La naturaleza del sonido

El sonido es una vibración que se propaga a través del aire, gracias a que las moléculas del aire transmiten la vibración hasta que llega a nuestros oídos. Se aplican los mismos principios que cuando se lanza una piedra a un estanque: la perturbación de la piedra provoca que el agua se agite en todas las direcciones hasta que la amplitud de las ondas es tan pequeña, que dejan de percibiese. La Figura muestra las vibraciones físicas de un diapasón que ha sido golpeado. Las vibraciones del diapasón fuerzan a las moléculas de aire a agruparse en regiones de mayor y menor densidad, dando lugar a que la presión del aire aumente o disminuya instantáneamente. El diapasón es un excelente ejemplo de fuente de sonido por dos razones: la primera es que puede observarse el movimiento de vaivén de sus brazos mientras se escuchan los resultados de esta vibración; la segunda es que el diapasón vibra a una frecuencia (vibraciones por segundo) constante hasta que toda su energía se ha disipado en forma de sonido. Una perturbación que viaja a través del aire se denomina onda y la forma que adopta esta se conoce como forma de onda.

 

    Características de una onda sencilla

La forma de onda del diapasón es la más sencilla de las formas de onda, denominada onda Sinusoidal.

La frecuencia de sonido se mide en unas unidades denominadas Hertzios (Hz). Un sonido que vibra una vez por segundo tiene una frecuencia de 1 Hz. Las frecuencias se escriben normalmente en Kilohertzios (kHz), unidad que representa 1.000 Hz. Una persona joven con unos oídos saludables puede oír sonidos que estén en el rango de los 20 Hz a los 20.000 Hz (20 kHz).

En la Figura se observa cómo la amplitud de la onda disminuye a medida que el sonido se aleja de su fuente, extendiéndose en todas las direcciones. (La figura exagera la rapidez con la que la onda disminuye en el aire ).

El oído y un micrófono incorporado en la tarjeta de sonido se comportan de manera similar. Ambos transforman pequeñas variaciones en la presión del aire en señal eléctrica que puede ser comprendida y almacenada por sus respectivos "cerebros" (ya sea el humano o la CPU de la computadora). Esta señal eléctrica puede ya ser guardada, manipulada o reproducida mediante los medios eléctronicos adecuados.

Amplitud

La medida de la amplitud de una onda es importante porque informa de la fuerza, o cantidad de energía, de una onda, que se traduce en la intensidad de lo que oímos, su unidad de medida es el decibelio. Un decibelio, abreviado como dB, es una unidad de medida de la fuerza de la señal y es útil en la comparación de la intensidad de dos sonidos. La sensibilidad del oído humano es extraordinaria, con un rango dinámico o variación en intensidad muy amplio. La mayoría de los oídos humanos pueden capturar el sonido del murmullo de una hoja y, después de haberse sometido a ruidos explosivos como los de un avión, siguen funcionando. Lo que es sorprendente es que la fuerza de la explosión en un avión es al menos 10 millones de veces mayor que el murmullo que una hoja produce con el viento.

El oído necesita un porcentaje elevado de variaciones en la fuerza de un sonido para detectar un cambio en la intensidad percibida, lo que significa que la sensibilidad del oído a la fuerza del sonido es logarítmica, de manera que el decibelio, unidad de medida logarítmica, es la elección más adecuada para medir la fuerza del sonido. El aspecto práctico de la amplitud es que un incremento de sólo 3 dB duplica la intensidad de un sonido. Por ejemplo, un sonido con 86 dB tiene, el doble de fuerza que un sonido con 83 dB y cuatro veces más que un sonido con 80 dB. Desde la perspectiva de nuestra percepción de la intensidad, un incremento de 3 dB, que da lugar a que se duplique la fuerza, provoca que el sonido se perciba sólo ligeramente más alto. Es necesario un aumento en 10 dB para que nuestros oídos perciban un sonido con el doble de intensidad.

Ancho de banda

Profundizamos ahora en aspectos prácticos, como el rango de frecuencia con el que es capaz de trabajar un reproductor CD, nuestro oido o nuestra voz. El ancho de banda es muy importante para disfrutar de la música (como manifiestan las quejas de sonido "de lata" de una radio de bolsillo) y es un criterio básico a la hora de seleccionar un equipo de audio para utilizar con la tarjeta de sonido. Por ejemplo, el ancho de banda teórico de la radio FM es aproximadamente tres veces el ancho de banda de la radio AM, por lo que la FM será capaz de reproducir frecuencias que no entran dentro del campo de trabajo de la AM.

Nota: A menudo el ancho de banda se simboliza mediante un único número cuando la frecuencia baja está bastante próxima a cero. Por ejemplo, el ancho de banda de una voz femenina se sitúa en torno a los 9 kHz, aunque realmente puede estar en el rango que va desde los 200 Hz hasta los 9 kHz.

Existe una medida estándar para definir el ancho de banda: el rango de frecuencias sobre el que la amplitud de la señal no difiere del promedio en más de 3 dB, es decir la diferencia de las frecuencias en la que se produce una caída de 3 dB, ya es el punto donde su amplitud cayó a la mitad, y éste es el mínimo cambio en la fuerza de la señal que puede ser percibido como un cambio real en la intensidad por la mayoría de los oídos.

Ancho de banda del sistema

Es importante tener en cuenta que el ancho de banda de un equipo de sonido depende del enlace más débil del canal, que normalmente no es la tarjeta de sonido. La calidad del sonido producido por la computadora refleja el esfuerzo de muchas componentes, y la salida no será mejor que la interpretación del miembro menos capacitado de un grupo. En el caso del sistema de sonido de la computadora, una señal debe pasar por muchas fases de transformación de audio y por diferentes dispositivos. Por ejemplo, consideremos el sonido grabado mediante un micrófono y que luego es reproducido. La tarjeta de sonido transforma el sonido recogido del micrófono en una señal eléctrica que, posteriormente, se transforma en audio digital y se almacena en disco. El audio digital del disco es transformado de nuevo en una señal eléctrica y reproducido a través de los cascos o de los altavoces. El ancho de banda efectivo del sistema de sonido está limitado por el dispositivo con el ancho de banda más estrecho de todos los dispositivos que procesan el sonido.

El enlace más débil en grabación suele ser el micrófono, que tiene probablemente un ancho de banda aproxitnadamente de 12 kHz.

Ruido

Del mismo modo que perturban los ruidos y ecos en una habitación, también puede generarse ruido y distorsión en la tarjeta de sonido, en los altavoces y en el micrófono. El ruido (sonidos aleatorios que transforman y enmascaran el sonido deseado) se mide tambien en decibelios. Dado que es tan poco probable disponer de un entorno de audio digital en perfecto silencio, lo que interesa realmente es saber la cantidad de ruido en relación con la señal que se introduce en el equipo de sonido, especialmente en la tarjeta de sonido. La fuerza de la música, del habla o de cualquier otro sonido, comparada con la fuerza promedio del ruido, se conoce como relación señal/ruido. A medida que aumenta la relación s/n, es mejor el trabajo realizado en grabación. La relación señal ruido de una tarjeta digital sencilla es del orden nada despreciable de 85 dB. Esto significa que la fuerza de la señal es 85 dB mayor que la fuerza del ruido. Una relación de 70 dB se considera válida para propósitos musicales y una relación de 65 dB s/n está en el límite de aceptación.

Grabación y reproducción de audio: Bases del audio digital

Antes de que la computadora pueda grabar, manipular y reproducir sonido, debe transformarse el sonido de una forma analógica audible a una forma digital aceptable por la computadora, mediante un proceso denominado conversión analógica - digital (ADC). Una vez que los datos de sonido se han almacenado como bytes en la computadora, puede hacerse uso de la potencia de la CPU de la computadora para transformar este sonido de miles de modos. Con el software adecuado es posible, por ejemplo, añadir reverberación o eco a la música o a la voz. Pueden eliminarse trozos de sonido grabado. Pueden mezclarse archivos de sonido, ajustarse el tono de la voz de manera que no pueda reconocerse y muchas cosas más. Finalmente, cuando se está dispuesto a escuchar el resultado, el proceso de conversión digital-analógica (DAC) transforma de nuevo los bytes de sonido a una señal eléctrica analógica que emiten los altavoces.

Muestreo: Conversión analógica-digital y viceversa

Comenzaremos con la captura del sonido haciendo uso del micrófono. Cuando las ondas de sonido llegan al micrófono, el movimiento mecánico se traduce en una señal eléctrica. Esta señal se denomina señal analógica porque es una señal continua en el tiempo, análoga al sonido original.

CONVERSION ANALOGICA-DIGITAL (ADC): Dada una señal analógica, se van tomando valores discretos de su amplitud a intervalos de tiempo pequeños, evidentemente será más fiable la reproducción cuantas más muestras por segundo se tomen. A estos valores obtenidos se les asigna un valor digital que el computador puede entender y procesar como se requiera.

A cada muestra obtenida se le asigna un equivalente binario ya que es en este sistema en el que trabajan los computadores, su unidad de información es el bit. Un bit solo puede tomar dos posibles valores "1" o "0", es lógico pensar que será necesario ampliar esta unidad de información para así poder asignar a cada valor de muestra tomada un equivalente binario. Por esta razón y dependiendo de la fidelidad con que queramos trabajar podemos utilizar palabras de 8 o 16 bits pudiendo obtener así 256 ó 65536 combinaciones distintas y obtener mayor resolución.

CONVERSION DIGITAL-ANALOGICA (DAC): El proceso inverso es mucho menos complejo ya que solo se trata de ir poniendo los valores de las muestras en el mismo orden que fueron tomados y unos filtros eléctronicos se encargan de convertir esa señal resultante de valores discretos en una señal analógica.

 

Velocidad y tamaño de muestra

La fidelidad, terminología empleada por los entusiastas del audio para expresar la exactitud en la réplica de la música original del sonido audio digital, depende de la selección de la correcta frecuencia de muestreo y del correcto tamaño de muestra, siendo este último el número de bytes utilizados para almacenar cada muestra.

FRECUENCIA DE MUESTRA: La frecuencia de muestra (también denominada frecuencia de muestreo) debe ser lo suficientemente alta para que los sonidos de alta frecuencia, como el sonido del cristal de una copa de vino o el del arqueo de un violín, puedan recogerse con precisión. Según el teorema de Nyquist, es posible repetir con exactitud una forma de onda si la frecuencia de muestreo es como mínimo el doble de la frecuencia de la componente de mayor frecuencia. La frecuencia más alta que puede percibir el oído humano está cercana a los 20 kHz, de modo que la frecuencia de muestreo de 44.1 kHz de las tarjetas de sonido es más que suficiente. Este valor es el utilizado hoy en día por los reproductores de audio CD.

Los archivos de audio digital pueden grabarse seleccionando la frecuencia de muestreo. A medida que aumenta la frecuencia de muestreo, aumenta la calidad del sonido. Por ejemplo, una velocidad de 6.000 Hz (6.000 muestras por segundo) es buena para una voz masculina típica, pero no lo es para una voz femenina típica, que tiene componentes con una frecuencia más alta. Una frecuencia de muestreo de 8.000 Hz proporciona una grabación de la voz femenina de mayor calidad. La siguiente tabla ofrece una lista de algunas tarjetas de sonido Sound Blaster y de sus frecuencias de muestreo:

 

Tarjeta Grabación Reproducción

Sound Blaster 16        44.100 (mono o estéreo)    

Sound Blaster Pro       22.050 (estéreo)o          

                        44.100 (mono)              

Sound Blaster 2.0       15.000 (mono)              

Sound Blaster 1.0,1.5   13.000 (mono)          

 

La Sound Blaster 16 puede grabar en estéreo, grabando hasta 44.100 muestras por segundo, con un canal izquierdo y otro derecho que producen una frecuencia de muestreo combinada de 88.200 muestras por segundo. Las tarjetas Sound Blaster Pro y la Sound Blaster 16 son capaces también de trabajar en estéreo con una velocidad máxima de reproducción de 22.050. Ambas tarjetas, la Sound Blaster y la Sound Blaster Pro, toman muestras de sonido de 8 bits (1 byte); cada medida consume 1 byte de almacenamiento de la memoria de la computadora o del disco. La Sound Blaster 16 maneja muestras de 16 bits (2 bytes), emitiendo voz y música con una fidelidad equivalente a los reproductores CD actuales.

Existen varias razones para no utilizar las frecuencias de muestreo más altas. En primer lugar, las frecuencias de muestreo altas necesitan gran capacidad de almacenamiento.

TAMAÑO DE MUESTRA: El tamaño de muestra es la otra componente de mayor influencia en la fidelidad del audio digital. Las tarjetas de sonido de 16 bits ofrecen la posibilidad de elegir entre un tamaño de muestra de audio digital de 8 bits (1 byte) o de 16 bits (2 bytes).

El tamaño de muestra controla el rango dinámico que puede grabarse. Por ejemplo, las muestras de 8 bits limitan el rango dinámico a 256 pasos (rango de 50 dB). Por el contrario, una muestra de 16 bits tiene un rango dinámico de 65.536 pasos (rango de 90 dB) una mejora sustancial. El oído humano percibe todo un mundo de diferencias entre estos dos tamaños de muestra. Los oídos son más sensibles a la detección de diferencias en el tono que en la intensidad, pero son aún más sensibles a la fuerza del sonido. Los oídos humanos, que están acostumbrados a detectar sonidos con variaciones de varios órdenes de magnitud en la fuerza, perciben el sonido de 8 bits en un tono apagado o desafinado si se compara con el sonido de audio digital de 16 bits.

COMPROMISOS EN EL MUESTREO Se podría asumir que todo lo que hay que hacer para obtener buen sonido es grabar a la velocidad límite de 44,1 kHz con muestras de 16 bits (2 bytes). El único problema que aparece si se graba en estéreo, tomando muestras simultáneamente en los canales izquierdo y derecho a 44,1 kHz, es que una muestra de sonido de un minuto necesita un espacio para almacenarse de 10,58MB.

Lo aconsejable es usar la frecuencia de muestreo más baja posible. Por ejemplo, supongamos que planeamos grabar una conversación telefónica. El ancho de banda de un teléfono es de sólo 3 kHz. De acuerdo con el teorema de Nyquist, la grabación será acertada si la frecuencia de muestreo es de 6 kHz o mayor.

Cuando se elige la frecuencia de muestreo, también hay que considerar el ancho de banda de todo el sistema. Por ejemplo, estaremos desperdiciando mucho espacio de disco en la grabación de audio digital a 44,1 kHz si el micrófono utilizado funciona a 12 kHz y la fuente de sonido es una voz masculina grave que no supera los 7 kHz.