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Cost Functions to Estimat& Posteriori
Probabilities in Multiclass Problems
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Abstract—The problem of designing cost functions to estimata  estimatea posteriori probabilities by means of a supervised
posterioriprobabilities in multiclass problems is addressed in this  training [3]-[6].

paper. We establish necessary and sufficient conditions that these The estimation of posteriori probabilities is not required

costs must satisfy in one-class one-output networks whose outputs. .. .
are consistent with probability laws. We focus our attention on N Order to make a decision. Indeed, Vapnik [7] remarks that to

a particular subset of the corresponding cost functions; those include this estimation increases the complexity of the process.
which verify two usually interesting properties: symmetry and  This fact was the origin of Rosenblatt's Perceptron Rule, along
separablllr:y (well-known cost functl_onT, such as thi_quadbran(; with its many variants which deal with the lack of convergence
cost or the cross entropy are partlcu ar cases In this subset). . . . ..

Finally, we present a universal stochastic gradient learning rule in nons.epa.rable situations [8]. E.vt.an structural and training
for single-layer networks, in the sense of minimizing a general generalizations, such as the decision-based neural networks

version of these cost functions for a wide family of nonlinear [9] have difficulties; to solve them is an NP-complete problem

activation functions. [10] and only suboptimal procedures can be applied in practice.
Index Terms—Neural networks, pattern classification, proba- Since perceptron-rule-based algorithms have these draw-
bility estimation. backs and generalize poorly, other authors have followed

alternative routes for minimum error decision: Telfer and Szu,
for example, use Minkowski’d.;-norm minimization and a
- ) very steep sigmoidal activation output [11], [12]. At the same
DEClSlON’ classification, and detection, are old wordgme other objective functions have appeared to address ro-
that have been recently adopted for use in techniqglsiness; training speed, decision performance, etc. Reference
theories. F_or examplt_a,_the_ Spanish verb “_deC|d|r” (to d_eudE)Qg] presents a very complete overview, and [14] proposes
appeared in 1569, originating from the Latin word “decider€ising csisar measures [15] in several forms, following the

(and this word from “caedere,” which means to cut!). To S&yje5 of minimizing divergences introduced by Hopfield [16]
yes or no, this or that, that there is or there is not, respectlve%t‘g Hinton [17]

I. INTRODUCTION

are the answers to the corresponding questions associated wi owever, in many cases, proposing cost functions for strict

decision, classification, and detection problems. It is ObViOld%cision purposes is not enough [e.g., in (auxiliary) automatic

that_egch queshpn can be reformu_late_d n the_for_m of anOthgragnostic systems for clinical applications, in financial prob-
but it is also evident that the subjective implications are n

?éms, or when decision fusion will be a final step]. In these
the same.

. . casesa posteriori probability estimates are natural quantities
Fortunately, the Bayesian formulation of these problems ¢ ap P y d

n .
be adapted to these general differences, as well as to otheflo € cgq3|dered. . . . .
. ; - . urprisingly, the if and only if conditions for a cost function
less basic relevance: the use of decision cost functions serve . © , - o
S . providing estimates of tha posterioriprobabilities have only
to balance all them. Once the decision costs are establis eeén established for binary problems, although there have been
data likelihoods anda priori probabilities ora posteriori yp ' 9

dﬁcussions addressing this property for specific cost functions

robabilities of the hypotheses are enough to obtain opti : Lo .
Fesultsl[lll] 2] yp "g n op Imm multiple hypotheses situations. In this paper, we focus on

In practice, with the exception of cases in which th@e generali{-ary case, assuming that, as usual, cost function

“mechanics” of the problem are known (as in many transmig(y’ C,l) -depends only on .outpuy a”‘_j_ desired tqrgeﬂ.

sion problems), likelihoods ca posteriori probabilities must After f|r_1d|ng the corrgspc_)ndw_\g 'ff condition, we derive some

be estimated. In particular, neural networks can be usegthgoretical and practical implications about the characteristics
' of the corresponding estimates.
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Definition 1: Let § = {y|0 < % < 1, Y v = 1}. A

— 1 Soft R WTA — A cost functionC(y, d) is said to be SSB i£{C(y, d)|x} has
X — élassiﬁer 1 Network — d a unique minimum inS when the outputs are theeposteriori

T B — — probabilities of the classes, i.e.,
ZIPdZI]. s "I].,“',L. 6
Fig. 1. Soft decision multioutput classifier. Y ( |x) ’ ( )

Since
The organization of this paper is as follows. Section |l states B

the probability estimation problem. In Section Ill we show E{C(y, d)} = /E{C(% d)[x}fz(x) dx (7

general conditions for the cost functions that provide estimates . . .

of the a posteriori class probabilities. Section IV studies thénd fz(x) is always nonnegative, minimizing{C(y, d)[x}
convexity of the proposed functions, and Section V shows tHQf €Very input vectorx is equivalent to minimizing
the proposed cost functions minimize a divergence measdraC(¥: d)}. In the following, we will use the notation
between propabilities. Sectipn VI explores the appligation_of E.(y,p) = E{C(y, d)|x} (8)
these theoretical results to single layer networks. A simulation

example and a general discussion of the advantages of Wigere p is a vector with components

proposed cost functions can be found in Section VII, and
Section VIII summarizes the main conclusions and suggests
some lines for future research.

Although most of this paper is concerned with multioutput
classifiers, we will also consider the problem of binary clas-
Il. PROBLEM FORMULATION sifiers with a single output. The definition for an SSB cost
A multiple classification problem can be stated in th&unction in this case is as follows.
following manner. Some system produces a class index Definition 2: Let S’ = [0, 1]. Consider a single-output
according to probabilitiesP(c), ¢ = 1,---, L; then, an binary classifier with soft decision, 0 < y < 1 and
observation vectorx is generated according to probabilityhard decisiond equal to the integer nearest tp A cost
density function f(x|c). After observingx, the classifier function C(y, d) is said to be SSB ifE{C(y, d)|x} has a
system has to decide which class generated it. unique minimum inS’ when the outputs are the posteriori
A soft-decision-based classifier makes decisions in two stgp@babilities of class 1, i.e.,
((:Soergpcflngénltl First, it computes soft-decision vecgomwith Yonin = g, min B{C(y, d)x) = P(d = 1]x). (10)
i = hi(x, W) (1) According to the above definitions, an SSB detector requires
an SSB cost function. For instance, the well-known cross-
wherew is a vector of network parameters. We assume thattropy (logarithmic cost) function given by
outputsy; of activation functiongh; verify

I
Z yi =1 2
) =t , ) _Is SSB [19], [20]. Not every cost function is SSB, for instance,
(e.g., using the softmax nonlinearity). Second, the classifigg L, norm is SSB only fop = 2 [4], [21].

makes a hard decision [a winner-take-all (WTA) network is pegides a learning algorithm, an SSB classifier requires
assumed] so that the components of output decision VeCtoy, penyork structure able to construct class probabilities and

L
Cly,d)=>_ d; log(y;) (11)
=1

are given by optimal decisions. In the following, we will assume that the
d =8 . 3) network satisfies the complexity requirements of the data
) J—t ( ) . . . . . .
_ distribution for any case, since our interest is not centered
where 6 is the Kronecker delta and on any specific architecture. Section V-B discusses the use of
j=argmax{y;, i=1, -, L}. @) SSB cost functions for insufficient networks.

R General conditions for a cost function providiagosteriori
A decision error occurs wheth is not equal to target vector probability estimates have been studied by Hampshire and
d with componentsi; = é._;, wherec is the class of the Pearlmutter [3] in the binary case; for the same case, Miller
observation. The error probability is minimum for class et al. [6] extended their work, showing that any SSB cost
f i in the f
jo = arg max{P(i[x), i=1, -, L} (5) unction can be expressed in the form

Y
Besides making optimal decisiong & j,), we are in- Cly, d) :/ g(a)(e — d) dox (12)
terested in the class of networks whose soft decisions are K

equal to thea posteriori class probabilitiegy; = P(i|x)). whereg(a) > 0 is a positive function, ands is an arbitrary
The corresponding cost function must be strict sense Bayestamstant. In practice, the selection of any cost in the family
(SSB), which we define as follows. can be done by parameteriziggy) and giving values to the
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parameters, for instance by using the Taylor series expansiba characterization of the SSB cost functions, and symmetry,
of g(y) as suggested in [22]. which is usually required in practice.
The multiclass problem can be addressed using different

network configurations: A. Separable Cost Functions

1) single output networks where classes are denoted W'”\Ne focus here on the special and sometimes desirable case

2) Zcift::(l)ir,lz vTitk oné gl’ﬂar:ﬁw (Iesr t:;:su.mber of classes; ;¢ 5B cost functions with uncoupled components. We present
put p ' the following definition and theorem.

3) a network with one output per class and outputs €O Definition 3—Separable Cost Functioms cost function is

strained by separableif it can be represented in the form

L

Y=t (13)

i=1 Cly,d) = Z ey, di). (16)

The first case is also addressed in [6], where it is shown that =1
L Theorem 2: C(y, d) is a separable SSB cost function iff it
y=E{dx} =Y P(dilx)d; (14)  can be written in the form

=1

whered is the target, is the unique minimum of cost function L v

C(y, d) iff it can be expressed as (12) [i.e., the SSB costs Cly, d) = Z/d gila)(a—di)da+r(d)  (17)
given by (12) provide estimates of the conditional mean value =1

of the target].

Note that if the output is given by (14), the extreme valu
of d are penalized. For instance,df < d> < --- < dy,, all
terms P(d;|x)d, in (14) with ¢ > 1 “push” the output in the
same direction away frord; and, thus, the network decision
will be dy only if P(d;|x) is clearly dominant over the other
probabilities.

As shown in [3], the results obtained for the two-clas
problem can be easily extended to the second case: any

where0 < o < 1, g¢; are positive functiongg;(«) > 0) and
ers(d) is an arbitrary function which does not dependyn

Proof: See Appendix B. [ |

The selection ofr(d) is irrelevant because it does not

depend on the network weights. Thus, separable SSB cost
functions are described by scalar functiong;(«). In order to
specify a particular cost in the subset, the parametric technique
described in [22] for the binary case can be easily applied to

. : . o ; & multiclass problem. Note also that, when using gradient
function given by a linear combination of costs given by (12 Igorithms, the integral functions do not have to be computed
Is SSB. The usual configurations of the muItilayer—perceptr%%cause Iéarning rules are based on the cost derivatives.
are examples of this kind of network.

Since the goal is to estimate probabilities, the use of .
networks whoseL outputs are constrained by (13) is mord- Symmetric Costs
adequate. A multioutput network with a softmax output acti- In most applications, it is expected that the classifier per-
vation function [23], [24] is an example. We consider in thiformance should not depend on the order of the input vector

paper networks satisfying this probability law. components. The SSB cost functions derived before do not
satisfy, in general, this kind of symmetry. For this case we
lll. GENERAL SSB @ST FUNCTIONS present the following definition and theorem.

This section provides theoretical results on the conditionsDefinition 4—Symmetric Cost Functiort separable cost

that SSB cost functions must satisfy in multioutput networkdnction ispermutationally symmetriar simply symmetricjf

A general formula for an SSB cost function is given by thl IS invariant when the components gfandd are reordered

following theorem. simultaneously
Theorem 1: A cost functionC(y, d) is SSB iff it can be
written in the form Cly, d) = C(Q(y), Q(d)) (18)

L

Cly, d) = v(y) + Z v (d; — i) (15) whereQ(y) is an arbitrary permutation of the components of
— OY; y.
=1

. L . Theorem 3: A symmetric and separable cost function

whereu(y) is any convex function it$ which does not depend C(y, d) is SSB iff it can be written in the form

on d.

Proof: See Appendix A. [ | Ly

The previous result shows that any SSB cost is completely Cly, d) = Z/ g(a) (o — di) dov + 7(d) (19)

specified by a convex and multidimensional functiofy). i1 v
Note that the only constraint imposed @h is that it must
be a function ofy and d, that is, the entire influence ofwhereg(«) is any positive functiong(e) > 0,0 < y < 1)
the network parameters on the cost function is givenyby which does not depend ah andr(d) is an arbitrary function
Now, we define the concepts of separability, which simplifieshich does not depend own.
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Proof: See Appendix C. [ | Since E.(p, p) does not depend on the network weights,
The symmetry property simplifies the design of the costinimizing the mean cosE,. is equivalent to minimizing
function to the determination of a unique scalar functjon). D. Additionally, according to Kapur [15]D is a divergence
Equation (19) is a direct extension of (12) to the multioutpuheasure between probability distributiopsandy because it
case. satisfies the following properties:
It is easy to verify that many classical cost functions satisfy 1) Nonnegativity:D(p, y) > 0;
the above conditions. For example, fgry) = 2 andr(d) = 0, 2) Identity: D(p,y) = 0 iff p = y;

we have the conventional quadratic cost 3) Concavity: D(p, y) is a concave function op.
L Since E.(y, p) is minimum aty = p, the verification of
Cly, d) = Z (di —y:)* = |ly — 4|l (20) the nonnegativity and identity properties is eaByis always
i=1 concave as a function qf, becauses is convex and
for g(a) = 1/ @andr(d) = 0, we get 2D 82v(p)

- _ i 26
Op;9p; Jp;9p; (26)

L
(. d) ; o5 Y (21) Moreover, as a direct consequence of (28B)is a concave

o .. . function ofy iff E. is concave.
which is the cross-entropy between probability distribuion ¢ js easy to show that the mathematical expressions for the
and degenerate distributiod. divergence of the separable and symmetric SSB cost functions
are given by
IV. CONCAVITY

L ”
Although we have demonstrated that the global and unique D(p,y) = Z /JZ gi(a)(p; — @) da 27)
minimum of the proposed cost functions is found at the class =1 Y
probabilities, concavity of mean co#t. is not guaranteed. It gnd
is a desirable property, because it ensures that, the farther the L oy,
output vectoty is from p, the higher the gradient of the mean D(p,y)= Z/ gla)(pi — @) de, (28)
cost is and the higher (on the average) the weight change in the i=1"Pi

learning rules. Thus, additional constraints@ly ) are needed
to guarantee concavity &' as a function ofy. The last expression includes the Euclidean distance for
General concavity conditions are easy to find when the S %) = 2 and the cross-entropy or the Kullback—Leibler
cost is separable, as described in the following theorem. divergence forg(a) = 1/a.
Theorem 4: The mean value of a separable SSB cost is a

respectively.

concave function ofy iff g;(c)(1 — a), J="L- LS g pMean Divergence and Insufficient Networks
an increasing function ofr and g;(o)c, j = 1, .-+, L, is a o o
decreasing function of. Up to this point we have assumed that the classifier is able to
Proof: From (17), we get compute the exact values of theposterioriclass probabilities
9F for any input vector. Unfortunately, this is not a usual situation
— = —g;(y;))(y; — p;) (22) in practice and a question immediately arises: how do the SSB
Iy; cost functions behave when they are applied to insufficient
and networks?
O?E.

(23) All the factors involved in the learning process influence
the answer to this question: the architecture, the cost function,
and the way the training samples are used during learning.
Following Vapnik [7], if the learning process t®nsistentthe
minimization of the accumulated cost

By = 9509 = ()5 = Py

The Hessian matrix is diagonal and, therefdre,is a concave
function of y iff

gi(e)(p— @) (24) K
is an increasing function af for any value of scalgy between C= Z {Clyw, dr)} (29)
zero and one. [ | k=1
is asymptotically equivalent (a§, the size of the training set,
V. SSB DVERGENCE MEASURES increases) to minimizing the mean cost
A. SSB Divergence E{C(y, d)} = / E{C(y, p)x}fo(x)dx.  (30)
Let us define . . .
The study of conditions under which the learning process
D(p,y) =E.(y,p) — Ec.(p, P) is consistent is far beyond the scope of this paper. In any
L o event, note that, according to (25), minimizing the mean cost

=uv(y) —v(p) + Z B (pi —wi).  (25) is equivalentto minimizing the mean divergen¢éD(y, p)},
i Y sincep does not depend on the network parameters. Therefore,
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under the consistency assumption, the SSB cost functiSmcedC(y, d)/do = g(y)h'(0), which is the factor multiply-

provides the posterioriprobability estimates which are, in theing the error in (33), depends on both the cost function and

mean, the nearest to the true ones with respect to divergettte nonlinearity, what is in fact well formed is not the cost

measureD. function, but the learning rule. An equivalent set of conditions
for well-formed SSB leaning rules is given by the following

VI. SINGLE LAYER PERCEPTRONS proposition.

Proposition 1: An SSB learning rule for an SLP is well

rmed iff it satisfies the following properties.

1) #'(o) > 0 (i.e., the nonlinearity is monotonically in-

creasing).

2) There exists some > 0 such thatg(y)h'(0) > e.

The proof is straightforward and we omit it here.

Note that if 4 is monotonically increasing, it is invertible

and /(o) > 0, and we can define an SSB cost function as

1
y = h(o) (31) g(y) = W) (36)

In this section we will consider the application of SSE}O
costs to estimat@ posteriori probabilities using single layer
perceptrons (SLP’s). By SLP we mean any single-layer net-
work with a nonlinear output activation function, satisfying
the probability constraints used in this paper.

A. Single-Output Binary Classifiers
Consider the single-output SLP with soft decision

where so thatg(y)h'(0) = 1 and the learning rule (34) is satisfied.
o= wlx (32) This proves the following proposition.
o Proposition 2: If y is the output of an SLP with an in-

w is the weight matrix, and(.) is a monotonically increasing créasing nonlinearity, learning rule (34) minimizes an SSB

nonlinearity such thab < y < 1. For a binary classification, €ost function.

condition (12) guarantees that the network output is an esti-Thus, irrespective of the exact form of the nonlinearity

mate of thea posterioriclass probability. It is easy to see tha@fter the weighted sum of the input components, the previous

the stochastic gradient learning rule for weightss given by Iear_ning rule can alyvays be used to estimate probabilities (with
arbitrary precision if the network can model the data profiles,

w(k+1) = w(k) + pg(y)h’ (0)(d — y)x (33)  or with minimum SSB divergence in a general case). This can
be applied in analogical implementations of the SLP, where the

i i i i i / f— _ f— - . B .
If 7 is a sigmoidal nonlinearityh'(0) = h(o)(1 = h(0)) = gyact expression of the activation function may be unknown
y(1 — y). This is a well known factor responsible for slow[27]

training when the quadratic cost function is uggdy) = 2),
since the adaptation is slow whenis near zero or one (for B. Multioutput Single-Layer Networks

example, see [19] or [25]). This is one of the justifications for
using cross-entropy. In this casg(y) = » (1 —y) ! (see  Amari[20] has shown that the particular advantages of using

[6]), g(v)'(0) = 1, and the cross entropy cost function to train perceptrons with a
logistic function can be had in the multilevel case when the
w(k+1) =w(k)+ p(d — y)x. (34) linear outputso; are fed to a softmax nonlinearity, i.e.,
Wittner and Denker [26] provide theoretical results show- exp(o;)
ing that cross-entropy behaves better than the quadratic cost Yi=g (37)
because it is avell-formedcost function. A cost-function is Z exp(o;)
said to be well formed if it satisfies the following properties. j=1

1) For all S o
) v e whereo; = w!x and the cross entropy cost function is used.

9C(y, d) <0 It is easy to show that, in such a case, the weight updating
% 90 rule is given by
where wi(k +1) = wi(k) + p(di — y;)x. (38)
1 d=1
Sd = { -1 d=0 (35) The question about the SSB character of learning rule (38)

arises immediately. This is answered with Theorem 5.

(ie., the leaming rule does not push in the wrong Theorem 5: Let y be the output of a SLP with nonlinearity

direction). .
; . h. Learning rule
2) There exists some > 0 such that, ifsqy < 0.5 ¢
90(y, d) _ wi(k +1) = w;(k) + p(di —yi)x (39)
—8g ——(—— < €
do minimizes an SSB cost function iff there exists a convex
(i.e., the learning rule keeps pushing if there is misclafinction F'(o) such thaty = h(o) = V,F (i.e., h is the
sification). gradient of a potential function) and its Hessian maiix

3) C is bounded below. satisfies ranfr) = L — 1.
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Proof: See Appendix D. m fail. Thus, the direct estimation approach is more general than
The previous rules can only be applied to SLP’s, whictihat of density estimation. This can be shown with a simple
have a limited classification capability and, therefore, are nobe-dimensional example: assume that class distributions are
universal probability estimators. Learning rules for universakriven by (44) withy; = —pue = 3, variances = 1 and
classifiers that are independent of the nonlinear activatigfiz) = a sin?(7z/p). Constant is used to ensure a unit area
function are being investigated by the authors. density function. It is easy to show that,«f = 24 /0,
VII. DISCUSSION P(lj) = sigm(ws). (45)
A first question arises in connection with practical applil "US: @ single output sigmoidal perceptron with a single weight
cations of the above theory. In particular, what differencd$ @1 SSB classifier for this problem. We have estimated
exist between probability estimation and other Bayesian dpgtwork weightw following two different approaches.
proaches? Minimizing an SSB cost for a learning machine is1) Minimizing the cross entropy cost by means of learning
an alternative to the estimation of thgosterioriprobabilities rule (34).
from a given model (or even a nonparametric formulation). 2) Computings and . and then using (42) and (43).
Differences between these two approaches are obvious. If wé=ig. 2 represents the square weight error as learning pro-
have a model, we need only estimate its parameters, and #dgeds, averaged over 300 realizations. The advantages of
can be done by means of block algorithms in some casd#rect probability estimation over density estimation in this
Training a machine usually requires gradient algorithms. Qsxample are evident. The density estimation approach fails,
the other hand, the adequacy of the model is always an ofisstause the actual distributions are not Gaussian; however,
guestion (which forces us to apply validation mechanisnise learning rule minimizing the cross entropy finds the
that can lead to wrong results). A simple example serves dgymptotically optimal network parameter. This shows that
illustrate the situation. SSB cost functions do not make unnecessary assumptions
Let us consider a binary Gaussian decision problem about the data distribution.
Fi(x) = f(x|di = 1) . There is another important aspect frqm a practical point of
¢ ¢ view: how the “best” SSB cost for a particular problem can be
= ; exp<_l (x—u)) T8 (x— ui)) determined? A general answer is not easy, and it is connected
(27 det(S))N/2 2 to some other aspects of training. In the following, we will
(40) restrict the discussion to the binary case, mainly for reasons

where the classes are equiprobable. It is well known [2] thaﬁ‘c clarlty_. -
We minimize

exp(wlx +b;
Pl = 1) = =2 ) (“41) E{C(y, d)} = / E{C(y, dx}fu(x)dx  (46)
Z exp(w] X + b))
=1 where E{C(y, d)|x} has the form shown in (12) for an SSB
where solution. It has been shown (in [4], for example) that the
presence off,.(x) in (46) means that the minimization is em-
w; = — Sy (42) phasized for the regions at which the data density is higher. In
b = — %uiTsflui + log(P(d; = 1)). (43) the majority of practical situations (low error probability), this

density is low around the classification surface, limiting the
Equation (41) shows that the SLP with a softmax activatiajuality of the approach obtained for this border. By selecting
function (or the logistic function in a binary case) is an SSBn appropriate cost one can compensate for this difficulty in a
classifier of Gaussian clusters with the same covariance mattbay similar to the use of importance sampling to compiditg
Assume that the statistics of the class distributions are natmany radar and communication problems. Specificatly)
known. The SLP can be trained using any learning rule minippears as a factor ¢f.(x) in 9E{C(y, d)}/dy (which must
mizing an SSB cost; however, if we know that the distributionse zero to reach the solution, if the machine is general enough)
are Gaussian, density estimation is an alternative approaghd, consequently, selecting a higty) around the border
Specifically, first the statistics of the data distributions [megwheny = 1/2 in MAP classification) will help to improve the
vectors u;, covariance matrixS and a priori probabilities quality of the border and of the classification (at the expense
P(d; = 1)] are estimated, and then weight vecter is of poorer estimates of tha posteriori probabilities in other
computed using (42) and (43). regions, of course). Needless to say, this does not mean that
However, there are many data distributions for which th@e above selection will also yield fast convergence. Initially,

single layer perceptron is an SSB classifier. For example.tiife region ofx to which y = 1/2 corresponds to depends
the data are driven by conditional densities having forms on the initial values of the parameters (which are randomly

9(x) fi(x) (44) selected in most procedures), and to aryﬁlgy)_ with its highest

value aroundy = 1/2 would make the algorithm even slower.

where g(x) is some positive function independent @fthe It seems much more reasonable to “accelerate” it by allowing
optimal structure remains the same, but the estimation of praffy) be higher where most the samples are, or at least constant
abilities under the hypothesis of Gaussian distributions wilas for the quadratic cost). To increase the importance of error
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Fig. 2. Probability estimation versus density estimation. Evolution of the square weight error during learning. Dashed line: stochasticionirafmizat
cross entropy; diamonds: training via density estimation. Class distributions are driven by (44)with—u> = 3, ¢ = 1, andg(z) = a sin®(7z/p).
Simulations show the average of 300 realizations.

by emphasizing factofy — d) (using |y — d|", » > 1, for quirements. If the classifier is not general enough, i.e., it cannot
example) also seems reasonable. This has to be changedef@ctly map the class probabilities for any value of the network
the last convergence steps if an SSB solution is desired. M@arameters, the optimal weight vector depends on the SSB
analysis is needed to develop a solid theory of adapting tbest. The requirements of the application can also influence
cost function to the convergence of the algorithm. the cost selection. For instance, when relative differences are
Another subject directly related to the above discussiomore relevant than absolute differences, cross entropy could
although it has not been analyzed from this point of viewe preferred to quadratic cost, as the simulations reported in
is that of selecting samples. It was proposed first in [28], ad¥9] show. A large comparative work has been carried out
procedure according to which the samples that are difficult i the literature showing the advantages of the cross entropy
learn are most frequently applied (after reaching a reasonaker the quadratic cost. El-Jaroudi [19] notes that the reason
degree of convergence). Curiously, many subsequent selecf@hthis may be the simplicity of the learning rule resulting
strategies ([29] presents a significant number of options) tawden output logistic nonlinear activation functions are used
the perspective of selecting samples close to the decision g€ (34), for an SLP], and Wittner and Denker [26] show that
ders. Of course, this is (qualitatively) equivalent to selecting @&y gradient descent rule based on a well-formed learning
“equivalent” cost function, but is not as general as changing tAé€ converges to an optimal zero-error solution, provided that
sample distribution (as when applying importance samplin%isses_are separable. Moreover, they give examples of data
or selecting samples in order to get a better definition of t tributions for which grad|ent.d(_escent based on the quadratic
decision borders, as implicitly done by quadratic (or lineaBeSt can converge to local minima. However, note that the
programming in minimizing combinations of performance angf0SS €ntropy is advantageous over other cost functions in
generalization measures to build support vector machines (86&vorks with sigmoid or softmax nonlinearities. Using other
[7] and subsequent papers on the subject, such as [30]). npnlmear activation fu_nctlons, cross-entropy may not even
The use of a varying adaptation step can also be immediat¥|§|d well-formed learning rules. In any event, here we have
related to the above discussion. A fornfy, d) could be d mpnstra_ted that learning rule (34)_ is qnlversal, in the sense
included as a factor iIBE{C(y, d)|x}, and a joint discussion that it minimizes an SSB cost function independently of the
will be possible. Most of the variable step rules (see [13], for%onlmear saturation used.
fairly complete presentation) could be analyzed from this point

of view. However, we repeat that it is necessary to dedicate VIII.  CONCLUSIONS
additional work to this line of research before establishing We have established necessary and sufficient conditions
useful results and recommendations. for SSB cost functions (i.e., those that provide estimates

Cost selection also depends on other factors, including tofthe a posteriori probabilities of the classes) in networks
network structure, the data distribution or the application re¢hose outputs are consistent with probability laws. We have
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provided a general formula for SSB cost functions satisfyinbhese equations can be solved as follows: first, noting that

two important preperties: separability and symmetry; showing ac;  d Ay

that the quadratic cost and the cross entropy are separable, Yi y; :8—3;» (v:Ci) — By; Ci

symmetric, and SSB. ! 8] !
We have paid special attention to the application of SSB =— (y,C;) — 6;—;C;.

cost functions to estimate probabilities using single layer Iy;
perceptrons, providing an “iff” condition for an SSB cost t&Equation (53) can be expressed as
be well-formed for a single-output SLP. For both single and 9
multioutput nets, we have presented a learning rule that always E Ci+A=0 (54)
minimizes an SSB cost independent of the nonlinear activation Yi
function used. where

The previous discussion shows that further work is neces-
sary in order to determine the structure and behavior of the v = Z ¥:C;. (55)
SSB cost family, and the relationship betwearposteriori ‘

probability estimation and other Bayesian approaches to leagince (54) is valid for every, we can write
ing. Many applications could take advantage of an efficent

L L
posteriori probability estimation algorithm. v — . ﬂ _ -
]Zlyj By —Cj+ A nyay,» v+A=0 (56)
APPENDIX A
57
PROOF OF THEOREM 1 Jzz:l Yj o ay (57)

We can write the cost function as
and, replacing in (54), we get

L
=Y diCily) (47) L o
Ly,
where r Py
= 67_ 58
Ci(y) = C(y, d,). (48) g s 4) dy;’ 8)
Therefore Using (47) and (49)
L
(d,; — 59
E. = B{C(y, d)lx} = Z PiCi( (49) —r g, (59)
and
where E(y, p) —E{C(y, d)|x}
— P(d =1 i=1.---.L
Di (dz |X)7 4 ’ ’ (50) =v+ Z yj ay . (60)
andd; is theith class unit vector with components; = 6;_;
Because of (13), the network outputs are dependent varpe convexity ofv can be shown as follows:
ables. Using Lagrange multipliers, the minimum®&f(y, p) L 9
as a function ofy can be found minimizing OE: = Z (p; — ;) O (61)
Yy dy; dy;
L and
Liy, ) = Ec(y,p) + Al > w—1].  (51) , L , ,
= (TR P AL A (7}
: , , - Ay; dyr = 7 Oy Oy Oy Dy Oy
If Cis SSB, there is a unique minimum wat= p; therefore, J=
combining this with (49), we can write Since the stationary point is a minimut®,(y, p) must be a
L concave function ofy aty = p; but, noting that
oL aC;
B = Z D; 8— +A=0. (52) 9*E, _ &*v 63)
Yily=p =1 Yily=p i Ok |y —p, 9y, Oy
The set of differential equations given by (52) for every we conclude that is convex inS.
should be satisfied by every vectpre S, so we can write To show thaty = p is the unique stationary point, note
that, at any stationary point
L ac 5E
=0. (53) “Te _ 64
; Oy; Jyi ' (64)
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So, using (61), we have
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At any pointy € S, (13) is verified and, therefore,

H,(p-y) =0 (65) v —0 vy (76)
whereH,, is the Hessian matrix of. Sincewv is convex,H,, Oyr I
. ) . . . and
is nonsingular and, thus, the unique solution of (65 is p. o9C 9%
This proves that (15) gives a necessary condition. The proof — =(dp —yr) 92 (77)
of sufficiency is straightforward. If cost function is given by Yk Y
(59)—-(61) are satisfied, so that= p is a stationary point of Using (68), we get
FE.; moreover, ifv is convex inS 52
)Y
u(y) —v(p) > (y —p)" Vv (66) (e = ye) oz x (e, i) (78)
and thus thus, at pointy € S, 9*v/dy; does not depend on, k # L.
v(y) —v(p) - (v — )T Vuly) = C(y) — C(p) > 0 (67) Therefore, we can define

showing thatp is a global minimum.

APPENDIX B
PROOF OF THEOREM 2

If C is separable

ac
— =y 68
o & (un) (68)
and
a?C
= k #£1. 69
Oy Oy 7 (69)
Noting that
9*C & v v
T N (- - 70
Oy Oy ;( y)ayk Oy Oy; Oy Oy (70)
we have
L 3
ZdiL
—~  Oyr Oy 9y,
L
8% &%
=Sy n kL (71
; Oyr Oy Oy; — Oyr Oy 7 (1)

The previous equality must hold for any target veaior~or
instance, takingl; = 6; ., 1 < m < L, we get

L

3y 3y v
A N . (72
Yy Oyt Oy z:; " Oy Oy i i O (72)
Defining
v v
Jedl Z " Oy Oy Oym 3yk Oy
1<k I<L (73)
we have
v
L — . 74
Do 001 Jr,1(y) (74)

Equation (74) holds for everyn; thus, replacing it in (72),

we arrive at
&%

Jil Ayr Oyr’

(75)

0 (s

v

o7 .

ar(yn) = —
and, consequently

e, d) = / y;)m — dge(@) da+su(d)  (80)

where r;, and s are arbitrary functions ofl which cannot
depend orny. For convenience, we can express

ar(y, di) = /dyk(a — di)gr() da

k

dy.
«f
ri(d)

(o = di)gr (o) da + si(d)  (81)

therefore
Z/ (0 — di)gr(a)da+r@)  (82)
dy
where
L di
M) =3 / (= di)g(e) da + Z se(d).  (83)
k=17 7x(d)

Since there are no restrictions imposedro and s, r is
an arbitrary function ofd, and this completes the proof of
Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Consider permutation functio® that only changes compo-
nentsm andn in 'y, m # n

Ym, If Z =n
Qi(y) = { Yn, Hfi=m (84)
y;,  otherwise.

Since C is symmetric and separable, (17) and (18) hold.
Therefore

EL: /y gi(a) (e — d;) do + r(d)
_ Z/Q ()

i(d)

(@ = Qi(d)) da +r(Q(d)). (85)
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Using (84) we arrive at

/ym
Ao

Y

Gm(@) (e — dyn) dv + / " gn(e)(a — dy) do+ (d)

dn
/'ym
d

m

+7(Q(d)).

Y

’ am(a)(a — d,) da
(86)

g~ dy) dat |

dy

The previous equality must hold for any probability vectors

y andd. Now, we have to consider the cades- 2 andL = 2
separately. In the former case, we can chogsendd such
thatd,, = d, =y, = 0; thenQ(d) = d and

Ym
| onte) = (@pada =0 ®7)
for everyy,,. Thus,g,(«) = g, («) for everyn, and defining
g(a) = gn(@), we arrive at (19).

This proves the theorem fdr > 2. Consider the cask = 2
(the previous proof is not valid because it is not possible
taked,, = d, =0 unlessm =n). Let us taken =1, n = 2
andy = y; = 1 — 1o if C is separable

C((ya 1- y)a (dv 1- d)) = C((l - Y y)a (1 - dv d)) (88)
Now, taking the first derivative with respect {0

gy —d) — g0 -y)((1-y) - (1-4d)

=-0(1-y9)((A-y) -1 -d)+a(y-d (89
and, ford = 0
91(y) +92(1 —y) = 1 (1 — ) — g2(v)- (90)
Let us define
9(w) = 3(01(y) + 92(1 — ). (91)

Using the fact thatg(y) = g(1 — y), we can develop the
binary cost as follows:

C((y7 1- y)v (d7 1- d))

Y 1—y
:/ gl(a)(a—d)da—i—/ go(a)(a— (1 — d))da
d 1-d
+7’(d) |
:/ gl(a)(a—d)da—i—/ a2(1 — o) — d) de
d d

+r(d)
/d 2g(a)( — d) dax + r(d)

| e -aa [

g1 —a)(a — d) du
d

+r(d)
= ["stoxa-dyda+ [ geta - (- d)da
+(d). (92)

The final expression is equivalent to (19) fbr= 2.
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APPENDIX D
PROOF OF THEOREM 5

The stochastic gradient learning rule for a single-layer
multioutput network is

wi(k+1) =w;(k) — pVy,C (93)

L
aC
(k) — il v AP, 4
will) =03 G Vwon (04
B 8Cx
paOi ’

Let us assume that (38) minimiz&s and thatC is SSB.
Using (38) and (95) we get

=w;(k)

(95)

oc
=y —d;. 96
90, Y (96)
Defining C;(y) = C(y, &) as in (48), we find
L
0 Cly, d) =) diCi(y) (97)
k=1
and
L
9%k =y — d;. (98)

>
k=1

The last equality must hold for every target vectbr For
instance, ifd; = 6;_; we get

807;

oC;
a—oi =1Y; — 67,_]. (99)
Note that
207, )
0°C; _ (100)

80; 80y, 0,

Since second derivatives are independent of the derivation
order, we find

aui aUrn
— = _—". 101
dop, do; (101)
Thus,y = h(o) is the gradient of a potential function
y = VoF. (102)

Moreover, ' is convex; this can be shown as follows. First,
note that

IC _ <~ 9C oy,

Aor, E 103
dor j=1 ayj doy, ( )
so that, since
L
oc &%
=2 dimu) g 5 104
and, using (96), we arrive at
L /L
&% dy;
s 4~ i U (105
e ;(;( y)ayiayj>aok (105)
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Taking into account We now prove the converse of the theorem. Let us assume
5 525 thaty = h(o) is the gradient of a potential functiod; (o),
9Yi _ (106) and rankHp) = L — 1. Let us define
8ok an 8ok

Cj (O) =05 — F(O) (117)

we can express the previous equation in matrix form as
In the following, we demonstrate that

d-y)'HHp +I)=0 (107) )
whereH,, andHp are the Hessian matrices afy) and/'(o), Clo, d) = djcj(o) (118)
respectively. As this must be true for any target vectpwe ]
can write is an SSB cost leading to rule (38). Since
L
ai(d; —y)T(H,Hp +I) =0 (108)  9C(o, d) acj o
> aldi =)' ) Wl dl v, Zd ) —di—
j=1
for any real numbers;, i = 1, , L. If we takea; such as (119)

EZL La; =0, it is easy to see that the previous equality cagarning rule (38) minimizes cost(o, d) with a minimum
be written as when

IE{C(o, d)|x} 9C(o, d)
a’(HHp +1)=0 (109) T 90, =F T 90, x¢=pi—y =0 (120)
wherea = (a1, -+, ar)" is any vector in the subspacej.e., when outputs are probabilities. Note, however, that we
A={a|Yr o= 0} This has two consequences. have defined the SSB costs as functiongoNext, we show
1) Note that that C is, in fact, a function ofy. First, note that
L
ay; 8F
= .l Yi = VoF) u=1 (121)
Z 8om 80Z —~ Jdo; Z = )
_ EL: o (110) whereu = (1,1, )/\/_ is a unit vector. Thus, the
- o, ot vi= directional derlvatlves oft” along the lines driven by are

constant, so that
therefore, the column vectors of matiikr are inA, and

Flo+ ) — F(o)= — 122
HrH,Hr + Hr = 0. (111) ( )~ Fe) VL (122)
Since v is convex inS, H, is definite positive and, for every A. According to this and, using (117)
thus, for every vecton ¢;(0 + Au) — ¢;(0) = Au; — (F(o + Au) — F(o))
uwTHpH,Hpu > 0 (112) _ A A
vL VL
and thus =0. (123)
u'Hpu <0 (113) AsrankKHg) = L — 1 at every point,F is strictly convex in

the vector subspace of all vectors that are orthogonal io
showing thatHr is semidefinite negative and’ is Therefore, there cannot be any vectog {\u, A € R} such
concave (although no strictly concave). that 2(o) = h(o + a). Thus, for everyo, andoy, such that
2) Let us define matri® = HyHp + I, thus,a”B = 0 h(0a) = h(op) =y, we find C(o,, d) = C(oy,, d), which
for any vectora € A. As dim(A) = L — 1, we have demonstrates that can be expressed as a unique function of

that rankB) = 1. Moreover, since y and d.
I=H,Hr - B (114) REFERENCES
and ranKI) = L, we get [1] H. L. Van Trees,Detection, Estimation and Modulation Thepmol. |

New York: Wiley, 1968.
L < rank(HVHF) _|_rank(B) = rank(HVHF) +1. (115) [2] R. O. Duda and P. E. HarRattern Classification and Scene Analysis.
- New York: Wiley, 1973.
. L . [3] B. Pearlmutter and J. Hampshire, “Equivalence proofs for multilayer
SinceHy _'S invertible, r_anKHF) > L — 1. But, as the perceptron classifiers and the Bayesian discriminant functiorPrac.
columns inHg are all in A, ranKkHy) < L, and we 1990 Connectionist Models Summer Scho®an Diego, CA: Morgan
Kauffmann, 1990.
conclude that [4] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W.
Suter, “The multilayer perceptron as an approximation to a Bayes
optimal discriminant function,'EEE Trans. Neural Networksjol. 1,
pp. 296-298, Dec. 1990.

rankKHg) = L — 1. (116)



656

(3]

(6]

(7]
(8]
(9]

[20]

(11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[29]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999

M. D. Richard and R. P. Lippmann, “Neural network classifiers estimat9] C. Cachin, “Pedagogical pattern selection strategidefiral Networks,

Bayesiana posteriori probabilities,”Neural Comput.yol. 3, no. 4, pp. vol. 7, no. 1, pp. 175-181, 1994.

461-483, 1991. [30] B. Sctolkopf et al., “Comparing support vector machines with Gauss-
J. W. Miller, R. Goodman, and P. Smyth, “Objective functions for ian kernels to radial basis function classifier$ZEE Trans. Signal
probability estimation,” inProc. Int. Joint Conf. Neural Network&991, Processingyol. 45, pp. 2758-2765, 1997.

vol. |, pp. 881-886.

V. N. Vapnik, The Nature of the Statistical Learning TheoryNew
York: Springer Verlag, 1995.

S. |. Gallant, Neural Network Learning and Expert System&am-
bridge, MA: MIT Press, 1993.

S. Y. Kung and J. S. Taur, “Decision-based neural networks wit
signal/image classification application$ZEE Trans. Neural Networks,
vol. 6, pp. 170-181, Jan. 1995.

V. P. Roychowdhury, K.-Y. Siu, and T. Kailath, “Classification of
linearly nonseparable patterns by linear threshold elemenEEE
Trans. Neural Networksyol. 6, pp. 318-331, Mar. 1995.

B. A. Telfer and H. H. Szu, “Implementing the minimum-
missclassification-error energy function for target recognition,” i
Proc. 1992 Int. Conf. Neural NetworkBaltimore, MD, vol. 1V, 1992, learning theory, neural networks and their appli-
pp. 214-219. cations to communications, image processing, and
, “Energy functions for minimizing missclassification error with education.

minimum-complexity networks,Neural Networksno. 7, pp. 809-818,
1994.

A. Cichocki and R. UnbenhaueNeural Networks for Optimization and
Control. Baffins Lane, U.K.: Wiley, 1993.

P. S. Neelakanta, S. Abusalah, D. de Groff, R. Sudhakar, and J.=
Park, “Csisar generalized error measures for gradient-descent-bas
optimizations in neural networks using the backpropagation algorithrr
Connection Sci.yol. 8, no. 1, pp. 79-114, 1996.

J. N. Kapur and H. K. Kesavarntropy Optimization Principles with
Applications. San Diego, CA: Academic, 1993.

J. J. Hopfield, “Learning algorithms and probability distributions in feed
forward and feed-back networksProc. Nat. Academy Sci. US&ol.
84, pp. 8429-8433, 1987.

Jedis Cid-Sueiro (S'92-M'95) received the bache-
lor's degree in telecommunication engineering from
the University of Vigo, Spain, in 1990, and the Ph.D.
degree from the Technical University of Madrid,
Spain, in 1994.

Since 1996, he has been an Associate Professor at
the Department of Signal Theory, Communications
and Computer Science, University of Valladolid,
Spain. His main research interests include statistical

Juan Ignacio Arribas was born in Valladolid,
Spain, in 1973. He received the B.S. and M.S.
degrees, both in electrical engineerin from the
University of Valladolid, Valladolid, Spain, in 1994
and 1996, respectively.

In 1996, he joined the Department of Signal
Theory, Communications and Computer Science
at the College of Engineering, University of
Valladolid, Valladolid, Spain, where he has been
G. E. Hinton, “Connectionist learning procedureAtificial Intell., vol. working as a Research Associate. His current
40, pp. 185-234, 1989. research topics include statistical signal processing,
J. Cid-Sueiro and A. R. Figueiras-Vidal, “Digital equalization usingestimation theory, image processing, medical imaging, and their applications
modular neural networks: An overview,” iroc. 7th. Int. Thyrrhenian to medical diagnoses and communications.

Workshop Digital CommunViareggio, Italy, Sept. 1995, pp. 337-345.
A. El-Jaroudi and J. Makhoul, “A new error criterion for posterior
probability estimation with neural nets,” iaroc. Int. Joint Conf. Neural
Networks,San Diego, CA, 1990, vol. Ill, pp. 185-192.

S. Amari, “Backpropagation and stochastic gradient descent metho~ ”
Neurocomput.no. 5, pp. 185-196, June 1993.

E. A. Wan, “Neural network classification: A Bayesian interpretation,
IEEE Trans. Neural Networksjol. 1, pp. 303-305, Dec. 1990.

J. Billa and A. El-Jaroudi, “A method of generating objective function:
for probability estimation,"Eng. Applicat. Artificial Intell.,vol. 9, no.

2, pp. 203-208, Apr. 1996.

I. M. Elfadel and J. L. Wyatt, Jr., “The ‘softmax’ nonlinearity: Deriva-
tion using statistical mechanics and useful properties as a multitermir
analog circuit element,” idvances in Neural Information Processing
Systems). D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mated
CA: Morgan Kaufmann, 1994, vol. 6, pp. 882—-887.

S. Haykin, Adaptive Filter Theory,3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

T. Adali, X. Liu, and M. K. S\nmez, “Conditional distribution learning
with neural networks and its application to channel equalizatitffE
Trans. Signal Processingol. 45, pp. 1051-1064, 1997.

B. S. Wittner and J. S. Denker, “Strategies for teaching layered neu
networks classification tasks,” Meural Inform. Processing SysW. V.
Oz and M. Yannakakis, Eds., Denver, CO, 1988, pp. 850-859.

M. I. Elmasry, Ed.VLSI Artificial Neural Networks Engineering.Nor-
well, MA: Kluwer, 1994.

P. W. Munro, “Repeat until bored: A pattern selection strategy,” il
Advances in Neural Information Processing System&. Moody, S. J.
Hanson, and R. P. Lippmann, Eds., vol. 4. San Mateo, CA: Morgd
Kaufmann, 1992, pp. 1001-1008.

Sebastan Urban-Mufioz received the telecommu-

nication engineering degree from the University
of Seville, Spain, in 1996, and is now pursuing
the Ph.D. degree from the University Carlos Ill of
Madrid.

Since 1997, he has been an Asset-Management
Quantitative Analyst at Banco Bilbao Vizcaya
Group. His main research interests include neural
networks and their applications to financial
engineering, computational finance, and data
mining.

Anibal R. Figueiras-Vidal (S'74-M'76-SM'84)
received the Telecomm Engineer degree from
Universidad Poliécnica de Madrid Spain, in 1973,
and the Doctor degree in 1976 from Universidad
Politecnica de Barcelona, Spain.

He is a Professor in Signal Theory and Com-
munications at Universidad Carlos Ill de Madrid.
His research interests are digital signal processing,
digital communications, neural networks, and
learning theory.




