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Abstract. A new approach to the estimation of ‘a posteriori’ class 
probabilities using neural networks, the Joint Network and Data Density 
Estimation (JNDDE), is presented in this paper. It is based on the estimation 
of the conditional data density functions, with some restrictions imposed by 
the classifier structure; the Bayed rule is used to obtain the ‘a posteriori’ 
probabilities from these densities. The proposed method is applied to three 
different network structures: the logistic perceptron (for the binary case), the 
softmax perceptron (for multi-class problems) and a generalized softmax 
perceptron (that can be used to map arbitrarily complex probability 
functions). Gaussian mixture models are used for the conditional densities. 
The method has the advantage of establishing a distinction between the 
network architecture constraints and the model of the data, separating 
network parameters and the model parameters. Complexity on any of them 
can be fixed as desired. Maximum Likelihood gradient-based rules for the 
estimation of the parameters can be obtained. It is shown that JNDDE 
exhibits a more robust convergence characteristics than other methods of a 
posteriori probability estimation, such as those based on the minimization of 
a Strict Sense Bayesian (SSB) cost function. 

INTRODUCTION 
It is well known that when a neural network is trained in order to minimize a mean 
square error [ l ]  or the cross entropy [2] between the targets and the network 
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outputs, the network provides, after convergence, estimates of the 'a posteriori' 
probabilities of the classes; many applications in pattern recognition can take 
advantage of .  this property: medical diagnosis, financial data analysis, digital 
communications, among others. In [3], [5], [6], any cost function providing a 
posteriori class probabilities is called Strict Sense Bayesian (SSB). General 
conditions for SSB cost functions can be found in [3], [4] and [6] . 

When the a posteriori probabilities are estimated using SSB cost functions, no 
previous assumptions about the data distribution are required: probabilities are 
estimated without computing the conditional density functions of the classes. It is 
known, however, that this poses some problems: 

0 

0 

The estimation of a posteriori probabilities in well-separated data requires 
very large training sets. 
Prior knowledge about the data distribution can not be used. 
It is difficult to use unlabeled data to improve learning. 

These difficulties are of major importance in many real-world applications. In 
fact, although the probability estimation property is usually considered as a 
potential advantage of neural networks, it is rarely used in practice. An alternative 
to a posteriori probability estimation with SSB cost functions is Density 
Estimation (DE): it consists on estimating the conditional density functions of the 
data samples corresponding to different classes. Using Bayes' rule: 

where N is the number of classes, p( j )  is the a priori probability of class j ,  x is an 
arbitrary point of the sample space and f denotes a density function; the 
computation of a posteriori probabilities from conditional densities is 
straightforward. Unlike SSB cost-based methods, the DE approach requires to 
specify some parametric model for the data densities; in spite of this, we will see 
that we can take some advantages of it. 

In this paper we try to establish a link between DE and SSB-based methods: a 
density model is assumed, but it can be made as general as desired, without 
increasing the complexity of the classifier after leaning. In the following, we will 
refer to this method as the Joint Network and Data Density Estimation (JNDDE). 

The structure of the paper is as follows: first, we describe the basic ideas behind 
the new method, defining the implicit set concept; second, we consider the binary 
logistic problem, which is going to help us to gain some insight in understanding 
the nature of the JNDDE. Third, we discuss more complex networks, to make it 
suitable to more general problems and show two general structures: in the first 
one, we employ a simple multi-output architecture and the second one is a general 
classification structure that can map arbitrarily complex probability maps. Fourth, 
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we describe the results obtained through computer simulations. The last section 
states some conclusions. 

FUNDAMENTALS 

Consider the N-output neural network whose output is given by y=g(x,w), where x 
is the input and w is the parameter set. In order to interpret outputs as 
probabilities, we assume that 

hl 

0 s y i  1 1 ,  i = 1 ,  ..., N C y i  = I  
i= l  

This restriction will be adopted in the following, but it is not strictly necessary. In 
a binary case, a single output network can be used to estimate the a posteriori 
probability of one of the classes, the other one is readily available by a simple 
subtraction. Also, a network with N independent outputs can be interpreted as a 
collection of N independent binary classifiers. According to Eq.( l), if the network 
is able to estimate the a posteriori class probabilities in some particular problem, it 
should be verified that 

DEFINITION: Conditional density functions {fxb), j =  1...N] form an implicit set 
for a network given by outputs g,fx,w) if equation (3)  are satisfied for some 
parameter vector w. 

From this definition, it is evident that a neural network can compute exactly the a 
posteriori probabilities of the classes for some parameter vector w if and only if 
the conditional density functions form an implicit set. For binary problems, word 
set may be substituted by pair, resulting an implicit pair. 

The main idea of this paper is to establish a parametric model for the family of the 
possible implicit sets and afterwards to find the implicit set in this family that best 
fits the data in a Maximum Likelihood sense. The conditional densities will 
depend on the network parameters, but they may depend on an additional 
parameter set v, hence we write Ax]i)=fw,Jxli). The use of over-parametric 
densities (i.e. with more parameters than the network itself) is essential to allow us 
to estimate complex data density models without increasing the complexity of the 
classifier structure. This will be made clear later. 

Note that this approach is network-dependent: for each neural network a 
parametric model of their implicit density sets must be found. For networks with 
several hidden layers, this may be a difficult task; in this paper, we restrict our 
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analysis to a wide family of networks based on the logistic and the softmax 
functions. 

THE BINARY LOGISTIC PROBLEM (LOP) 

Sigmoidal perceptrons 

We will describe our method starting with a simple case: the JNDDE binary 
Logistic Problem (Fig. 1). Let us consider a binary problem, with class labels 0 
and 1,  and a network that computes the logistic or sigmoid function given by: 

1 
y = + e-w'x-wo 

(4) 

where x is the sample vector, and wt indicates the transposed vector of w. In Fig. 
1, we show the binary perceptron, consisting of a soft decision step (given by the 
sigmoid) and a hard decision step (given by the WTA), which assigns one to the 
winning class and zero to the other (arg max yi) ,  forming the output vector d. 

X 

Fig. 1.- The binary Logistic network 

We are interested here in training the logistic network in such a way that y=p( llx); 
The logistic non-linearity has been found by some authors ([8] is a good example) 
to be a specially suitable function for the case of Exponential Family distributions, 
(which includes the Gaussian distribution): it can be shown that the densities of 
the exponential family form implicit sets of the logistic network [ 2 ] .  Here, we are 
interested in the class of all the implicit density sets for the logistic perceptron. It 
is provided by the following Theorem. 

THEOREM I :  Density functions fdx )  and f i (x )  form an implicit set for the 
logistic perceptron network, if and only if they can be expressed in the form 

whereS, is an arbitrary density function that will be called the Central Density. 
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Proof: The sufficient condition is straightforward: replacing (3) and ( 5 )  in the 
Bayes' rule, we get a logistic function of the input. The necessity condition can 
also be proved easily. If (5) holds, we can write 

where pl and po denote the 'a priori' class probabilities, fo(x)=flxlO) and 
fl(x)=flxll) are the conditional class probability density functions. Equation (6) 
shows the conditions that any implicit pair must verify. Defining 

where qo , q1 are some normalizing factors ensuring that fc(x) is a p.d.f. and. 
expressingfo and5 as functions of ff, the proof is completed. 

Selecting different central densities, we can generate arbitrary pairs of implicit 
density functions. For instance, if fc(x) is a zero-mean Gaussian function, we 
obtain a Gaussian pair. 

Estimating implicit pairs 

The JNDDE method is based on making hypotheses about the implicit pair and 
estimating its parameters using the data. It can be summarized as follows: 

1. 

2. 
3. 

4. 

Assume a model the central p.d.f. fc(x,v) where v is the parameter vector to 
be estimated. 
Express fo andfi as a function of w and v 
Obtain MLE of w, v. (Gradient-based learning rules can be obtained, but the 
details are not shown in this paper). 
Use estimated w as the perceptron weights, in such a way that y are estimates 
of a posteriori probabilities. 

The first step is a key point of the method. The central density should satisfy two 
important requirements: 

1. Since the computation of the conditional densities from the central density 
requires to integrate the product of the central density by a exponential 
function, we must select a modelf, providing closed form solutions for these 
integrand operations. 
The central density model should be general enough to map arbitrarily 
complex densities. 

2. 
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The first requirement is satisfied iffc(x,v) is a Gaussian function. It is easy to show 
that, in such a case, the class densities are also Gaussian functions, whose 
parameters depend on w and v. To satisfy the second requirement, we will assume 
that&@) is a Gaussian Mixture, 

In such a case, both classes are Gaussian mixtures. 

THE SOFTMAX PERCEF'TRON (SP) 

A similar analysis can be done for the multi-class problem. The softmax 
nonlinearity is the natural generalization of the logistic function for multiple- 
output problems, see [9] and [ lo]; consider the Softmar Perceptron (SP) in Fig. 2, 
whose outputs are given in (9). 

j = 1, ..., N ew,Tx 1 
y ,  = sojimax(w,Tx) = - 

where N is the number of outputs, i.e., number of classes, yj is the output of our 
network for class j, x its input vector and wj is the weight vector. 

X I  

x2 

x3 

... 

'd 

Fig. 2.- The multi-class SP network (d is the dimensionality of input data) 

We wish y j  to be the a posteriori class probability of input sample x belonging to 
class j, sof/(x) would constitute an implicit set. 

THEOREM 2: Density functions f/{x) form an implicit set for the SP network, if 
and only if they can be expressed in the form 
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where j is class index, x input sample, w nehvork weights and fdx)  an arbitrary 
probability densityfunction. 

Proof: The proof is easy and follows the same steps than those in Theorem 1. 

Thus, in (10) we have the conditional probability density functions for each class 
in terms of the Central Density, constrained by the chosen network structure, SP 
in this case. Later on, one would compute the partial derivatives for the gradient 
based learning rules for all the parameters, details not shown in this paper, to 
obtain Maximum Likelihood Estimates (MLE). 

THE GENERALIZED SOFTMAX PERCEPTRON (GSP) 

The SP network is not a universal classifier. A more general structure can be 
obtained by computing the class outputs as the sum of several softmax functions 
(see Fig. 3). 

Again, applying Bayes' formula and defining outputs Zi as estimates of a 
posteriori class probabilities, constituting densities f(x1i) an implicit set, we obtain: 

where Mj are the number of elements within j-th class, also called the subclass 
number, and N is the number of classes. 

XI 

X 2  

x3 

... 
xd 

Fig. 3.- The GSP Network 
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THEOREM 3: DensivfunctionsA(x) form an implicit set for  the GSP network, if 
and only if 

j = 1, ..., N k = l  

f, ( X I  = M, 

f c ( x ) ~ e w J L r x d x  k = l  

where j is class index, Mj is the number of elements within j-th class, x the input 
sample, w the network weights andfc(x) an arbitrary probability densityfunction. 

Proof: The proof is easy and also omitted. Again, gradient based learning rules 
can be obtained which are use to recursively adapt all the parameters, both 
network and data for the GSP net. 

RESULTS 

We tested JNDDE through computer simulation. Here we consider just a simple 
example to illustrate the main difference between this method and those based on 
minimizing a SSB cost. Other simulation examples analyzing convergence speed 
of stochastic gradient algorithms can be found in [5], [6] and [ 113. 

Consider a zero-mean Gaussian two-dimensional central density f c  with variance 
matrix 021. We took o=l. Consider the implicit pair of conditional densities 
resulting from this central density and a logistic perceptron with parameter vector 
w=(-1,3). Data were generated according to this density pair. The simulation 
work followed three steps 

1) Estimate w minimizing a cross entropy cost function. Stochastic gradient 
learning was used. The algorithm was stopped after 16384 iterations. At this 
time the algorithm has almost reached the final convergence values. 
Estimate w by MLE of the conditional densities. Since classes are Gaussian, 
the JNDDE approach reduces, in this case, to estimate mean, variances and a 
priori probabilities of each classes, which can be done using standard 
estimates. 

3) Estimate w by MLE, assuming that the true variance of each class is known. 

Simulations were carried out for different training set sizes: 4,8,16,32, ... up to 213. 
Since all methods make true hypothesis about the data, all of them would obtain a 
perfect estimate of w if unlimited data were available. For these finite size 
examples, we compared the estimation performance using the Weight Relative 
Square Error (WRSE) measure given by 

2 )  
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where wept is the optimal value of network vector parameter, and west the 
estimated value. 

The'results obtained, are shown in Fig. 4, which is the average of 50 simulations. 
As we could expect, JNDDE gets a lower WRSE for the same amount of training 
data. This is due to the fact that it makes true hypothesis about the data 
distribution, thus reducing the space search. Note that the difference in WRSE, in 
a log-log scale, remains constant no matter what is the size of the training set. 

o=SSB: '=DE(means and variances), +=DE(means) 
10' 

10" 

L P lo-' 

J 
9 

cn 
E cn 
g lo-' 

1 o4 
10" 1 0' 1 0' 1 o3 10' 

No of training samples 
Fig. 4 .- Comparison of JNDDE and SSB methods. 

CONCLUSIONS 

This paper presents a novel approach to the estimation of 'a posteriori' 
probabilities with neural networks which is based on estimating the conditional 
data densities. The JNDDE can reduce the data requirements of the estimation 
process, at the cost of making assumptions about the sample distribution. The 
method is based on using two different models, one for the posteriori probabilities 
(which is given by the network structure) and the other for the conditional data 



densities; both of them can be made arbitrarily complex. This states an important 
question for future work: for a given sample, how to identify the complexity of 
both models. On the other hand, since JNDDE uses a data model, it has the 
potential capability to extract information from unlabeled data. Use of JNDDE in 
hybrid learning, both labeled an unlabeled data, is a matter for future research. 
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