EFECTOS PRODUCIDOS POR LA CAÍDA DE UN RAYO

Los rayos son señales eléctricas de alta frecuencia, gran potencial y alta corriente, por ello, son causa de interferencias en sistemas electrónicos. Por ello, para dirigir a tierra las descargas atmosféricas se requiere de las técnicas para señales en altas frecuencias.

A la frecuencia debida a la descarga del rayo, la impedancia de un cable de cobre usado en las puestas a tierra (de unos 1.64 uH/m) presenta un carácter predominantemente inductivo. En conductores de más de 10 metros la impedancia que representan es muy elevada, lo cual impide la conducción de la corriente. Como los rayos se reflejan como cualquier onda de alta frecuencia, es básico que la impedancia a tierra sea baja para la descarga, ya que todas las partes del sistema conectadas a tierra, elevarán y bajarán su potencial con respecto de tierra al tiempo de la descarga.

Efectos producidos por la caída directa de un rayo

Los efectos directos de un rayo son la destrucción física causada por el impacto de los que pueden resultar incendios. Cuando un impacto directo golpea una instalación donde hay materiales combustibles, pueden estar expuestos al rayo, al canal del rayo o al efecto de calentamiento del rayo, produciéndose importantes incendios.

Cuando cae un rayo en una instalación siempre buscará el camino a tierra de más baja impedancia y por él circulará hasta tierra. Si el conductor tiene algún equipo eléctrico conectadoa un equipo y es atravesado por esa corriente, muy probablemente será destruido. Si bien la caida directa del rayo es la más devastadora, también es la más improbable.

Efectos secundarios producidos por la caída de un rayo

Los efectos secundarios de un impacto de rayo directo o cercano a una instalación incluye:

La carga electrostática

La célula de tormenta induce una carga estática en cualquier estructura inmersa en la tormenta. Esta carga estática estará relacionada con la carga de la célula de la tormenta. Por esto se inducirá una diferencia de potencial en la estructura o conductor respecto a tierra que será un posible causante de interferencias. Como consecuencia de la carga electrostática se producen los arcos secundarios que es una de las interferencias más frecuentes.

Los pulsos electromagnéticos

Los pulsos electromagnéticos, son el resultado de los campos electromagnéticos transitorios que se forman por el flujo de corriente, a través del canal de descarga del rayo. Después de que se establece el canal de descarga del rayo entre la nube y la tierra, llega a formarse un camino tan conductivo como un conductor eléctrico. La corriente de neutralización comienza a fluir rápidamente y produce un campo magnético en relación a la misma. Ya que estas corrientes de descarga crecen rápidamente y alcanzan corrientes pico de cientos de miles de amperios, los pulsos magnéticos que ellos crean pueden ser muy significativos. El voltaje inducido resultante (EMP) dentro de cualquier grupo donde existen varios cables que corren paralelamente, puede también ser muy significativo.

Los pulsos electrostáticos

Los transitorios atmosféricos o pulsos electrostáticos, son el resultado directo de la variación del campo electrostático que acompaña a una tormenta eléctrica. Cualquier conductor suspendido sobre la superficie de la tierra, está inmerso dentro de un campo electrostático y será cargado con un potencial en relación a su altura, sobre la superficie de la tierra. Por ejemplo, una línea de distribución o telefónica aérea, a una altura promedio de 10 metros sobre la tierra, en un campo electrostático medio, durante una tormenta eléctrica, se cargará con un potencial de entre 100 kV y 300 kV con respecto a la tierra.

Las corrientes de tierra

La corriente transitoria de tierra es el resultado directo del proceso de neutralización que sigue a un impacto de rayo. El proceso de neutralización, es consumado por el movimiento de la carga a lo largo o cerca de la superficie de la tierra, desde el punto donde se induce la carga, hasta el punto donde termina el rayo. Cualquier conductor enterrado o cercano a esa carga, proveerá un camino más conductivo desde el punto donde se inicia, al punto donde termina el rayo. Esto induce un voltaje en relación con la carga, que se maneja en esos conductores, lo cual otra vez está relacionado con la cercanía a donde el rayo impactó. A este voltaje inducido se le llama "corriente transitoria de tierra" y aparece en alambres conductores, tuberías y otras formas de conductores. Aunque el proceso de descarga es muy rápido (20 microsegundos) y la relación de crecimiento al pico es tan pequeña como 50 nanosegundos, el voltaje inducido será muy alto. La terminación de un rayo de retorno en la tierra puede causar los efectos siguientes:

El sobrevoltaje transitorio.

Se produce como consecuencia de los anteriores y pueden causar graves daños en los equipos o sistemas si no están convenientemente protegidos. La carga electrostática (y consecuentes arcos secundarios) es lo más común.

Como ejemplo tenemos la carga electrostática y los pulsos electromagnéticos que inducen altos voltajes transitorios en cualquiera de los conductores eléctricos que se encuentren dentro del área de influencia de esos transitorios. Estos transitorios causarán arqueos entre alambres o cables conductores y entre tuberías y tierra. Los arcos o chispas de corriente electrostática en un punto vulnerable, pueden iniciar incendios o explosiones. Además estos sobrevoltajes pueden llegar por los conductores hacia los equipos o sistemas que estén dentro del área de influencia causando fallos y averías en los mismos si estos no están protegidos contra las sobretensiones.

Debemos tener en cuenta que en un radio de unos 1’5 km desde el punto de impacto de un rayo, las instalaciones electrónicas pueden ser perturbadas y en ocasiones destruidas.

Las formas en que se acoplan las interferencias producidas por el rayo son:

  1. Acoplamiento resistivo: al caer un rayo sobre una construcción o sobre la tierra, se produce una elevación del potencial eléctrico que afecta a las tuberías y a los cables enterrados y viajan a través de ellas hasta penetrar en las edificaciones. Especial riesgo corren, como es de suponer, los cables y tuberías aéreas. Así, un rayo es capaz de inducir corriente de 1’5 kA y 5kV en cables subterráneos, y de 3 kA y 6 kV en cables aéreos.
  2. Acoplamiento inductivo: Las enormes corrientes del rayo al caer a tierra mediante descargadores establecen un camino que genera un campo electromagnético que induce a otros conductores, de fuerza principalmente por que no están apantallados, voltajes destructivos de varios KVs.
  3. Acoplamiento capacitivo: Debido a la naturaleza de alta frecuencia de los rayos se acopla capacitivamente entre arrollamientos de Alta a Baja tensión (transformadores). Provocando fallas en las fuentes de equipos electrónicos que son más sensibles y débiles.

Los efectos secundarios no siempre son fácilmente identificados como la causa o el mecanismo del rayo. La protección convencional o protección primaria no influirá ni reducirá ninguno de los efectos secundarios, sin embargo si que aumenta el riesgo de un evento. Las puntas pararrayos o terminales aéreos atraen el rayo y fortalecen una terminación del impacto muy cerca de la zona de influencia, causando interferencias con los equipos existentes.

Además, la tendencia hacia la microelectrónica, trae como consecuencia que los sistemas electrónicos sean más sensibles a los fenómenos transitorios, por ejemplo, transitorios de menos de 3 V pico o niveles de energía más bajos que 10-7 Julios, pueden dañar o "confundir" esos sistemas y sus componentes.