded 
perceptually similar results at the price of increased com- 
putational complexity. 

It is possible to verify that, whatever the choice of the 
approximation of the gradient, the discretized scheme still 
satisfies the maximum (and minimum) principle provided 
that the function g is bounded between 0 and 1 .  

We can in fact show this directly from (7), using the 
facts X E [ 0 ,  1/41, and c E [ 0 ,  11, and defining ( I M ) : ,  
5 max { ( I ,  I N ,  I S ,  ZE, Zw):,,}, and ( I m ) f , j  min { ( 1 ,  I N ,  
Is, I E ,  Iw):,, } , the maximum and minimum of the neigh- 
bors of Z,,, at iteration t .  We can prove that 

( L J ,  5 C,? 5 ( I d : , ,  ( 1 1 )  

i.e., no (local) maxima and minima are possible in the 
interior of the discretized scale-space. In fact: 

] f + l  ‘ J  = I:, ,  + X [ C N  * V N I  + CS V S I  

+ CE * V E I  + CW * V w I ] : , ,  

= If,,( - A ( c N  + CS + CE + cW): , , )  

+ X(C, . I N  + CS * I S  + CE I E  + c W .  Zw):,, 

5 IM:J(l - X ( c N  + CS + CE + cW): ,J)  

and, similarly: 

+ X I m : , J ( ~ ~  + CS + CE + C W ) : , ~  = Im:,. (13)  

The numerical scheme used to obtain the pictures in this 
paper is the one given by equations (7), (8), and (lo), 
using the original image as the initial condition, and adi- 
abatic boundary conditions, i.e., setting the conduction 
coefficient to zero at the boundaries of the image. A con- 
stant value for the conduction coefficient c (i.e.,  g ( * ) = 
1 )  leads to Gaussian blurring (see Fig. 3). 

Different functions were used for g ( - ) giving percep- 
tually similar results. The images in this paper were ob- 
tained using 

g(vI) = & m I / K ) ~ )  

(Fig. 9), and 

(Figs. 12-14). The scale-spaces generated by these two 
functions are different: the first privileges high-contrast 
edges over low-contrast ones, the second privileges wide 
regions over smaller ones. 

The constant K was fixed either by hand at some fixed 
value (see Figs. 9-14), or using the “noise estimator” 
described by Canny [4]: a histogram of the absolute val- 
ues of the gradient throughout the image was computed, 



634 l t E E  TRA\ShLTlOhS Oh PATTkRh ANALYSIS AND MACHINI- INTELLIGFNCb VOL 12 NO 7 JULY 1990 

7 

Fig. 9. Effect of anisotropic ditfusion (b )  on the Canaletto image ( a )  [3] .  Notice that the edges remain sharp until their disappearance 

and K was set equal to the 90% value of its integral at 
every iteration (see Fig. 12(b)). 

The computational scheme described in this section has 
been chosen for its simplicity. Other numerical solutions 
of the diffusion equation, and multiscale algorithms may 
be considered for efficient software implementations. 

VI. COMPARISON TO OTHER EDGE DETECTION SCHEMES 
This section is devoted to comparing the anisotropic dif- 

fusion scheme that we present in this paper with previous 
work on edge detection, image segmentation, and image 
restoration. 

We will divide edge detectors in two classes: fixed- 
neighborhood edge detectors, and energyiprobability 
"global" schemes. 

(a) (b)  (C) (4 
Fig. 12.  From left to right (a) original image, (b) scale-space using an- 

isotropic diffusion (10. 20. 80 iterations), (c) edges of the same. (d) 
edges at comparable scales detected using the Canny detector (convo- 
lution kernels of variance 1. 2.  4 pixels). 
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Fig. 13. Scale-space using anisotropic diffusion. Three dimensional plot 
ofthe brightness in Fig. 12. (a) Original image. (b) after smoothing with 
anisotropic diffusion. 
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Fig. 14. Scale-space using anisotropic ditfusion. Original image (top left) 
and coarser scale images after (left to right, top to bottom) 20, 60. 120, 
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A .  Fixed Neighborhood Detectors 

This class of detectors makes use of local information 
only-they typically examine a small window of the im- 
age and try to be clever about deciding if and where there 
is an edge. This decision is ambiguous and difficult. 

We pick Canny's scheme [4] as a representative of this 
class of detectors. The image is convolved with direc- 
tional derivatives of a Gaussian-the idea is to do smooth- 
ing parallel to the edge and thus reduce noise without 
blurring the edge too much. There are two major difficul- 
ties: 1) the inevitable tradeoff between localization accu- 
racy and detectability that comes from using linear filter- 
ing 2) the complexity of combining outputs of filters at 
multiple sales. Anisotropic diffusion is a nonlinear pro- 
cess, hence in principle is not subject to limitation 1). The 
complication of multiple scale, multiple orientation filters 
is avoided by locally adaptive smoothing. 

We can thus summarize the advantages of the scheme 
we propose over linear fixed-neighborhood edge detec- 
tors. 

Locality: The shape and size of the neighborhood 
where smoothing occurs are determined locally by the 
brightness pattern of the image, and adapt to the shape 
and size of the regions within which smoothing is re- 
quired. In schemes based on linear smoothing or fixed- 
neighborhood processing the shape and size of the areas 
where smoothing occurs are constant throughout the im- 
age. This causes distortions in the shape of the meaning- 
ful regions, and in the loss of structures like edge junc- 
tions (see Figs. 10(b), 12(d), 15) which contain much of 
the information that allows a three-dimensional interpre- 
tation of the edge line-drawing [ 121. 

Simplicig: The algorithm consists in  identical nearest- 
neighbor operations (4-8 differences, a function evalua- 
tion or a table look-up, and 4-8 sums) iterated over the 
nodes of a 4 (8) connected square lattice. By comparison 
the Canny detector requires a number of convolutions 
(each involving large neighborhoods at a time) as a pre- 
processing stage, and a stage of cross-scale matching. 
Moreover with our algorithm the edges are made sharp by 
the diffusion process discussed in Section IV-B, so that 
edge thinning and linking are almost unnecessary, espe- 
cially at coarse scales of resolution (compare Fig. 17 to 
Fig. 16). For edge detectors based on convolution this is 
an essential, delicate, and expensive step since linear low- 
pass filtering has the effect of blurring the edges. The sim- 
plicity of the computations involved in anisotropic diffu- 
sion makes it a good candidate for digital hardware im- 
plementations. 

Parallelism: The structure of the algorithm is parallel 
which makes i t  cheap to run on arrays of simple parallel 
processors. 

On sequential machines, anisotropic diffusion is com- 
putationally more expensive than convolution-based de- 
tectors. This is because in the diffusion process a contin- 
uum of scales are generated instead of a small fixed 
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Fig. 15. Scale-space using linear convolution. The edges are distorted and 
the junctions disappear. Images generated using the Canny detector and 
smoothing Gaussian kernels of variance (top left to bottom right) 1 /2 ,  
1, 2, 4, 8, 16 pixels. Compare to Fig. 17 where anisotropic diffusion 
preserves edge junctions, shape, and position. 

B. Energy-Based Methods for Image Reconstruction 
and Segmentation 

A number of methods have appeared in the literature 
where the edge detectiodimage segmentation process is 
performed by the minimization of an energy function of 
tY Pe 

with Z indicating the set of the nodes of a lattice, N (  i )  c 
Z indicating the nodes neighboring node i, and z a function 
defined on the lattice, typically the brightness function 
[2]. An equivalent formulation is based on finding max- 
ima of a Markov probability distribution function defined 
on the space of all images: 

(15) 1 - u ( i )  Pz( z‘) = - e 
K 

where the function U (  * ) has the form of (14) [6], [14]. 
Because the exponential function is monotonic the max- 
ima of the probability distribution and the minima of the 
energy function coincide, and we can limit our attention 
to the schemes based on minimizing the energy. 

The energy function (14) is the sum of two terms: the 
a priori term (the sum of the “clique” functions V con- 
taining the a priori knowledge about the image space- 
see any one of [6], [16], [2] for a complete discussion), 
and a term depending on the data available (the sum of 
the functions W i ) .  V (  e ,  * ) is typically an even function 
depending only on the value of the difference of its ar- 
guments (with abuse of notation V ( z i ,  z j )  = V ( z j  - z j ) ) .  
It has minimum at zero and it is monotonic on the positive 
and negative semilines assigning higher energy ( e lower 
probability) to the pairs i ,  j of lattice nodes whose bright- 
ness difference I( zi - z,  \ (  is bigger. We will show that the 

5 1  Lw / L I  U v W 
Fig. 16. Edges detected by thresholding the gradient in Fig. 14. Linking 

is not necessary. Thinning is only for the finer scales. Compare to Fig. 
17 where thinning and linking have been used. 

Fig. 17. Edges detected in Fig. 14 using a thinning and linking stage 141. 

approximation of anisotropic diffusion that we suggest in 
Section V may be seen as a gradient descent of the a priori 
part of the energy function 

The steepest descent strategy for finding minima of a 
function consists of starting from some initial state, and 
then changing iteratively the state following the opposite 
of the gradient vector. The gradient of the energy func- 
tion, which may be computed from (16) differentiating 
with respect to the z i ,  is the vector of components 

(17) VU,(Z)  = 2 , E, qz; - Z j )  
J E N ( I )  
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(C) ( 4  
Fig. 18. (a) The local energy function proposed by [ 6 ] ,  [2], [14] typically 

is equal to the square of the nearest-neighbor brightness difference, and 
saturates at some threshold value. (b) The first derivative of the energy 
function (a). (c), (d) The anisotropic diffusion conduction coefficient and 
flux function as a function of the brightness gradient magnitude, propor- 
tional to the nearest neighbor brightness difference in the discrete case. 
(b) and (d) have the same role. 

therefore the gradient descent algorithm is 

where A is some "speed" factor. 
Suppose that V (  - ) is differentiable in the origin and 

def ine+( . )  = -k  Since V ( . ) i s e v e n , + ( . ) i s a n o d d  
function and + ( O )  = 0. Then we may write +(s)  = s 
c(s )  for some function c(  ) even and positive. Substi- 
tuting into (1 8) we obtain 

which is exactly the anisotropic diffusion algorithm de- 
fined by (7), (8), and (10) if the neighborhood structure 
is given by natural nearest-neighbor cliques of a square 
lattice. The flux functions obtained by differentiating the 
local energy functions V (  ) of [6], [15], [2] are similar 
to the shape of flux function that the analysis in Section 
IV-B suggests. See Fig. 18. 

To summarize: anisotropic diffusion may be seen as a 
gradient descent on some energy function. The data (the 
original image) are used as the initial condition. In the 
energy-based methods [6], [ 161, [2] the closedness of the 
solution to the data is imposed by a term in the energy 
function. This makes the energy function nonconvex and 
more complicated optimization algorithms than gradient 
descent are necessary. Most of the algorithms that have 
been proposed (simulated annealing for example) appear 
too slow for vision applications. Perhaps the only excep- 
tion is the GNC algorithm proposed by Blake and Zisser- 
man [2] which does not guarantee to find the global op- 
timum for generic images, but appears to be a good 
compromise between speed and accuracy. 

VII. CONCLUSION 
We have introduced a tool, anisotropic diffusion, that 

we believe will prove useful in many tasks of early vision. 

Diffusion based algorithms involve simple, local, identi- 
cal computations over the entire image lattice. Implemen- 
tations on massively parallel architectures like the con- 
nection machine would be almost trivial. Implementations 
using hybrid analog-digital networks also seem feasible. 

We have shown that the simplest version of anisotropic 
diffusion can be applied with success to multiscale image 
segmentation. As a preprocessing step it makes thinning 
and linking of the edges unnecessary, it preserves the edge 
junctions, and it does not require complicated comparison 
of images at different scales since shape and position are 
preserved at every single scale. 

In images in which the brightness gradient generated by 
the noise is greater than that of the edges, and the level 
of the noise varies significantly across the image the 
scheme that we have described proves insufficient to ob- 
tain a correct multiscale segmentation. In this case a global 
noise estimate does not provide an accurate local esti- 
mate, and the local value of the gradient provides too par- 
tial a piece of information for distinguishing noise-related 
and edge-related gradients. Moreover, the abscissa K of 
the peak of the flux function + ( ) has to be set according 
to the typical contrast value, if this changes considerably 
through the image the value of K has to be set locally. To 
tackle these difficulties anisotropic diffusion should be 
implemented using local contrast and noise estimates. 

APPENDIX 
PROOF OF THE MAXIMUM PRINCIPLE 

Call A an open bounded set of W" (in our case A is the 
plane of the image, a rectangle of a*), and T = ( a ,  b )  
an interval of R. Let D be the open cylinder of R"" 
formed by the product D = A x T = { (x, t )  :x E A ,  t E 
T } .  Call aD the boundary of D,  0 its closure, and aTD, 
a,D, and aBD the top, side, and bottom portions of aD: 

aTD = { (x,  + E A ,  t = 

a , D =  { ( ~ , t ) : ~ ~ ~ , t = b }  

a s D =  ( ( x , t ) : x E a A , t E T }  

and, for convenience, call asBD the side-bottom bound- 
ary : 

asBD = asD U aBD. 

The following theorems hold. 
Theorem: Consider a functionf : Rn + ' -, R that is con- 

tinuous on 0, and twice differentiable on D U aTD. I f f  
satisfies the differential inequality 

C(x, t)fr - c(x, t ) A f -  vc . V f  I 0 (20) 

on D,  with C: P n + '  + [; + continuous on 0, and differ- 
entiable on D U aTD, then it obeys the maximum prin- 
ciple, i.e., the maximum o f f i n  D is reached on the bot- 
tom-side boundary asBD of D: 

maxf = maxf 
D asBD 
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Corollary: Consider a function f satisfying the hy- 
potheses of the previous theorem, and such thatfis twice 
differentiable on asD, and V,f = 0 (where V, indicates 
the gradient operator along the x direction). Then 

m_ax f = maxf. 
D aBD 

The following proof is adapted from John [ 101. 

Pro08 First consider f satisfying the stricter condi- 

(21) 

tion 

C ( X ,  t)J - C(X, t ) A f -  VC * Vf < 0. 

By hypothesis f i s  continuous on E, a compact set, hence 
it has a maximum in it. Call p = ( y ,  T )  this maximum. 

Suppose that p E D. Since f is twice continuously dif- 
ferentiable in D we can write the first three terms of the 
Taylor expansion off about p :  

f ( p  + Eo) = f ( p )  + €of% + E 2 V T X f V  

+ W3) % f ( P )  (22) 

where U E R” + ‘ , E E some neighborhood of zero, and Xf 
indicates the n + 1 X n + 1 Hessian matrix off. For the 
sake of compactness, unlike in the rest of the paper, Vf 
in (22) indicates the gradient offwith respect to the space 
coordinates and the time coordinate. Since p is a point 
where f has a maximum, the gradient Vf in the first order 
term of the expansion (22) is equal to zero therefore the 
second term cannot be positive, V u  E Rn + I : o T X f o  I 
0; the Hessian matrix is therefore negative semidefinite, 
which implies that the entries on its diagonal are either 
equal to zero or negative. The Laplacian is a sum of en- 
tries on the diagonal and therefore Af I 0. This would 
mean that at p 

C ( X ,  t)J - c(p)Af - VC * Af 2 0 

contradicting the hypothesis. 
Similarly, if p E a,D the first derivative with respect to 

t off  could only be positive or equal to zero, while the 
first derivatives with respect to the x variables would have 
to be equal to zero, and the second derivatives with re- 
spect to the x variables could only be equal to zero or 
negative, giving the same inequality at p as above. This 
would again contradict the hypothesis. So, i f f  satisfies 
(21), then it obeys the maximum principle. 

Iff satisfies the weak inequality (20) the function g de- 
fined as g = f - X ( t  - a )  satisfies the strict inequality 
(21), and therefore the maximum principle, for any X > 
0. Observe t h a t f =  g + X ( t  - a )  I g + X(b - a )  on 
D, and because of this 

m3xf 5 max ( g  + ~ ( b  - U ) )  
D B 

= max ( g  + ~ ( b  - 
asBD 

a ) )  I max ( f +  X(b - a ) ) .  
asBD 

Letting X -, 0 we obtain the thesis. 0 

Notice that the maximum principle also guarantees that 
there are no local maxima o f f  in D U d,D. The same 
technique used in the proof restricting D to be a cylinder 
contained in the neighborhood where the local maximum 
is a strict maximum may be used to see that the existence 
of one at p E D U dTD would violate the differential in- 
equality. 

The corollary may be proven along the same lines: since 
f i s ,  by hypothesis, differentiable on 8,Done can use (21), 
and (22) for any p E d,D, with o in an appropriate hemi- 
sphere so that p + E Z I  E D .  

If a function f satisfies the differential equation 

C ( X ,  t)J - C(X, t )  Af - VC Vf = 0 (23) 

with the hypotheses already stated on the functions C( ) 
and c ( ), the arguments above can be run for f and h = 
-fproving that both a maximum and minimum principle 
have to be satisfied. 

The diffusion equation (3) is a special case of (23) (set 
C(x, t )  = 1, and f = I), hence the scale-space brightness 
function Z(x, y ,  t )  obeys the maximum principle provided 
that the conduction coefficient c never takes negative value 
(in fact the condition that c does not take negative value 
wherefhas a maximum is sufficient) and is differentiable. 
If adiabatic (V,f = 0)  boundary conditions are used then 
the hypotheses of the corollary are satisfied too, and the 
maxima may only belong to the initial condition. 

Solutionsfof (3) have an additional property if the con- 
duction coefficient is constant along the space axes: c = 
c(  t ) .  In this case, all spatial derivatives off are solutions 
of (3), and therefore satisfy the hypotheses of the maxi- 
mum principle. So the causality criterion is satisfied by 
all such functions: the components of the gradient, the 
Laplacian, etc. It is important to notice that this is not 
true in general for solutions of (3) when the conduction 
coefficient varies in scale and space. We show in Section 
IV-B that in fact anisotropic diffusion can increase the 
contrast (i.e., the magnitude of the gradient) of edges in 
the image. 
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