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Abstract—The problem of designing cost functions to estimatea
posterioriprobabilities in multiclass problems is addressed in this
paper. We establish necessary and sufficient conditions that these
costs must satisfy in one-class one-output networks whose outputs
are consistent with probability laws. We focus our attention on
a particular subset of the corresponding cost functions; those
which verify two usually interesting properties: symmetry and
separability (well-known cost functions, such as the quadratic
cost or the cross entropy are particular cases in this subset).
Finally, we present a universal stochastic gradient learning rule
for single-layer networks, in the sense of minimizing a general
version of these cost functions for a wide family of nonlinear
activation functions.

Index Terms—Neural networks, pattern classification, proba-
bility estimation.

I. INTRODUCTION

DECISION, classification, and detection, are old words
that have been recently adopted for use in technical

theories. For example, the Spanish verb “decidir” (to decide)
appeared in 1569, originating from the Latin word “decidere”
(and this word from “caedere,” which means to cut!). To say
yes or no, this or that, that there is or there is not, respectively,
are the answers to the corresponding questions associated with
decision, classification, and detection problems. It is obvious
that each question can be reformulated in the form of another,
but it is also evident that the subjective implications are not
the same.

Fortunately, the Bayesian formulation of these problems can
be adapted to these general differences, as well as to other of
less basic relevance: the use of decision cost functions serve
to balance all them. Once the decision costs are established,
data likelihoods anda priori probabilities or a posteriori
probabilities of the hypotheses are enough to obtain optimal
results [1], [2].

In practice, with the exception of cases in which the
“mechanics” of the problem are known (as in many transmis-
sion problems), likelihoods ora posteriori probabilities must
be estimated. In particular, neural networks can be used to
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estimatea posteriori probabilities by means of a supervised
training [3]–[6].

The estimation ofa posteriori probabilities is not required
in order to make a decision. Indeed, Vapnik [7] remarks that to
include this estimation increases the complexity of the process.
This fact was the origin of Rosenblatt’s Perceptron Rule, along
with its many variants which deal with the lack of convergence
in nonseparable situations [8]. Even structural and training
generalizations, such as the decision-based neural networks
[9] have difficulties; to solve them is an NP-complete problem
[10] and only suboptimal procedures can be applied in practice.

Since perceptron-rule-based algorithms have these draw-
backs and generalize poorly, other authors have followed
alternative routes for minimum error decision: Telfer and Szu,
for example, use Minkowski’s -norm minimization and a
very steep sigmoidal activation output [11], [12]. At the same
time, other objective functions have appeared to address ro-
bustness, training speed, decision performance, etc. Reference
[13] presents a very complete overview, and [14] proposes
using Csisźar measures [15] in several forms, following the
idea of minimizing divergences introduced by Hopfield [16]
and Hinton [17].

However, in many cases, proposing cost functions for strict
decision purposes is not enough [e.g., in (auxiliary) automatic
diagnostic systems for clinical applications, in financial prob-
lems, or when decision fusion will be a final step]. In these
cases,a posterioriprobability estimates are natural quantities
to be considered.

Surprisingly, the if and only if conditions for a cost function
providing estimates of thea posterioriprobabilities have only
been established for binary problems, although there have been
discussions addressing this property for specific cost functions
in multiple hypotheses situations. In this paper, we focus on
the general -ary case, assuming that, as usual, cost function

, depends only on output and desired target .
After finding the corresponding iff condition, we derive some
theoretical and practical implications about the characteristics
of the corresponding estimates.

It should be noted that the analysis we carry out implicitly
assumes that the architecture under consideration is general
enough to have the capability of approaching the desireda pos-
teriori probabilities (and even that training leads to the global
optimum). Of course, this is not true in all practical situations;
however we show that if the network is not general enough,
the proposed cost functions provide the nearesta posteriori
probability estimates according to some divergence measure.
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Fig. 1. Soft decision multioutput classifier.

The organization of this paper is as follows. Section II states
the probability estimation problem. In Section III we show
general conditions for the cost functions that provide estimates
of the a posteriori class probabilities. Section IV studies the
convexity of the proposed functions, and Section V shows that
the proposed cost functions minimize a divergence measure
between probabilities. Section VI explores the application of
these theoretical results to single layer networks. A simulation
example and a general discussion of the advantages of the
proposed cost functions can be found in Section VII, and
Section VIII summarizes the main conclusions and suggests
some lines for future research.

II. PROBLEM FORMULATION

A multiple classification problem can be stated in the
following manner. Some system produces a class index
according to probabilities , ; then, an
observation vector is generated according to probability
density function . After observing , the classifier
system has to decide which class generated it.

A soft-decision-based classifier makes decisions in two steps
(see Fig. 1). First, it computes soft-decision vectorwith
components

(1)

where is a vector of network parameters. We assume that
outputs of activation functions verify

(2)

(e.g., using the softmax nonlinearity). Second, the classifier
makes a hard decision [a winner-take-all (WTA) network is
assumed] so that the components of output decision vector
are given by

(3)

where is the Kronecker delta and

(4)

A decision error occurs when is not equal to target vector
with components , where is the class of the

observation. The error probability is minimum for class

(5)

Besides making optimal decisions ( ), we are in-
terested in the class of networks whose soft decisions are
equal to thea posteriori class probabilities .
The corresponding cost function must be strict sense Bayesian
(SSB), which we define as follows.

Definition 1: Let , . A
cost function , is said to be SSB if has
a unique minimum in when the outputs are thea posteriori
probabilities of the classes, i.e.,

(6)

Since

(7)

and is always nonnegative, minimizing
for every input vector is equivalent to minimizing

. In the following, we will use the notation

(8)

where is a vector with components

(9)

Although most of this paper is concerned with multioutput
classifiers, we will also consider the problem of binary clas-
sifiers with a single output. The definition for an SSB cost
function in this case is as follows.

Definition 2: Let . Consider a single-output
binary classifier with soft decision , and
hard decision equal to the integer nearest to. A cost
function is said to be SSB if has a
unique minimum in when the outputs are thea posteriori
probabilities of class 1, i.e.,

(10)

According to the above definitions, an SSB detector requires
an SSB cost function. For instance, the well-known cross-
entropy (logarithmic cost) function given by

(11)

is SSB [19], [20]. Not every cost function is SSB, for instance,
an norm is SSB only for [4], [21].

Besides a learning algorithm, an SSB classifier requires
a network structure able to construct class probabilities and
optimal decisions. In the following, we will assume that the
network satisfies the complexity requirements of the data
distribution for any case, since our interest is not centered
on any specific architecture. Section V-B discusses the use of
SSB cost functions for insufficient networks.

General conditions for a cost function providinga posteriori
probability estimates have been studied by Hampshire and
Pearlmutter [3] in the binary case; for the same case, Miller
et al. [6] extended their work, showing that any SSB cost
function can be expressed in the form

(12)

where is a positive function, and is an arbitrary
constant. In practice, the selection of any cost in the family
can be done by parameterizing and giving values to the
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parameters, for instance by using the Taylor series expansion
of as suggested in [22].

The multiclass problem can be addressed using different
network configurations:

1) single output networks where classes are denoted with
scalars , , and is the number of classes;

2) a network with one output per class;
3) a network with one output per class and outputs con-

strained by

(13)

The first case is also addressed in [6], where it is shown that

(14)

where is the target, is the unique minimum of cost function
iff it can be expressed as (12) [i.e., the SSB costs

given by (12) provide estimates of the conditional mean value
of the target].

Note that if the output is given by (14), the extreme values
of are penalized. For instance, if , all
terms in (14) with “push” the output in the
same direction away from and, thus, the network decision
will be only if is clearly dominant over the other
probabilities.

As shown in [3], the results obtained for the two-class
problem can be easily extended to the second case: any cost
function given by a linear combination of costs given by (12)
is SSB. The usual configurations of the multilayer-perceptron
are examples of this kind of network.

Since the goal is to estimate probabilities, the use of
networks whose outputs are constrained by (13) is more
adequate. A multioutput network with a softmax output acti-
vation function [23], [24] is an example. We consider in this
paper networks satisfying this probability law.

III. GENERAL SSB COST FUNCTIONS

This section provides theoretical results on the conditions
that SSB cost functions must satisfy in multioutput networks.
A general formula for an SSB cost function is given by the
following theorem.

Theorem 1: A cost function is SSB iff it can be
written in the form

(15)

where is any convex function in which does not depend
on .

Proof: See Appendix A.
The previous result shows that any SSB cost is completely

specified by a convex and multidimensional function .
Note that the only constraint imposed on is that it must
be a function of and , that is, the entire influence of
the network parameters on the cost function is given by.
Now, we define the concepts of separability, which simplifies

the characterization of the SSB cost functions, and symmetry,
which is usually required in practice.

A. Separable Cost Functions

We focus here on the special and sometimes desirable case
of SSB cost functions with uncoupled components. We present
the following definition and theorem.

Definition 3—Separable Cost Function:A cost function is
separableif it can be represented in the form

(16)

Theorem 2: is a separable SSB cost function iff it
can be written in the form

(17)

where , are positive functions and
is an arbitrary function which does not depend on.
Proof: See Appendix B.

The selection of is irrelevant because it does not
depend on the network weights. Thus, separable SSB cost
functions are described byscalar functions . In order to
specify a particular cost in the subset, the parametric technique
described in [22] for the binary case can be easily applied to
the multiclass problem. Note also that, when using gradient
algorithms, the integral functions do not have to be computed
because learning rules are based on the cost derivatives.

B. Symmetric Costs

In most applications, it is expected that the classifier per-
formance should not depend on the order of the input vector
components. The SSB cost functions derived before do not
satisfy, in general, this kind of symmetry. For this case we
present the following definition and theorem.

Definition 4—Symmetric Cost Function:A separable cost
function ispermutationally symmetric,or simplysymmetric,if
it is invariant when the components ofand are reordered
simultaneously

(18)

where is an arbitrary permutation of the components of
.
Theorem 3: A symmetric and separable cost function

is SSB iff it can be written in the form

(19)

where is any positive function ,
which does not depend on, and is an arbitrary function
which does not depend on.
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Proof: See Appendix C.
The symmetry property simplifies the design of the cost

function to the determination of a unique scalar function .
Equation (19) is a direct extension of (12) to the multioutput
case.

It is easy to verify that many classical cost functions satisfy
the above conditions. For example, for and ,
we have the conventional quadratic cost

(20)

for and , we get

(21)

which is the cross-entropy between probability distribution
and degenerate distribution.

IV. CONCAVITY

Although we have demonstrated that the global and unique
minimum of the proposed cost functions is found at the class
probabilities, concavity of mean cost is not guaranteed. It
is a desirable property, because it ensures that, the farther the
output vector is from , the higher the gradient of the mean
cost is and the higher (on the average) the weight change in the
learning rules. Thus, additional constraints on are needed
to guarantee concavity of as a function of .

General concavity conditions are easy to find when the SSB
cost is separable, as described in the following theorem.

Theorem 4: The mean value of a separable SSB cost is a
concave function of iff , , is
an increasing function of and , , is a
decreasing function of .

Proof: From (17), we get

(22)

and

(23)

The Hessian matrix is diagonal and, therefore,is a concave
function of iff

(24)

is an increasing function of for any value of scalar between
zero and one.

V. SSB DIVERGENCE MEASURES

A. SSB Divergence

Let us define

(25)

Since does not depend on the network weights,
minimizing the mean cost is equivalent to minimizing

. Additionally, according to Kapur [15], is a divergence
measure between probability distributionsand because it
satisfies the following properties:

1) Nonnegativity: ;
2) Identity: iff ;
3) Concavity: is a concave function of .

Since is minimum at , the verification of
the nonnegativity and identity properties is easy.is always
concave as a function of, because is convex and

(26)

Moreover, as a direct consequence of (25),is a concave
function of iff is concave.

It is easy to show that the mathematical expressions for the
divergence of the separable and symmetric SSB cost functions
are given by

(27)

and

(28)

respectively.
The last expression includes the Euclidean distance for

and the cross-entropy or the Kullback–Leibler
divergence for .

B. Mean Divergence and Insufficient Networks

Up to this point we have assumed that the classifier is able to
compute the exact values of thea posterioriclass probabilities
for any input vector. Unfortunately, this is not a usual situation
in practice and a question immediately arises: how do the SSB
cost functions behave when they are applied to insufficient
networks?

All the factors involved in the learning process influence
the answer to this question: the architecture, the cost function,
and the way the training samples are used during learning.
Following Vapnik [7], if the learning process isconsistent,the
minimization of the accumulated cost

(29)

is asymptotically equivalent (as , the size of the training set,
increases) to minimizing the mean cost

(30)

The study of conditions under which the learning process
is consistent is far beyond the scope of this paper. In any
event, note that, according to (25), minimizing the mean cost
is equivalent to minimizing the mean divergence ,
since does not depend on the network parameters. Therefore,
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under the consistency assumption, the SSB cost function
provides thea posterioriprobability estimates which are, in the
mean, the nearest to the true ones with respect to divergence
measure .

VI. SINGLE LAYER PERCEPTRONS

In this section we will consider the application of SSB
costs to estimatea posteriori probabilities using single layer
perceptrons (SLP’s). By SLP we mean any single-layer net-
work with a nonlinear output activation function, satisfying
the probability constraints used in this paper.

A. Single-Output Binary Classifiers

Consider the single-output SLP with soft decision

(31)

where

(32)

is the weight matrix, and is a monotonically increasing
nonlinearity such that . For a binary classification,
condition (12) guarantees that the network output is an esti-
mate of thea posterioriclass probability. It is easy to see that
the stochastic gradient learning rule for weightsis given by

(33)

If is a sigmoidal nonlinearity,
. This is a well known factor responsible for slow

training when the quadratic cost function is used ,
since the adaptation is slow whenis near zero or one (for
example, see [19] or [25]). This is one of the justifications for
using cross-entropy. In this case, (see
[6]), , and

(34)

Wittner and Denker [26] provide theoretical results show-
ing that cross-entropy behaves better than the quadratic cost
because it is awell-formedcost function. A cost-function is
said to be well formed if it satisfies the following properties.

1) For all

where

(35)

(i.e., the learning rule does not push in the wrong
direction).

2) There exists some such that, if

(i.e., the learning rule keeps pushing if there is misclas-
sification).

3) is bounded below.

Since , which is the factor multiply-
ing the error in (33), depends on both the cost function and
the nonlinearity, what is in fact well formed is not the cost
function, but the learning rule. An equivalent set of conditions
for well-formed SSB leaning rules is given by the following
proposition.

Proposition 1: An SSB learning rule for an SLP is well
formed iff it satisfies the following properties.

1) (i.e., the nonlinearity is monotonically in-
creasing).

2) There exists some such that .

The proof is straightforward and we omit it here.
Note that if is monotonically increasing, it is invertible

and , and we can define an SSB cost function as

(36)

so that and the learning rule (34) is satisfied.
This proves the following proposition.

Proposition 2: If is the output of an SLP with an in-
creasing nonlinearity, learning rule (34) minimizes an SSB
cost function.

Thus, irrespective of the exact form of the nonlinearity
after the weighted sum of the input components, the previous
learning rule can always be used to estimate probabilities (with
arbitrary precision if the network can model the data profiles,
or with minimum SSB divergence in a general case). This can
be applied in analogical implementations of the SLP, where the
exact expression of the activation function may be unknown
[27].

B. Multioutput Single-Layer Networks

Amari [20] has shown that the particular advantages of using
the cross entropy cost function to train perceptrons with a
logistic function can be had in the multilevel case when the
linear outputs are fed to a softmax nonlinearity, i.e.,

(37)

where and the cross entropy cost function is used.
It is easy to show that, in such a case, the weight updating
rule is given by

(38)

The question about the SSB character of learning rule (38)
arises immediately. This is answered with Theorem 5.

Theorem 5: Let be the output of a SLP with nonlinearity
. Learning rule

(39)

minimizes an SSB cost function iff there exists a convex
function such that (i.e., is the
gradient of a potential function) and its Hessian matrix
satisfies rank .
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Proof: See Appendix D.
The previous rules can only be applied to SLP’s, which

have a limited classification capability and, therefore, are not
universal probability estimators. Learning rules for universal
classifiers that are independent of the nonlinear activation
function are being investigated by the authors.

VII. D ISCUSSION

A first question arises in connection with practical appli-
cations of the above theory. In particular, what differences
exist between probability estimation and other Bayesian ap-
proaches? Minimizing an SSB cost for a learning machine is
an alternative to the estimation of thea posterioriprobabilities
from a given model (or even a nonparametric formulation).
Differences between these two approaches are obvious. If we
have a model, we need only estimate its parameters, and this
can be done by means of block algorithms in some cases.
Training a machine usually requires gradient algorithms. On
the other hand, the adequacy of the model is always an open
question (which forces us to apply validation mechanisms
that can lead to wrong results). A simple example serves to
illustrate the situation.

Let us consider a binary Gaussian decision problem

(40)

where the classes are equiprobable. It is well known [2] that

(41)

where

(42)

(43)

Equation (41) shows that the SLP with a softmax activation
function (or the logistic function in a binary case) is an SSB
classifier of Gaussian clusters with the same covariance matrix.

Assume that the statistics of the class distributions are not
known. The SLP can be trained using any learning rule mini-
mizing an SSB cost; however, if we know that the distributions
are Gaussian, density estimation is an alternative approach.
Specifically, first the statistics of the data distributions [mean
vectors , covariance matrix and a priori probabilities

] are estimated, and then weight vector is
computed using (42) and (43).

However, there are many data distributions for which the
single layer perceptron is an SSB classifier. For example, if
the data are driven by conditional densities having forms

(44)

where is some positive function independent of, the
optimal structure remains the same, but the estimation of prob-
abilities under the hypothesis of Gaussian distributions will

fail. Thus, the direct estimation approach is more general than
that of density estimation. This can be shown with a simple
one-dimensional example: assume that class distributions are
driven by (44) with , variance and

. Constant is used to ensure a unit area
density function. It is easy to show that, if ,

sigm (45)

Thus, a single output sigmoidal perceptron with a single weight
is an SSB classifier for this problem. We have estimated
network weight following two different approaches.

1) Minimizing the cross entropy cost by means of learning
rule (34).

2) Computing and and then using (42) and (43).

Fig. 2 represents the square weight error as learning pro-
ceeds, averaged over 300 realizations. The advantages of
direct probability estimation over density estimation in this
example are evident. The density estimation approach fails,
because the actual distributions are not Gaussian; however,
the learning rule minimizing the cross entropy finds the
asymptotically optimal network parameter. This shows that
SSB cost functions do not make unnecessary assumptions
about the data distribution.

There is another important aspect from a practical point of
view: how the “best” SSB cost for a particular problem can be
determined? A general answer is not easy, and it is connected
to some other aspects of training. In the following, we will
restrict the discussion to the binary case, mainly for reasons
of clarity.

We minimize

(46)

where has the form shown in (12) for an SSB
solution. It has been shown (in [4], for example) that the
presence of in (46) means that the minimization is em-
phasized for the regions at which the data density is higher. In
the majority of practical situations (low error probability), this
density is low around the classification surface, limiting the
quality of the approach obtained for this border. By selecting
an appropriate cost one can compensate for this difficulty in a
way similar to the use of importance sampling to compute
in many radar and communication problems. Specifically,
appears as a factor of in (which must
be zero to reach the solution, if the machine is general enough)
and, consequently, selecting a high around the border
(when in MAP classification) will help to improve the
quality of the border and of the classification (at the expense
of poorer estimates of thea posteriori probabilities in other
regions, of course). Needless to say, this does not mean that
the above selection will also yield fast convergence. Initially,
the region of to which corresponds to depends
on the initial values of the parameters (which are randomly
selected in most procedures), and to apply with its highest
value around would make the algorithm even slower.
It seems much more reasonable to “accelerate” it by allowing

be higher where most the samples are, or at least constant
(as for the quadratic cost). To increase the importance of error
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Fig. 2. Probability estimation versus density estimation. Evolution of the square weight error during learning. Dashed line: stochastic minimization of the
cross entropy; diamonds: training via density estimation. Class distributions are driven by (44) with�1 = ��2 = 3, � = 1, andg(x) = a sin2(�x=�).
Simulations show the average of 300 realizations.

by emphasizing factor (using , , for
example) also seems reasonable. This has to be changed for
the last convergence steps if an SSB solution is desired. More
analysis is needed to develop a solid theory of adapting the
cost function to the convergence of the algorithm.

Another subject directly related to the above discussion,
although it has not been analyzed from this point of view,
is that of selecting samples. It was proposed first in [28], as a
procedure according to which the samples that are difficult to
learn are most frequently applied (after reaching a reasonable
degree of convergence). Curiously, many subsequent selection
strategies ([29] presents a significant number of options) take
the perspective of selecting samples close to the decision bor-
ders. Of course, this is (qualitatively) equivalent to selecting an
“equivalent” cost function, but is not as general as changing the
sample distribution (as when applying importance sampling),
or selecting samples in order to get a better definition of the
decision borders, as implicitly done by quadratic (or linear)
programming in minimizing combinations of performance and
generalization measures to build support vector machines (see
[7] and subsequent papers on the subject, such as [30]).

The use of a varying adaptation step can also be immediately
related to the above discussion. A form could be
included as a factor in , and a joint discussion
will be possible. Most of the variable step rules (see [13], for a
fairly complete presentation) could be analyzed from this point
of view. However, we repeat that it is necessary to dedicate
additional work to this line of research before establishing
useful results and recommendations.

Cost selection also depends on other factors, including the
network structure, the data distribution or the application re-

quirements. If the classifier is not general enough, i.e., it cannot
exactly map the class probabilities for any value of the network
parameters, the optimal weight vector depends on the SSB
cost. The requirements of the application can also influence
the cost selection. For instance, when relative differences are
more relevant than absolute differences, cross entropy could
be preferred to quadratic cost, as the simulations reported in
[19] show. A large comparative work has been carried out
in the literature showing the advantages of the cross entropy
over the quadratic cost. El-Jaroudi [19] notes that the reason
for this may be the simplicity of the learning rule resulting
when output logistic nonlinear activation functions are used
[see (34), for an SLP], and Wittner and Denker [26] show that
any gradient descent rule based on a well-formed learning
rule converges to an optimal zero-error solution, provided that
classes are separable. Moreover, they give examples of data
distributions for which gradient descent based on the quadratic
cost can converge to local minima. However, note that the
cross entropy is advantageous over other cost functions in
networks with sigmoid or softmax nonlinearities. Using other
nonlinear activation functions, cross-entropy may not even
yield well-formed learning rules. In any event, here we have
demonstrated that learning rule (34) is universal, in the sense
that it minimizes an SSB cost function independently of the
nonlinear saturation used.

VIII. C ONCLUSIONS

We have established necessary and sufficient conditions
for SSB cost functions (i.e., those that provide estimates
of the a posteriori probabilities of the classes) in networks
whose outputs are consistent with probability laws. We have
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provided a general formula for SSB cost functions satisfying
two important properties: separability and symmetry; showing
that the quadratic cost and the cross entropy are separable,
symmetric, and SSB.

We have paid special attention to the application of SSB
cost functions to estimate probabilities using single layer
perceptrons, providing an “iff” condition for an SSB cost to
be well-formed for a single-output SLP. For both single and
multioutput nets, we have presented a learning rule that always
minimizes an SSB cost independent of the nonlinear activation
function used.

The previous discussion shows that further work is neces-
sary in order to determine the structure and behavior of the
SSB cost family, and the relationship betweena posteriori
probability estimation and other Bayesian approaches to learn-
ing. Many applications could take advantage of an efficienta
posteriori probability estimation algorithm.

APPENDIX A
PROOF OF THEOREM 1

We can write the cost function as

(47)

where

(48)

Therefore

(49)

where

(50)

and is the th class unit vector with components .
Because of (13), the network outputs are dependent vari-

ables. Using Lagrange multipliers, the minimum of
as a function of can be found minimizing

(51)

If is SSB, there is a unique minimum at ; therefore,
combining this with (49), we can write

(52)

The set of differential equations given by (52) for every
should be satisfied by every vector , so we can write

(53)

These equations can be solved as follows: first, noting that

Equation (53) can be expressed as

(54)

where

(55)

Since (54) is valid for every , we can write

(56)

(57)

and, replacing in (54), we get

(58)

Using (47) and (49)

(59)

and

(60)

The convexity of can be shown as follows:

(61)

and

(62)

Since the stationary point is a minimum, must be a
concave function of at ; but, noting that

(63)

we conclude that is convex in .
To show that is the unique stationary point, note

that, at any stationary point

(64)



CID-SUEIRO et al.: COST FUNCTIONS TO ESTIMATEA POSTERIORIPROBABILITIES 653

So, using (61), we have

(65)

where is the Hessian matrix of. Since is convex,
is nonsingular and, thus, the unique solution of (65) is .

This proves that (15) gives a necessary condition. The proof
of sufficiency is straightforward. If cost function is given by
(59)–(61) are satisfied, so that is a stationary point of

; moreover, if is convex in

(66)

and thus

(67)

showing that is a global minimum.

APPENDIX B
PROOF OF THEOREM 2

If is separable

(68)

and

(69)

Noting that

(70)

we have

(71)

The previous equality must hold for any target vector. For
instance, taking , , we get

(72)

Defining

(73)

we have

(74)

Equation (74) holds for every ; thus, replacing it in (72),
we arrive at

(75)

At any point , (13) is verified and, therefore,

(76)

and

(77)

Using (68), we get

(78)

thus, at points , does not depend on, .
Therefore, we can define

(79)

and, consequently

(80)

where and are arbitrary functions of which cannot
depend on . For convenience, we can express

(81)

therefore

(82)

where

(83)

Since there are no restrictions imposed to and , is
an arbitrary function of , and this completes the proof of
Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Consider permutation function that only changes compo-
nents and in ,

if
if
otherwise.

(84)

Since is symmetric and separable, (17) and (18) hold.
Therefore

(85)
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Using (84) we arrive at

(86)

The previous equality must hold for any probability vectors
and . Now, we have to consider the cases and

separately. In the former case, we can chooseand such
that ; then and

(87)

for every . Thus, for every , and defining
, we arrive at (19).

This proves the theorem for . Consider the case
(the previous proof is not valid because it is not possible to
take unless ). Let us take ,
and if is separable

(88)

Now, taking the first derivative with respect to,

(89)

and, for

(90)

Let us define

(91)

Using the fact that , we can develop the
binary cost as follows:

(92)

The final expression is equivalent to (19) for .

APPENDIX D
PROOF OF THEOREM 5

The stochastic gradient learning rule for a single-layer
multioutput network is

(93)

(94)

(95)

Let us assume that (38) minimizes and that is SSB.
Using (38) and (95) we get

(96)

Defining as in (48), we find

(97)

and

(98)

The last equality must hold for every target vector. For
instance, if we get

(99)

Note that

(100)

Since second derivatives are independent of the derivation
order, we find

(101)

Thus, is the gradient of a potential function

(102)

Moreover, is convex; this can be shown as follows. First,
note that

(103)

so that, since

(104)

and, using (96), we arrive at

(105)
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Taking into account

(106)

we can express the previous equation in matrix form as

(107)

where and are the Hessian matrices of and ,
respectively. As this must be true for any target vector, we
can write

(108)

for any real numbers , . If we take such as
, it is easy to see that the previous equality can

be written as

(109)

where is any vector in the subspace
. This has two consequences.

1) Note that

(110)

therefore, the column vectors of matrix are in , and

(111)

Since is convex in , is definite positive and,
thus, for every vector

(112)

and thus

(113)

showing that is semidefinite negative and is
concave (although no strictly concave).

2) Let us define matrix ; thus,
for any vector . As , we have
that rank . Moreover, since

(114)

and rank , we get

rank rank rank (115)

Since is invertible, rank . But, as the
columns in are all in , rank , and we
conclude that

rank (116)

We now prove the converse of the theorem. Let us assume
that is the gradient of a potential function, ,
and rank . Let us define

(117)

In the following, we demonstrate that

(118)

is an SSB cost leading to rule (38). Since

(119)
learning rule (38) minimizes cost with a minimum
when

(120)

i.e., when outputs are probabilities. Note, however, that we
have defined the SSB costs as functions of. Next, we show
that is, in fact, a function of . First, note that

(121)

where is a unit vector. Thus, the
directional derivatives of along the lines driven by are
constant, so that

(122)

for every . According to this and, using (117)

(123)

As rank at every point, is strictly convex in
the vector subspace of all vectors that are orthogonal to.
Therefore, there cannot be any vector such
that . Thus, for every and such that

, we find , which
demonstrates that can be expressed as a unique function of

and .
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