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Abstract 

In this paper, a new algorithm, the Joint Network and Data 
Density Estimation (XKDDE), is proposed to estimate the 
'a posteriori' probabilities of the targets with neural 
networks in multiple classes problem. It is based on the 
estimation of conditional dens@ functions for each class 
with some restrictions or constraints imposed by the 
classifier structure and the use B a y a  rule to force the a 
posteriori probabilities at the output of the network, known 
here as a implicit set. The method is applied to train 
perceptrons by means of Gaussian mixture inputs, as a 
particular example for the Generalized Sofhnm 
Perceptron (GSP) network. The method has the advantage 
of providing a clear distinction between the network 
architecture and the model of the data constraints, giving 
network parameters or weights on one side and data over 
parameters on the other. MLE stochastic gradient based 
rules are obtained for JNDDE. This algorithm can be 
applied to hybrid labeled and unlabeled learning in a 
natural fashion. 

Introduction 

It is a well known fact that when a neural network is 
trained in order to minimize the mean square error or the 
cross entropy between the target and the network outputs, 
it provides after learning, estimates of the 'a posteriori' 
probabilities of the classes. The resulting algorithm 
establishes some bridge between parametric and non- 
parametric techniques of a posteriori probability 
estimation. Applications such as medical diagnosis, 
financial data analysis and communications can exploit this 
property. 
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Following [3], we will say that a classifier is Strict Sense 
Bayesian (SSB) if its outputs are estimates of the a 
posteriori probabilities of the classes. In a similar way, for 
a training viewpoint, we will say that a cost function is 
SSB if it is minimized when the classifier is SSB. 

It is well-known, that the quadratic and cross entropy costs 
are SSB. Several authors, [l]  and [2], have deduced 
general expressions for the SSB cost functions for binary 
and multi-class problems. However, up to the knowledge 
of the authors, there is little work on the comparison 
between SSB costs and on the comparison between this 
and other Bayesian approaches to probability estimation. 

In [3] and [4], a SSB cost function is defined so as to have 
a unique minimum when output y coincides with a 
posteriori class probabilities, which we are trying to 
determine. There, it is also demonstrated that it is 
necessary and sufficient for a cost function to be SSB to 
have the following form 

where g(a) is any positive function which does not depend 
on d, and r(d) is an arbitrary function which does not 
depend on y. Additional constraints must be imposed to 
cost C in order to guarantee its concavity, as proved in [3], 
which could be a desirable property of the cost function. 

In [3], [4],[5] and [7], any cost function providing a 
posteriori class probabilities is called Strict Sense Bayesian 
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(SSB). when the a posteriori probabilities are estimated 
using SSB cost functions, no assumptions about the data 
distribution are required: probabilities are estimated 
without estimating the conditional density functions of the 
different data classes. It is known, however, that this states 
some problems: 

The estimation of a posteriori probabilities in well- 
separated data requires very large training sets. 

0 No previous knowledge about the data distribution can 
be wed. 

0 It is difficult to use unlabeled data to improve 
learning. 

The main idea is searching the conditional data density 
functions that best fit the data, between a large set of 
implicit densities defined by network weights w and over- 
parameters o of the data density model. 

The use of over-parametric densities is essential to 
generalize the data density model without increasing the 
complexity of the classifier structure Among the big 
number of imaginable neural network structures we have 
considered the Generalized Sofhnmr Perceptron (GSP) 
here. In [6] and [7] we considered others. Let us now 
center our discussion in the GSP network, defined as 
follows. 
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Fig 1 .- The GSP Network 
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The Generalized Softmax Perceptron (GSP) 

In the way stated in [6], some not general enough networks 
have a limited classification capability: for instance, in a 
binary class problem, only hyper-plane decision 
boundaries are possible. A more general classifier can be 
obtained by computing the class outputs as the sum of 
several sofhnax outputs (see Fig. 1). 

Applying Bayes formula we have, 

where N is the number of classes, p c )  is the a priori 
probability of class j, x is an arbitrary point of the sample 
space and f denotes a density function. 

We are considering this particular network architecture, 
because it is specially appropriate under some conditions. 
First of all, it is general enough, so we can obtain any kind 
of boundary and not only hyper-planes. If we suppose he 
have classes which are Gaussian mixtures and we use the 
right dimensionality of the GSP net, i.e. enough number of 
elements in the mixture, we could compute the a posteriori 
class probabilities for those distributions. 

Even more, given that one can approximate any 
distribution with a general enough Gaussian mixture, we 
could estimate more general distribution probabilities with 
this network, so GSP has a potential ability of estimating 
general class distributions. 

As we want that outputs 9 of GSP network are 
estimations of a posteriori class probabilities, we arrive to: 

where 9 are the outputs of GSP network, g(x,w) represents 
the function which links inputs and outputs in the network 
and w is the network parameter vector. 

DEFIN.ITI0N: Conditional density functions cf(xp), 
j= l  ... NI form an implicit set for a network given by outputs 
a&w) if equation (2) is satis3ed for some parameter 
vector w. 

If we want outputs of GSP to be an implicit set, then we 
immediately arrive to: 

L" 

where Mj are the number of elements within j-th class, also 
called subclass number, and N is the number of classes. 

THEOREM: Density functions A@) form an implicit set 
for the GSP network, if and only if 
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k 4  

(4) 

where j is class index, A$ is the number of elements within 
j-th class, x the input sample, w the network weights and 
j&) an arbitrary probability demity function, called 
Central Density. 

Proof: The proof is easy and omitted. 

Similar theorems can be obtained for different networks, 
like those based in the Softmax function described in [6]. 

It is important to remark, that functionj&) is a density 
function because it has unit area and is positive semi- 
definite but it does not represent any real data distribution, 
neither a joint data density nor any conditional density, 
though for obvious reasons real data densities will depend 
on it. 

In the next two sections, we are going to study the JNDDE 
for the GSP network, and the problem of estimating a 
posterior probabilities, for a particular case of the Central 
Density, fdx): the Gaussian Mixture. 

Example: the Gaussian Mixture 

Some authors, have already fully investigated Mixtures , 
[8] and [9] are two good examples, and have obtained 
some important results. As the Mixture literature is gaining 
importance each and every day, that is the reason why we 
show and example concerning Gaussian Mixtures. 

Let us use a special case of Central Density function, fc(x), 
the Gaussian Mirture for the case of multi-dimensional 
input samples, where om represents the standard deviation: 

where L is the number of mixture components, N is the 
well known Normal Distribution, with restrictions as 
follow 

We are now interested in calculating the precise formulae 
for the conditional class probability density functions of 
each class. To do so, we must first compute the following 
expressions, (7) and (8), whose elementary calculus details 
have been omitted for the shake of clarity: 

m=l 

(7) 

and let us define probability scalar xj,3m and the modified 
vector mean term vjSc,? for convenience in (9) and (10) 
respectively, where again j is the class index, k the sub- 
class index and m the mixture component index: 

(9) 

i n  

Using these newly defined terms, we can now express in 
an appropriate closed form the conditional probability 
density functions of each class as follows: 

where we have explicitly shown the dependence of density 
functions over network parameters w as well as data model 
over-parameters o in the spirit of JNDDE algorithm. 

Gradient based learning rule 

Now that we have obtained models for conditional 
densities in (11) as well as for joint density, computed 
from conditionals, what we do next is to estimate the 
parameters for these densities using Maximum Likelihood. 

It is good to recall that in the parameter set we distinguish 
two subsets, one for the network model (w) and another 
data density model (0) but only first subset is going to 
affect to the probabilities once convergence is achieved. 

We wish to find the partial derivatives of the conditional 
class probabilities, with respect to each of the parameters, 
in order to determine the learning rule to be used in the 
simulations, for the case of the GSP network with a 
Gaussian Mixture as Central Density, making use of 
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previously defined probability q,km, and defining two new 
probability terms, pj,k and l;n: 

The partial derivatives which result, are the following: 

To obtain these set of equations, we have made use of 
some basic algebra and calculus. All previous formulae, 
can be generalized to multi-dimensional inputs 
straightforward. 

Conclusions 

A new parametric density estimation algorithm has been 
proposed to train neural classifiers. We have developed the 
theoretical formulation in order to establish the MLE 
gradient learning rules for several cases of the OPDE 
method. The method requires making some hypothesis 
about implicit density functions, but this can be assumed as 
general as desired. The resulting method is an alternative 
to Strict Sense Bayesian (SSB) Probability Estimation 
method in several situations, showing more robust 
convergence, as demonstrated through computer 
simulation. 
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