Learning’98, UC3M, Madrid, Spain
Index
Networks to estimate ‘a posteriori’ class probabilities
Previous approaches
Example
Fundamentals
1.- The binary one-dimensional Logistic Problem (OPDE-LOP)
1.- The binary one-dimensional Logistic Problem (OPDE-LOP)
2.- A multidimensional case.The Softmax Perceptron (OPDE-SP)
3.- A general multidimensional. case.The Generalized Softmax Perceptron (OPDE-GSP)
Particular case of Central Distribution (OPDE-GSP)
Gradient based learning rule (OPDE-GSP)
Gradient based learning rule (OPDE-GSP)
Results
DE vs PE: convergence speed
DE vs PE: generalization
Conclusions
Further lines