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Resumen
La imagen por resonancia magnética de difusión (MRI de difusión) es una

modalidad de imagen relativamente reciente, que ha permitido el estudio de las
fibras nerviosas y su conectividad en la sustancia blanca del cerebro humano in
vivo. Esta modalidad se basa en el análisis de las direcciones de difusión de las
moléculas de agua en el interior de los axones neuronales, que a su vez se relacio-
nan con las orientaciones de las fibras nerviosas. Este fenómeno se ha explotado
en el campo de la imagen médica desde mediados de los años noventa, cuando
aparecieron los primeros trabajos sobre imagen por tensor de difusión (DTI). Esta
técnica está basada en la premisa de que la difusión se puede modelar como
un proceso gaussiano, lo cual, como se ha referido ampliamente en la literatura,
es estrictamente válido sólo para determinadas configuraciones neuronales muy
simples.

Con la aparición de nuevo hardware y protocolos para la adquisición bien acele-
rada o bien de bajo ruido, se han hecho posibles nuevas técnicas para el análisis y
procesado de imagen MRI de difusión. De entre ellas, la imagen de difusión de alta
resolución angular (HARDI), basada en el muestreo denso de la señal de difusión
para todas las posibles orientaciones, es de especial interés en esta tesis, ya que
permite la caracterización de la difusión de modo preciso. Al mismo tiempo, la
gran variedad de posibles escenarios y propiedades de estos tipos de datos origina
nuevos problemas ciertamente complejos, dado que los tradicionales fundamentos
para el procesado de imágenes MRI de difusión, tales como la distribución tipo
Rician del ruido en los datos escaneados, o el modelo gaussiano para la difusión,
no son ya válidos. Estos problemas son el centro de recientes y muy intensos
esfuerzos de investigación hoy en dı́a, y la motivación para el presente trabajo.

En esta tesis se propone un marco de trabajo completo para manejar esta
diversidad, siendo el último objetivo del mismo la descripción de las microarqui-
tecturas neuronales dentro de la sustancia blanca a partir de la caracterización
macroscópica de la difusión. Se incluyen herramientas para la caracterización es-
tadı́stica (modelado de señal y ruido) y el acondicionamiento (filtrado estadı́stico)
de las imágenes de difusión. La novedad de los métodos propuestos reside en su
compatibilidad con los escenaros tradicionales basados en señales tipo Rician,
pero también con sistemas más modernos con múltiples bobinas y esquemas de
adquisición en paralelo.

Sin embargo, la contribución más relevante de esta tesis es la inferencia de
información probabilı́stica relativa a las poblaciones de fibras nerviosas en la sus-
tancia blanca del cerebro. Las técnicas descritas se basan exclusivamente en datos
HARDI, ası́ que se adaptan perfectamente a los protocolos existentes sin la necesi-
dad de ningún tipo de restricción adicional. Por otro lado, uno de los objetivos
principales es evitar cualquier tipo de modelo paramétrico para la difusión, por lo
que la asunción de gaussianidad queda definitivamente descartada. Se demues-
tra que el uso de verdadera información probabilı́stica beneficia en gran medida
la descripción de las poblaciones de fibras nerviosas, probándose además que los
métodos desarrollados mejoran los existentes en la literatura relacionada.

La evaluación cuantitativa del marco de trabajo completo se realiza mediante
datos sintéticos y fantomas diseñados especı́ficamente a tal efecto, comparándose
los resultados obtenidos con trabajos relacionados de otros autores. Además la
metodologı́a propuesta se ilustra con numerosos ejemplos sobre datos reales,
obtenidos de varias instituciones en todo el mundo. Las caracterı́sticas de estos
datos son suficientemente variadas como para derivar conclusiones con validez
general acerca del funcionamiento de los métodos que se proponen.





Abstract
Diffusion Magnetic Resonance Imaging (diffusion MRI) is a relatively recent

imaging technique, which has allowed the study of nervous fibers and their con-
nectivity in the white matter of the human brain in vivo. It is based on the anal-
ysis of the directions of diffusion of water molecules inside the neural axons sur-
rounded by myelin coats, which is related to the orientations of neural fibers them-
selves. This phenomenon has been used in medical imaging since the mid nineties,
with the appearance of the first works on Diffusion Tensor Imaging (DTI). This
technique is based on the premise that diffusion may be described in terms of a
Gaussian process, which, as it has been widely reported, is strictly valid only for
very simple neural configurations.

With the advent of new hardware and protocols for the accelerated or noise–
reduced acquisition of MRI data sets, new techniques for image analysis and pro-
cessing are possible. Among them, High Angular Resolution Diffusion Imaging
(HARDI), based on the dense sampling of the diffusion signal for all possible ori-
entations, is of special interest in this dissertation, since it allows the accurate
characterization of the diffusion process. At the same time, the wide variety of
scenarios and features for such data sets raises a number of new challenging
problems of paramount importance, since the traditional foundations of process-
ing algorithms for diffusion MRI, such as the Rician nature of noise in scanned
data, or the Gaussian model for diffusion, are no longer adequate. These problems
are currently a very active research field and the motivation for the present work.

In this thesis, a new statistical and probabilistic framework is proposed to
cope with this diversity, whose ultimate goal is the description of complex micro–
architectures of neural fibers through the characterization of the macroscopic dif-
fusion process. It comprises specific tools for the statistical characterization (sig-
nal modeling and noise description and estimation) and conditioning (denoising
by means of statistics–based image filtering) of diffusion data sets provided by
MRI scanners. The novelty of the proposed methods relies on their compatibility
with standard scenarios based on Rician signals, but also with modern systems
like multiple–coils scanners and parallel MRI acquisition schemes, for which each
part of the image is acquired in parallel by an independent receiving coil and fur-
ther combined with all remaining parts to obtain the whole data set.

The center of the work carried out (and the main contribution of the thesis),
however, is the inference of probabilistic information relative to fiber populations
in the white matter of the human brain. The techniques described are exclusively
based on HARDI data sets, so they perfectly fit currently existing acquisition pro-
tocols without further restrictions. The proposed algorithms aim to obviate any
specific parametric model for diffusion, completely avoiding the Gaussian assump-
tion for the process of diffusion of water molecules. It is demonstrated that the
use of true probabilistic information clearly benefits the inference of fiber popu-
lations and orientations, and the methods developed highly improve the previous
attempts in the related literature.

The quantitative evaluation of the entire framework is carried out over synthetic
and phantom data specifically designed for each part, comparing the results to
related works in the recent literature. Besides, extensive experiments over real
data sets, gathered from several institutions worldwide, are presented to illustrate
the work developed. The features of these data are diverse enough to derive general
conclusions on the performance of the new methodology.
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1
Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) allows to easily identify the anatomical struc-
tures of the brain (cortex and nuclei) in vivo. However, with this modality the
white matter appears as an homogeneous region, which hinders the complex mi-
cro architecture and connectivity of the nervous fibers comprised in this tissue.
Diffusion MRI is intended to overcome this drawback, taking advantage of the dif-
fusion of water molecules along the myelinated fiber bundles in the white matter.
The first experiment designed to quantitatively describe the diffusion in the white
matter was intended by Stejskal and Tanner [Ste65]: the conventional sequence of
pulses used for MRI is modified applying two consecutive strong sensitizing gradi-
ents with opposite phases. The macroscopic effect is a phase shift of the spins of
those water molecules which have moved along the direction of such gradients. It
translates in an attenuation of the signal measured in the absence of sensitizing
gradients. Analyzing such attenuation for each direction, the diffusion may be
quantitatively assessed.

Although this experiment was carried out in 1965, the formal characteriza-
tion and systematization of diffusion imaging based on MRI is more recent, and
mainly due to the pioneering works by LeBihan and Basser [Bas94a, Bas94b,
Bas96, Bas00a, Bas00b, LeB86]. The free diffusion of water molecules may be
seen as a Brownian motion, where the displacement of a particle in a given time is
modeled as a multivariate Gaussian random variable. When the water molecules
are confined inside the myelin coats of the neural axons, an isotropic Gaussian
behavior cannot be assumed, since the particles are not able to go through these
barriers, but only along the axial direction of the axons. In these cases, it is widely
accepted that the diffusion may be modeled as a non–isotropic Gaussian process
if one single principal direction of diffusion is being imaged. Besides, the physics
of the problem impose the radial symmetry of the diffusion, so the entire process
can be described in terms of the 3× 3 covariance matrix of a Gaussian random
variable. As such, the covariance matrix is positive definite and symmetric, so
it has only 6 degrees of freedom. This matrix is the diffusion tensor, and those
techniques oriented to compute and represent it (or parameters derived from it) at
each location of a 3D volume are gathered under the denomination of Diffusion
Tensor Imaging (DTI). Since the diffusion tensor has only 6 degrees of freedom, it
may be determined from 6 independent gradient directions [Wes01], although it is
very common to acquire a higher number of directions to improve the robustness
to noise of the estimation [Sal05].



2 MOTIVATION

In this dissertation, the more general term Diffusion Imaging will be used to
refer to those techniques intended to describe water diffusion inside neural axons
which are based on a more general model than Gaussian diffusion. DTI may thus
be considered as a special case of Diffusion Imaging, although its great importance
in clinical practice makes it a relevant imaging modality itself.

Despite the relative novelty of this imaging protocol, DTI has been successfully
used for the diagnosis and analysis of a number of neural illnesses and brain
injures [Hor02, Sun04, Lim02, Tay04]. The majority of these works are based on
the qualitatively inspection of parameters derived from the diffusion tensor, such
as the Mean Diffusivity (MD), related to the amount of diffusion, or the Fractional
Anisotropy (FA), related to the different capability of diffusion (tissue structuring)
in each spatial direction [Wes01]. However, the use of quantitative parameters
extracted from DTI data sets on the fiber tracts of interest is gaining interest
[Pag05,Smi06,Smi07]. The following diseases have been intensively addressed in
the recent literature:

Epilepsy is sometimes due to injures in some regions of the brain. However,
in many situations it is very difficult to determine its origin. It has been
observed with DTI that the MD increases and the FA decreases in those zones
with malformations of the cortex and in their neighboring tissues. Such
zones do not seem pathological in other imaging modalities, so DTI shows a
unique potential to discern the focus of epilepsy and better define the injured
tissues for their surgical resection.

Multiple sclerosis. This is perhaps the most evident application of Diffusion Imag-
ing in the diagnosis of neural diseases. Multiple sclerosis is a neuro–degener-
ative illness which produces the reduction, or even the complete destruction,
of the myelin coat of the neural axons. Without this barrier, the diffusion of
water molecules is not confined to neural axons, so the FA diminishes and
the MD augments. Moreover, the change in the MD seems to correlate with
the severity of the disease.

Brain ischemia is produced by the temporal or permanent reduction of the blood
flow in a region of the brain, which in turn originates a damage in the tissues
due to the lack of oxygen. In case of a sudden reduction of the blood flow,
the term acute ischemia is used. On the contrary, if this process is gradual,
the ischemia is called chronic. DTI allows to distinguish between these types
of ischemia by the follow–up of the patient; once again, the disease originate
a change in the MD and the FA, which in the acute case is permanent but in
the chronic case keeps changing in subsequent examinations.

Alzheimer’s disease is especially difficult to detect, since it cannot be diagnosed
before the decease of the patient. Although it has been associated to a de-
generation of the gray matter, meaningful changes in the white matter are
suspected to occur as well. The studies in this direction are preliminary, but
a reduction in the FA has been detected in patients potentially affected by
Alzheimer’s disease.

Schizophrenia. The origin of this illness is unknown, although it is usually asso-
ciated to biological as well as environmental factors. It is commonly believed
that schizophrenia is associated with certain alterations of the brain. DTI
studies are mainly based on the comparison of quantitative parameters (MD,
FA) extracted from tracts of interest of both control subjects and patients.
Some promising results have been reported, mostly related to the reduction
of the FA in the positive cases [Buc98,Kub07].
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Brain tumors. Although conventional MRI may be used to assess the position
and extent of brain tumors, DTI reveals very useful additional information.
In particular, it allows to distinguish among different parts of the tumor, the
tissues infiltrated, and the edema. DTI studies facilitate the classification of
brain tumors and their surrounding tissue, and the quantitative analysis of
MD or FA helps to find the zones with metastasis. Moreover, determining the
direction of fiber bundles surrounding the tumor is useful for the planning
of surgical interventions, minimizing the risk of damaging tracts associated
to important functions.

Although DTI shows an enormous potential in the study of the anatomy and
connectivity of the white matter, it also has a number of limitations. The principal
one is the assumption of a Gaussian model of the diffusion. As mentioned above,
this model is only accurate in case one single dominant direction is present in
the extent of the voxel being imaged: the longitudinal axis of the fiber bundles
are aligned with the principal eigenvector of the diffusion tensor, while the other
eigenvectors correspond to transverse directions for which the myelin coats pre-
vents water diffusion. As a consequence, the diffusion tensor has one dominant
eigenvalue larger than the other two; if it is represented as an ellipsoid whose main
axes are the eigenvectors and the dispersion along each axis is the corresponding
eigenvalue, such ellipsoid has an elongated shape, being called a prolate tensor.

On the contrary, there is a number of anatomies in the white matter for which
two or more fiber bundles cross in divergent directions, such as the cerebellar
peduncle, the upper brain in the joint of the cingulum and the corpus callosum,
or the peripheral brain where the longitudinal fasciculus crosses the corona ra-
diata [Mor05]. In these cases, there is a high amount of diffusion in two or more
principal directions, and the diffusion ellipsoid is a flattened surface. This shape
is often referred to in the literature as an oblate tensor; however, it is worth notic-
ing that in fact an oblate tensor indicates only that the tensor model is not valid
for this anatomy: it does not represent a nearly isotropic diffusion in the corre-
sponding plane, but instead that two or more fiber bundles are present in this
plane. Moreover, there is a high uncertainty in the nature of diffusion for this
kind of voxels, since the orientation of the two (or more) principal directions inside
the plane is ambiguous.

Although this uncertainty may be solved in some cases by the context (i.e. by
observing the behavior of neighboring voxels), it results obvious that quantita-
tive DTI will be negatively affected by these artifacts. In particular, the existence
of oblate tensors yields voxels with artificially reduced FA (which, as mentioned
above, is very valuable as a diagnostic predictor). The FA may be seen as the nor-
malized variance of the eigenvalues of the diffusion tensor; for the case of an oblate
tensor, this variance is artificially reduced, not as a consequence of the deterio-
ration of the myelin coat, but only as an artifact induced by an incorrect choice
for the diffusion model. An interesting study on this topic has been carried out
in [Sal05]: at each voxel, the profit of using a more general model than Gaussian
diffusion is assessed by means of a goodness of fit statistical test. The conclusion
is that a very small percentage of voxels may benefit from the consideration of a
general model. Nevertheless, the authors stress the following two limitations or
their study:

• If the statistical test is not passed (i.e. it concludes that there is no benefit
in considering a non–Gaussian model), it does not necessarily mean that a
Gaussian process is enough to model the diffusion. Instead, the meaning is
that due to noise such model will not better fit the noisy observations than a
Gaussian one.
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• The study strongly depends on the number of gradient directions. If only 6
directions are acquired, obviously there is not a way to improve the fitting of
the model, since all degrees of freedom are accounted. But if more directions
are available, a more complex model may be reliably fitted.

An important conclusion of this analysis is that the limitations of DTI become
relevant only if they are not hindered by the presence of noise or by a reduced
number of gradient directions. In this sense, the advent of better machinery and
new scanning protocols has been fundamental to the development of Diffusion
Imaging. In particular, the use of stronger magnetic fields in MRI scanners al-
lows to accelerate the acquisition. Moreover, several receiving coils may be used
in parallel either to improve the Signal to Noise Ratio (SNR) or to accelerate the
acquisition by acquiring different parts of the image simultaneously. This is the
principle of Parallel MRI or Parallel Imaging (pMRI) [Hog05,Lar07,Roe90,Wan00].
These new technologies have allowed to notably improve the quality of the acqui-
sition of gradient images, and at the same time to capture tens or even hundreds
of gradient directions in clinical times.

The development of new Diffusion Imaging techniques is therefore the con-
sequence of two factors: first, the technology push of the emerging acquisition
protocols, which allows more sophisticated models for diffusion. Second, once the
two pitfalls of poor SNR and a reduced number of gradients have been surpassed,
the limitations of DTI become evident, so general models of diffusion are at the
same time a new possibility offered by the current technology and a necessity for
the improvement of diagnosis capabilities in Diffusion Imaging.

The search for appropriate models of diffusion beyond tensor representations
is currently a very active research field. The number of degrees of freedom to
represent for these models is far larger than the traditional 6 free components of
the diffusion tensor, so a great number of diffusion gradients has to be acquired.
One of the first approaches in this sense, known as Diffusion Spectrum Imaging
(DSI) [Tuc03,Tuc04,Wed05], aims to completely characterize the diffusion process
by means of the sparse sampling for all possible orientations and magnitudes of
the diffusion sensitizing gradients. However, this approach requires an excessive
acquisition time to achieve adequate results, so this requirement is often relaxed
to characterize all possible directions of the gradients for one given magnitude,
which is often referred to as High Angular Resolution Diffusion Imaging (HARDI).
There is a relatively large number of efforts in this field, ranging from more or less
immediate extensions to multi–tensor models [Kre05, Pel06, Ber07a], continuous
distributions of tensors based on deconvolution approaches [And05,Des09,Tou07,
Tou08] or analytical techniques [Jia07], or generalized tensor models [Des06], to
even more general, non–parametric techniques [Jan03, Öza06] like the popular
Q–Balls [Tuc03,Tuc04].

These techniques, although quite experimental, have been successfully used to
resolve complex architectures of the white matter, including fiber crossing, bend-
ing, and kissing. Compared to the statistical analysis in [Sal05], the new imaging
protocols make these approaches useful in a wide variety of anatomical structures,
so their advantage is clear for most of the voxels in the image. In particular, the
ambiguity of oblate tensors is avoided, since HARDI techniques should be able,
in the ideal scenario, to resolve each of the principal directions of crossing. This
property is especially desirable in the most popular descriptive (but also quanti-
tative) technique in Diffusion Imaging, known as tractography or fiber tracking.
This method consists in the tracking of the fiber bundles at each voxel of the image
following the direction of maximum diffusion [Bas00b,Fri06,Mor02,Ten02]. From
a number of seeding points, this procedure is repeated for each succeeding voxel
until an entire fiber tract is traced according to some stop criterion, providing a
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very reach qualitative representation of the connectivity between different regions
of the brain. Additionally, the measurement of voxel–wise or group–wise parame-
ters on these tracts provides valuable quantitative information. It results evident
that, in those voxels with oblate or even spherical tensors, there is a high uncer-
tainty in the orientation of fibers, so it is hard to determine which direction should
be followed. Moreover, the most usual stop criterion is to terminate the tracking
when a voxel of low FA is found, so an oblate tensor may produce a false positive
in this criterion. The advantage of the aforementioned models with respect to both
limitations is clear. In fact, different HARDI techniques have been already used
with success for this task [Ber07b,Des09].

In spite of their usefulness, the new approaches to the quantification of water
diffusion carry on a number of challenging problems opposed to their widespread
usage. The following issues can be identified among the most important ones:

The acquisition time, although it can be drastically reduced by the means above
described, is still a limiting factor. The detailed description of diffusion com-
pels to measure a large number of gradient directions to fit all the degrees
of freedom of the model. Obviously, the more gradient directions, the more
accurate the model is fitted, so a trade–off between these two factors has to
be reached.

Scanning parameters. There is a number of parameters which may be changed
in an MRI scanner: the duration of encoding pulses, the separation between
them, the Field of View (FOV), the spatial resolution, and so on. In Diffu-
sion Imaging, the number of sensitizing gradients and their strength (mag-
nitude) are of special interest. Although in conventional DTI the magnitude
of the gradients can be maintained relatively low with an adequate perfor-
mance, the most of the HARDI techniques in the literature may benefit from
larger gradient strengths [Öza06,Tou08,Tuc04]. Unfortunately, larger gradi-
ent magnitudes induce a greater attenuation of the acquired MRI image for
the same noise power, which worsens the SNR of the data set. Yet, apply-
ing strong sensitizing gradients may bring on undesirable spatial distortions
known as eddy currents, which are dependent on the particular direction of
these gradients [And02,Net04,Nie04].

The characterization of noise in the diffusion data sets is a critical issue. Al-
though conventional MRI is one of the imaging modalities showing the high-
est SNR, in Diffusion MRI the need to introduce an important attenuation
(which is inherent to the nature if this imaging protocol) notably worsens
the SNR. In HARDI techniques, the use of larger sensitizing gradients even
stresses the problem. Rician statistics have been traditionally used to de-
scribe the noise in MRI [Gud95], which has been the keystone for the estima-
tion of the diffusion tensor [Sal05] or more general diffusion models [Cla08].
Also, the Rician framework has been extensively used in noise removal al-
gorithms [AF08c, Des08, MF09]. However, the new pMRI and multiple–coil
techniques (very useful to reduce the acquisition time in clinical practice) re-
construct the MRI data sets in a basically different way to conventional MRI,
so the traditional models of noise in MRI are at stake [Con97,Die08]. Given
the ubiquitousness of the Rician model in conventional Diffusion Imaging, it
is evident that the correct modeling of noise in the new MRI protocols is of
capital importance.

The limitations of fiber orientation estimators themselves are an important pit-
fall in the description of water diffusion. As said before, the limit in the
acquisition time prevents from sampling the whole space of the sensitizing
gradients for all possible magnitudes an orientations. The solution adopted
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in HARDI is to sample the entire space of orientations for one single magni-
tude. As a result, the diffusion process is not completely characterized, and
each HARDI technique has to deal with this incomplete information by some
means. The way each method overcomes the problem is the principal char-
acteristic which distinguishes it from all others, and usually its main source
of error.

From the previous discussion, it follows that the generalization of DTI to more
complex diffusion models is in any way a solved problem. Instead, a number of
open problems may be identified regarding each of the previously described is-
sues. Partial solutions exist for each of them. For example, and with respect to
the acquisition time, a number of pMRI algorithms have appeared in the litera-
ture [Hog05,Lar07] that allow to divide it by about two or three times. The main
problem of these techniques is the worsening of the SNR. Yet, each of them op-
erates in a very different way, so the model of noise in the final reconstructed
data set may highly differ depending on the particular algorithm used. Besides,
each algorithm may be used with a different set of parameters, which in turn will
affect the noise and the spatial distortions of the Diffusion Images. It is easy to
understand that a wide variety of scenarios with very different characteristics may
appear, and any imaging protocol intended to work on this kind of data will have
to deal with this diversity.

1.2 Objectives

The main goal of the thesis is to establish a framework for the study of water dif-
fusion in the white matter of the human brain, contributing the open problems
detected in the recent research efforts. Such framework should include Gaussian
diffusion models (DTI) as well as more general descriptors (HARDI). As noted be-
fore, the characterization of noise statistics in the emerging MRI protocols, as well
as the finding of means to palliate its effect in the imaging techniques, are non–
trivial problems which have to be accounted in such a framework. Moreover, the
solutions given have to apply for the most common scenarios and current imag-
ing protocols, whose statistical properties and imaging parameters will be very
diverse. In particular, the following objectives can be highlighted:

1. Statistical characterization and modeling of the noise in the scanned data,
beyond the traditional Rician model. The first task is to describe the first
order statistics for the most common protocols involving pMRI and multiple–
coil scanners. The correct modeling of the probability distribution of noise is
of paramount importance for many applications in the context of Diffusion
Imaging. Besides, pMRI is usually based on the subsampling of the data
to acquire for each receiving coil; taking advantage of the multiplicity of re-
ceivers, the original information may be recovered by means of interpolation,
reconstruction in the Fourier domain, and others. As a consequence, the
propagation of the uncertainty due to noise from the scanned data to the
final reconstructed image is not trivial. In particular, spatial variations of
the noise power and correlations of the noisy pattern may appear which are
generally not an issue in traditional DTI. Although these artifacts have been
preliminary described for some protocols, this is not the case for other impor-
tant reconstruction methods [Lar07]. The aim is therefore to characterize as
completely as possible (i.e. for the most used protocols) the aforementioned
propagation of noise to the Diffusion Imaging data sets.
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2. Analysis of the impact of noise. Like in any other signal processing task,
the presence of noise worsens the accuracy of the studies carried out from
experimental data. However, the quantification of the actual impact of noise
in DTI is still a matter of issue. Some studies can be found in the literature
to this respect [Bas00a,Jon04,Bas06], but they share two limitations: first,
they are mainly empirical, so the inference of any conclusion is restricted to
the kind of data used in the corresponding study. Second, they are centered
on conventional imaging protocols, and therefore on the Rician model. The
aim in the thesis will be to generalize the study to account for (almost) all
possible scenarios; this is only achievable if a theoretical framework is de-
veloped to analytically describe the statistics of noise in the diffusion tensor
computed from diffusion images. In other words, this study corresponds to
the propagation of uncertainty from the output of the scanner to the final re-
sult of the imaging process. The reader should note that the study has been
restricted to DTI; for more general HARDI techniques, the variety of methods
and mathematical foundations is so diverse that a theoretical framework de-
scribing the propagation for all of them is not a realistic target. Instead, the
study will be carried out empirically for some simple scenarios.

3. Noise removal. The formal characterization of the propagation of uncertainty
in the latter scenario is especially interesting, since this is the part which can
be controlled with imaging techniques. The analysis described in the first
objective allows to describe how the uncertainty is propagated, but not how
it could be reduced, since it is centered on the processes performed inside
the MRI scanner. Although the strategies for the improvement of the quality
in the acquisition of MRI images are a very active research field themselves,
they do not correspond to image processing techniques, so they are beyond
the focus of the thesis. On the contrary, once the data have been acquired,
the rest of the process lies within the scope of image processing. The aim
will be to palliate the effect of noise by means of filtering techniques. These
methods will be specific for the kind of images dealt with, as opposed to the
extended methodology of multi-channel filtering for each gradient image with
existing techniques [AF08c, Des08, Man08]. They will take into account the
statistical characterization of noise to fit as general scenarios and protocols
as possible.

4. Estimation of fiber orientations. Finally, the limitations of the existing gener-
alized models for water diffusion beyond DTI make it very interesting to find
new HARDI techniques to overcome them. In particular, the use of proba-
bilistic models similar to the Gaussian model in DTI may be an advantage for
a number of tasks such as stochastic tractography [Fri06]. The probability
of the displacement of water molecules in a given spatial direction may be
associated to the probability of the existence of a fiber bundle in this same
direction, so the estimation of probability densities provides information re-
garding not only fiber populations but also the certainty in their localization.
The last objective of the thesis is indeed the development of new strategies
for the probabilistic estimation of fiber orientations in the white matter. Once
again, the new methods should be applicable to the diversity of possible sce-
narios and protocols; more concretely, they should be intended to reduce
the sensitivity of common HARDI approaches to the number of sensitizing
gradients and their strength.

In the previous discussion the analysis and treatment of noisy signals has been
given a high importance. Nevertheless, the most ambitious objective is the last
one, since it is the one whose fulfillment will allow to better describe the architec-
ture of the white matter, thus comprising the main contribution to the community
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of Diffusion Imaging. As a final remark, the qualitative and quantitative evalua-
tion of the techniques derived from the accomplishment of each of the previously
defined objectives is an additional objective itself, and yet a challenging task in
many cases.

1.3 Methodology

The methodology to be followed is obviously conditioned by the objectives to ful-
fill. There is a strong dependence between the achievement of the low level goals
(i.e. the characterization of the diffusion signals provided by the MRI scanner)
and the accomplishment of the aims proposed in the top level (the estimation of
fiber architectures). According to these dependencies, a bottom–up scheme is an
appropriate methodology, which may be divided in the following tasks:

Development of statistical tools for the analysis of MRI signals. The characteri-
zation of noise in the data sets being used requires the deployment of a set of
mathematical formalisms and tools. These methods are used to accomplish
the first particular objective highlighted in the previous Section. As stated
before, the wide variety of MRI hardware and reconstruction schemes origi-
nates a multitude of possible scenarios. The first task is thus to group them
into similar categories that will share a similar characterization. For some of
the most recent categories not properly addressed in the literature, new for-
malisms have to be developed. This is a requirement derived from the main
goal of the thesis, i.e. the general validity of the proposed framework.

Development of tools for the study of the upwards propagation of noise. Analo-
gously to the previous discussion, the analysis of the propagation of uncer-
tainty from the output of the MRI scanner to the estimated fiber structures
requires specific mathematical formalisms. As stated before, the general va-
lidity of these methods is compromised by the great diversity (and complexity)
of the existing approaches.

Development of statistical models for the signals of interest in the presence of
noise. With the statistical characterization of noise achieved by the fulfill-
ment of the first two objectives, the filtering of MRI signals may be seen as an
estimation problem in which the actual, noise–free signal has to be estimated
out from a set of noisy measurements. As in any other estimation problem,
the use of prior information on the variables to estimate, in the form of a
suitable model, may highly improve the accuracy of the solution. The search
for this model, which has to be specific for Diffusion Imaging, will lead to
a set of mathematical tools comprising the core of the denoising algorithms
pursued in the third objective.

This methodology allows to obtain MRI signals for which the noise–induced arti-
facts have been drastically reduced. It is opposed to those methods jointly con-
sidering the problems of noise modeling and fiber architecture estimation based
on this model, which have been used in [Cla08, Fil07, Sal05]. Decoupling both
problems makes it possible that the subsequent phases (the estimation of fiber
populations) show general validity regardless of the underlying technologies used,
which is one of the main issues in this work.

Design of the theoretical framework for the probabilistic estimation of fiber ori-
entations. In this stage the aim is to find the connection between the known



INTRODUCTION 9

probabilism of the diffusion of water molecules in the neural axons and the
probabilistic description of fiber populations in the white matter.

Development of novel tools for fiber orientation estimation in the context of the
previously described framework. The main limitation of HARDI relies on the
incomplete characterization of the diffusion process, so it is necessary to
overcome this problem with an adequate set of mathematical tools.

Partial validation of each of the previous stages. Contrary to the previous steps,
which have to be carried out sequentially due to the dependencies among
them, this one has to be paralleled with all the remaining methods. The
evaluation of each of the stages requires to isolate it from all others in order
to avoid any influence of the processing of lower levels in the performance of
top levels. This stage comprises the quantitative evaluation of the methods
developed, mostly based on synthetic and phantom data specifically designed
at each stage.

Global validation of the whole framework. In this case, the evaluation will be
qualitative, since it has to be performed over real data sets. At the same
time, the lack of an extended database with all possible kinds of diffusion MRI
data and scenarios makes this validation necessarily incomplete. However,
testing the whole processing pipeline for representative situations provides
highly valuable information of its joint performance.

Software integration. Together with the validation of each stage, the integration
of the methods described in general purpose image processing software tools
may be done in parallel with the methodology described.

1.4 Materials

The methods developed in this thesis, especially those related to HARDI tech-
niques, are intended to work over a very specific kind of data. As a result, it is
difficult to find a wide test–bed for the validation of the methodology introduced.
Moreover, the processing framework is intended to be valid for a wide variety of
imaging protocols and scenarios, which makes unfeasible the availability of a com-
plete database with all possible case studies. However, the collaboration with dif-
ferent institutions inside and outside of Spain has allowed the disposal of several
Diffusion Imaging volumes of diverse kinds. Since the purpose of the acquisition
of each data set is rather different, their characteristics are highly variable. To
begin with, five data sets of Diffusion Weighted Images (DWI) are available:

Three HARDI data sets provided by the Surgical Planning Laboratory (Brigham
and Women’s Hospital) at Boston (Massachusetts, USA)1. They are SENSE
EPI volumes scanned with a 3 Tesla GE system, with slice thickness 1.7mm,
8 baselines (unweighted MRI images) and 51 diffusion weighted images cor-
responding to 51 independent gradient directions. For the third volume,
however, no baseline images are available: only the attenuation signal, com-
puted as the division of each gradient image by the (averaged) baseline, has
been provided as a MatLab data file. The b–value (the parameter related to
the strength of the diffusion gradients applied) of each volume is different:
b = 700s/mm2, b = 586s/mm2, and b = 1000s/mm2. These volumes will be
referred to as BWH1, BWH2 and BWH3, respectively.

1Courtesy of grant number NIH R01 MH074794 (CFW) from the National Institute of Health, USA.
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b (s/mm2) Basel. Grad. Res. (mm) Thick. (mm) Size

BWH1 700 8 51 0.94×0.94 1.7 256×256×78

BWH2 586 8 51 0.94×0.94 1.7 256×256×81

BWH3 1000 8 51 0.94×0.94 1.7 256×256×81

CSIRO1 3000 8 60 2.31×2.31 2.3 104×104×54

CDR1 1000 1 15 1×1 3 256×256×41

Table 1.1: Summary of the characteristics of the diffusion weighted data sets used for the validation
of the methods proposed. They correspond to brain images of informed volunteers.

An additional HARDI data set, kindly provided by Doctors Olivier Salvado and
David Raffelt, from the Australian eHealth Research Centre–CSIRO ICT Cen-
tre, Brisbane (Australia). It is a conventional (non–parallel) HARDI data set
with 8 baselines and 60 gradient directions, and b = 3000s/mm2. Resolution:
2.31×2.31×2.3mm. It will be referred to as CSIRO1.

A set of diffusion weighted volumes intended for conventional DTI (they are not
HARDI volumes) provided by Doctor Sierra at the Centro Diagnóstico Recole-
tas, Valladolid (Spain)2. They have been scanned with a 1.5 Tesla GE system,
taking one single baseline and 15 gradient directions with slice thickness
3mm and b = 1000s/mm2. Among these volumes, a particular one, corre-
sponding to the brain of the author, has been chosen for illustrative purposes
where needed. It will be referred to as CDR1.

The main characteristics of these data sets are summarized in Table 1.1.

The previously introduced materials are specific for the methods oriented to
Diffusion Imaging. However, some of the stages in the methodology may be val-
idated without the need of these specific resources. To that end, the following
additional data are available:

An MRI multiple–coil data set of the brain of an informed volunteer, scanned
in an 8 coil, GE Signa 1.5T EXCITE 11m4 scanner, with FSE Pulse Se-
quence; FOV is 20× 20cm (matrix size 256× 256) and the slice thickness is
5mm. This data set has been provided as well by the Surgical Planning Lab-
oratory (Brigham and Women’s Hospital) at Boston (Massachusetts, USA),
and therefore will be referred to as BWH4.

An MRI multiple–coil data set of a human brain, made publicly available3 by
the authors of the PULSAR toolbox [Ji07]. It is an eight-channel head array
from a 3 Tesla GE scanner, fast spoiled gradient-echo sequence, with FOV
22×22cm (matrix size 256×256), and will be named PULSAR1.

An MRI multiple–coil data set of a human spine, PULSAR2, acquired in a 3
Tesla whole–body GE scanner from a healthy male volunteer using a four–
channel spine array with fast spoiled gradient-echo sequence. FOV is 32×
32cm and the matrix size 256× 256.This data has also been made publicly
available by the authors of [Ji07].

2TEC2007–67073/TCM from the Comisión Interministerial de Ciencia y Tecnologı́a (Spain).
3http://www.ece.tamu.edu/˜mrsl/JIMJI_TAMU/pulsarweb/index.htm

http://www.ece.tamu.edu/~mrsl/JIMJI_TAMU/pulsarweb/index.htm


INTRODUCTION 11

1.5 Outline of this thesis

The structure of this document follows the methodological stages above described.
Chapter 2 briefly describes the fundamentals of MRI, Diffusion Imaging, pMRI,
DTI and HARDI. It is not intended as an exhaustive analysis of these techniques,
but only as the theoretical basis for the rest of the developments in subsequent
Chapters. Besides, the underlying physical processes are not reviewed in depth,
in favor of an intuitive posing of the basic equations and formalisms to be used
along the document. The general description of the processing framework, which
is summarized in Fig. 2.6, is also given in this Chapter.

Chapter 3 is devoted to the derivation of the statistical model for the noise in the
MRI signals to be used. The classical characterizations based on Rician statistics
are reviewed, and their derivation is detailed. This development is generalized to
multiple–coil and pMRI signals. In particular, the GRAPPA protocol is analyzed as
an important case study, which allows to conclude that a non–central Chi model
allows to characterize signals acquired with the most common MRI protocols. This
is especially meaningful because the Rician distribution is a particular case of this
general distribution, which can therefore be used with general validity. The main
contribution in this sense is the precise statement of the non–central Chi statistic,
which has been previously suggested in the literature in an heuristic way [Die08].
Besides, the stationarity of the noisy processes across the image is studied.

Chapter 4 studies the impact of noise, distributed following the general non–
central Chi model, in the estimation of the diffusion tensor with Least Squares
(LS). This is only a case study inside the analysis of the propagation of noise from
scanned data to fiber architecture estimation. However, it corresponds to the most
extended Diffusion Imaging technique nowadays, so its relevance is fully justified.
Contrary to some previous empirical studies in this sense [Bas00a,Bas06,Cla08,
Jon04], the main contributions of the analysis carried out in this thesis are, first,
the assumption of a non–central Chi model, which generalizes the applicability
of the study to a number of modern protocols; second, this study is analytical,
so the conclusions inferred do not depend on the use of any particular data set.
Consequently, the analysis has general validity over a range of possible scenarios.

Chapter 5 proposes a number of techniques for filtering of diffusion MRI data
sets. As opposed to the techniques commonly used in the literature, based on
the separate processing of each gradient image with conventional techniques, a
specific methodology is described. It is shown that the high correlation among
the gradient images can be exploited as an additional source of prior information.
These methods are tested quantitatively over synthetic and phantom data, and
qualitatively for real volumes, in the case of Rician noise. The study is restricted
to this particular scenario due to the lack of appropriate data sets to validate the
algorithms for non–central Chi distributions. Nevertheless, in the last part of the
Chapter the study is generalized to this distribution.

The remainder of the document is focused on the main topic of the thesis, i.e.
the estimation of neural architectures. Chapter 6 establishes the mathematical
formalisms relating the mechanisms of water diffusion to the probability densities
for the existence of fiber bundles. They are combined with a popular HARDI tech-
nique, known as the Funk–Radon transform (FRT) [Tuc03,Tuc04], to introduce a
first approach to the probabilistic estimation of fiber populations, the Orientation
Probability Density Transform (OPDT). This technique is thoroughly validated in
a number of scenarios, including noisy situations. This latter analysis is useful to
complement Chapter 4 with an empirical study of the propagation of uncertainty
for the estimator considered.
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Chapter 7 extends the idea behind the OPDT. It is argued that the FRT may
under some circumstances introduce undesired artifacts in the estimation, so it
is necessary to derive additional mathematical tools to avoid this weakness of the
OPDT. The first contribution in this Chapter is the introduction of a set of tools
based on the FRT which are intended to avoid its limitations. These techniques are
further used to derive new estimators of fiber populations alternative to the OPDT.
These estimators, together with the OPDT, are the most important contribution
to the whole framework discussed in this thesis. Their properties are summed
up in Table 7.1, which in turn represents a brief summary of the most important
contributions presented in this research work.

The whole framework is validated in Chapter 8 by means of the qualitatively
assessment of fiber estimations in known brain anatomies. The methods proposed
in Chapters 6 and 7 are tested both isolated and plugged together with the other
methods developed in previous Chapters, in order to show the potential of the
complete framework. Finally, Chapter 9 highlights the conclusions of the work
presented, and proposes a number of open lines derived from it, which comprise
an interesting starting point for future research.

1.6 Glossary

ACS Auto calibrating signal 2.4.1
ADC Apparent diffusion coefficient 6.1
AWGN Additive white Gaussian noise 3.2
BLUE Best linear unbiased estimator 4.3
CMS Composite magnitude signal 2.4.1
cOPDT Circulation–based orientation probability density transform 7.4
cQ–Balls Circulation–based Q–Balls 7.3
DFT Discrete Fourier transform 2.3
DOT Diffusion orientation transform 2.7
DSI Diffusion spectrum imaging 2.7
DTI Diffusion tensor imaging 2.6
DWI Diffusion weighted images, diffusion weighted imaging 2.5
EPI Echo–planar imaging 3.5
ET Execution time 5.4.7
FA Fractional anisotropy 2.6.1
FOV Field of view 2.3
FRT Funk–Radon transform 6.3
g–SMASH Generalized simultaneous acquisition of spatial harmonics 2.4.1
GA Generalized anisotropy 5.4.6
GRAPPA Generalized autocalibrating partially parallel algorithm 2.4.1
HARDI High angular resolution diffusion imaging 2.7
iDFT Inverse discrete Fourier transform 2.3
LMMSE Linear minimum mean squared error 5.2.1
LS Least squares 2.4.1
MD Mean diffusivity 2.6.1
MR Magnetic resonance 2.1
MRI Magnetic resonance imaging 2.1
NEX Number of excitations 2.3
NLM Non–local means 5.2.2
NMR Nuclear magnetic resonance 2.1
ODF Orientation distribution function 6.2
OPDF Orientation probability density function 6.2
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OPDT Orientation probability density transform 6.5
PDF Probability density function 2.5
PGSE Pulse gradient spin echo 2.5.1
pMRI Parallel magnetic resonance imaging, parallel imaging 2.4
pOPDT Plane–orientation probability density transform 7.5
pQ–Balls Plane–Q–Balls 7.5
PSNR Peak signal to noise ratio 5.4.2
RA Relative anisotropy 2.6.1
RF Radio–frequency 2.1
SENSE Sensitivity encoding 2.4.1
SH Spherical harmonics 6.4
SMASH Simultaneous acquisition of spatial harmonics 2.4.1
SNR Signal to noise ratio 2.3
SoS Sum of squares 2.4
UNLM Unbiased non–local means 5.2.2
WLS Weighted least squares 4.3

1.7 Notation

The notation throughout this dissertation has been kept uniform as far as it is
possible. However, the wide specter of techniques and topics dealt with makes this
task rather challenging. The uniformity in the nomenclature has been sacrificed at
some points in favor of the use of standards in the literature. This inhomogeneity
is especially noticeable from those Chapters related to statistical characterization
of noise (3 to 5) to those focused on the estimation of fiber populations (6 and 7).
For each part, the philosophy has been to keep the most widely accepted notation
used in the related bibliography, so that the interested reader can easily follow the
developments presented, without the need of getting familiarized with new symbol-
ics. Hence, no general guidelines are provided here, but instead the corresponding
notation is introduced and explained where needed.





2
Principles of Magnetic Resonance and

Diffusion Imaging

In this first Chapter, the principles of Magnetic Resonance Imaging and Diffusion Imag-
ing are briefly reviewed. The concepts here described are necessary to understand the
analysis developed later on, as well as the relevance of the work presented. Therefore,
this review is only intended to present the framework for subsequent Chapters, and
does not attain the complex physical processes involved in Nuclear Magnetic Resonance
(NMR) in detail. The first part is focused on the NMR effect, whose basic mechanisms are
fundamental to understand the imaging of soft tissues with MRI. The relation between
the resonance frequency and the applied magnetic field are used to give evidence of the
Fourier relation between the acquired signal in the k–space and the signal in the image
domain, which is one of the keystones of the statistical analysis carried out in Chapters
3 through 5. Modern Parallel Imaging (pMRI) techniques are studied to complete the de-
scriptive characterization of the acquisition of the k–space, which will take its importance
on Chapter 3. The rest of this Chapter is focused on Diffusion Imaging, starting from the
characterization of the signal measured in the q–space related to diffusion propagators.
Once again, a Fourier relation may be proved between these two spaces; Diffusion Imaging
is presented as a 6D imaging technique, formed by the Cartesian product of the 3D space
of the volume to image and the 3D space of diffusion propagators, each of them with a
corresponding Fourier transformed domain (the k–space and the q–space). The definition
of the q–space is the basis for the developments in Chapters 6 and 7, while the introduc-
tion of the aforementioned 6D space relates these two Chapters with Chapters 3 through
5. In the remaining, Diffusion Tensor Imaging (DTI) is briefly reviewed. The limitations of
this model are stressed, leading to the analysis of more sophisticated techniques based
on High Angular Resolution Diffusion Imaging (HARDI). This discussion emphasizes the
importance of the contributions of the present thesis.

2.1 Introduction

Magnetic resonance Imaging (MRI) is based on a phenomenon known as Nuclear
Magnetic Resonance (NMR), first described by Bloch [Blo46] and Purcell [Pur46] in
19461. Under the effect of a magnetic field strong enough, atomic nuclei with un-
paired protons rotate with a frequency depending on the strength of the magnetic
field (and the nature of the atom). This is in fact the resonance frequency of the
nuclei for the particular magnetic field strength applied, and the atoms are able to
absorb energy at this radio–frequency (RF). In other words, a RF pulse can be used
to excite the nuclei, which, once the pulse is removed, emit this electromagnetic
energy at the resonance frequency.

The use of NMR to image a given tissue requires the localization of the source

1The information on this Chapter has been retrieved mainly from [Bas96,Jon05,Lar07,Lia00].
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of the electromagnetic energy emitted, in order to infer the spatial position of a
given spin density (the concept of spin will be reviewed later on), and therefore
the local properties of a given tissue. Since the resonance frequency depends on
the strength of the magnetic field applied, the spatial resolution is based on the
design of a spatial gradient of the magnetic field: different locations are associated
to different magnetic field strengths, and thus to different resonance frequencies:
listening to different frequencies is the same as studying different locations. This
principle was used for the first time by Lauterbur in 1973 [Lau73] to obtain a two–
dimensional image. This discovery, together with the Fourier relationship between
spin densities and NMR signals, proved by Mansfield and Grannell that same
year [Man73], constitutes the basis for modern MRI scanners.

MRI has been used for medical purposes since 1980. This imaging modality
provides an excellent contrast between the tissues, is non–invasive, and does not
require the use of ionizing radiations, which avoids any secondary effects (as far as
it is known). These features make MRI very attractive for the clinical practice, with
the only drawbacks of its higher cost compared to other modalities (such us ultra-
sounds) or its relatively high acquisition times. Besides, NMR–derived effects may
be used in other MRI modalities: apart from anatomical MRI, functional MRI or
diffusion MRI provide complimentary information and are the focus of important
research efforts and interest. The focus of this dissertation is on diffusion MRI,
but all these modalities share a number of common principles to be discussed in
the remaining of this Chapter.

2.2 Physics of Magnetic Resonance Imaging

Protons, neutrons, and electrons show an angular moment known as spin, which
may have the values ± 1

2 ,±1,± 3
2 ,±2,± 5

2 . . . When these particles are paired, their
spins are paired as well, so they cancel each other. This is the reason why NMR
is only feasible with unpaired protons. In MRI, the particles considered are hy-
drogen nucleus associated to the concentration of water molecules. In this case,
the spin is reduced to values ± 1

2 . The spin is a property of elemental particles, so
it has to be analyzed in the scope of quantum mechanics. However, in MRI, spin
systems and not individual spins are analyzed, so their macroscopic behavior may
be accurately described with classic magnetic fields theory. In this sense, the spin
may be seen as a microscopic magnetization vector originated by the movement
of electrons around the nuclei, much like the magnetic vector induced by a round
wire conducting an electric current. In the absence of an external stimulus, spins
are randomly distributed, so the macroscopic magnetization is M = 0. When an
external magnetic field B0 is applied, the spins align with its direction (by conven-
tion, it is assumed to be the z axis). Unlike a classical magnetic dipole, spins may
adopt one of two energy states inducing opposite microscopic magnetizations. The
low energy state has a slightly greater probability, so an overall magnetization M
appears aligned with B0. At the same time, the magnetization vector of individual
spins is subject to a precession movement, previously referred to in Section 2.1,
around M. Its frequency ω0 is commonly known as the Larmor frequency or the
resonance frequency, and may be written as:

ω0 = γ‖B0‖= γB0, (2.1)

with γ the gyromagnetic ratio. As previously stated, the Larmor (resonance) fre-
quency depends on the strength of B0, and on the properties of the tissue being
imaged through γ. The phase of the precession movement for each spin is random,
so the macroscopic effect is that the component of M in the transverse (xy) plane
is null, while there is a net longitudinal component in the z direction. Once the
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spins have been aligned with B0, and are precessing at frequency ω0, they are able
to absorb energy from a radio frequency pulse B1(t). This pulse may be thought of
as a circularly polarized magnetic field rotating at frequency ω0 in the plane xy, so
it may couple with the precession movement. The first effect is the coherence on
the rotation of the spins, which induces a rotating component in the transverse
plane xy. Besides, the particle is able to absorb energy; the overall effect is that an
effective magnetic field Beff appears aligned with one of the directions x or y, the
precession of the spin follows this direction and the microscopic magnetization
drifts from the direction of B0 a time–dependent angle α. Controlling the duration
τ of the pulse B1(t), the final value of α may be fixed. For real–world applications,
durations which produce angles α = 90o or α = 180o are used, and are commonly
known as 90o or 180o pulses. The angle of M is changed by exciting the spins with
electromagnetic energy at the Larmor frequency. When the pulse B1 is removed,
the spins free the energy they have previously absorbed, going back to their initial
state aligned with B0. This process is called relaxation and, during it, the energy is
emitted in the form of a RF signal which may be received by an antenna (in MRI,
antennas are receiving coils placed in the MRI scanner).

The relaxation of the spins is associated with two different physical processes:
the pulse B1(t) cedes energy to the spin changing its precession movement; after
a time τ, the longitudinal component of M is removed. On the other hand, B1(t)
produces the coherent rotation in the xy plane, yielding a net transverse compo-
nent. Once the pulse is removed, both components return to their original states.
Both processes occur at the same time, an are basically independent, although in
general the second one is much faster. Therefore, there exist two relaxation times:

T1: is the time for the longitudinal component to return to its original state through
the emission of electromagnetic energy at Larmor frequency. This is the
spin–lattice relaxation, corresponding to the exchange of energy between the
spin–system and its surroundings.

T2: is the time for the transverse component to return to its original state, associ-
ated to thermal equilibrium between spins: when the pulse B1(t) is applied,
the phases of the spins reach a certain coherence, yielding a net transverse
component, which disappears when the pulse is removed. This is the spin–
spin relaxation.

Both times T1 and T2 refer to the time constant of the exponential laws ruling
the relaxation processes. In general, T1 � T2. Measuring relaxation times of the
longitudinal and transverse components of M, different properties of the tissues
may be inferred. This is the principle of T1 and T2 imaging modalities (see Fig. 2.1).
In the present work, the T2 modality is of especial importance since it is the only
one which allows the measurement of diffusion.

2.3 The k–space and the x–space

The Larmor frequency depends on the strength of the external magnetic field, B0.
This property may be used to infer spatial information by the use of field gradients.
A spatial gradient is applied to B0 in the z direction while the radio frequency pulse
B1(t) is active. This implies that the Larmor frequency varies for each plane zp, so
only one of the planes is excited by the pulse, being able to absorb electromagnetic
energy. This principle is used in MRI to select an image slice:

ω0(zp) = γB0 + γGzzp, (2.2)
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Figure 2.1: Examples of anatomical MRI images of different modalities: T1 (left), and T2 (right).
In these modalities, each pixel represents the relaxation time (longitudinal component for T1, and
transverse component for T2) after the application of the RF pulse.

where Gz is the modulus of the gradient applied in the slice direction. The spatial
encoding for the xy plane is more complex. A combination of gradients in the x
and y directions simultaneously may be thought of. With this strategy, for each
selected slice zp, there is a plane defined by the two gradients Gx and Gy:

ω0(x,y,zp) = γB0 + γGxx+ γGyy+ γGzzp, (2.3)

which defines lines in the angle tan−1(Gx/Gy) with the same Larmor frequency. The
collected signals will be the superposition of the spins along these lines. Varying
the ratio Gx/Gy, a projection image similar to computerized axial tomographies
may be obtained. The main drawback is the need to infer the spatial information
from projections, as is the case with tomographies.

A phase/frequency encoding is used in practice: once the plane zp has been
chosen with Gz, a pulsed gradient Gy is applied, so the Larmor frequency is differ-
ent for each point along the y axis. If the duration and amplitude of Gy are properly
chosen, when Gy is removed the points along y have linearly spaced phases, so that
their Larmor frequencies return to their original value but their spins have differ-
ent phases. Then, a pulsed gradient Gx is applied, varying the Larmor frequency
along x. The RF signal is measured while Gx is being applied (see Fig. 2.2).

The x direction is encoded in the frequency of the emitted signal, while the y
direction is encoded in its phase. Unfortunately, this scheme is prone to an am-
biguity in the phase encoding: the superposition of several signals with different
phases has a phase which is a function not only of the phases of the original sig-
nals, but it depends on their amplitudes as well. In practice, this means that the
acquisition has to be repeated several times for slightly different values of Gy. The
resolution in the y axis is given by the number of repetitions used in the acqui-
sition process, while the resolution along x depends on the number of samples
taken at each line.

The advantage of this encoding scheme is that it may be proved that the fre-
quency/phase plane is in fact the two–dimensional inverse Fourier transform of
the spatial information [Kin84]. Without entering into unnecessary details, note
that for each phase encoding the radio frequency signal is the superposition of all
the harmonics ω0(x,y j,zp) ≡ ω(x) (with y j the location corresponding to this phase
encoding), weighted by the actual value of the energy emitted at location x with
Larmor frequency ω(x). The relation with the Fourier transform in the direction of
the y axis is not so trivial, but in general the received radio frequency signal s may
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Figure 2.2: Magnetic field gradients for the encoding of spatial information in MRI. The pulse Gz used
for the encoding of the slice zp is applied at the same time as the radio frequency pulse B1(t), with a
strength greater than Gx and Gy. Therefore, only the spins in the slice zp are able to absorb the radio
frequency energy provided by B1(t). Gy alters the frequency of the precession of spins for different y
positions. Before Gx is applied, all spins return to the Larmor frequency ω0, with different phases
depending on y. When Gx is applied, the resonance frequency changes in the direction x, so each pair
x,y is identified by a unique frequency and phase in the composite RF signal detected by the coils.

be modeled as:
s(k) =

∫
V

W (x)ρ(x)exp
(

j2πkT x
)

dx, (2.4)

where ρ(x) is the spin density at spatial location x within the Field Of View (FOV)
of the scanner, V , which is the whole spatial domain for which the tissues are
imaged. W (x) accounts for the possibility that the sensitivity of the receiving coil is
different for each location. Eq. (2.4) is obviously the (weighted) inverse 2D Fourier
transform of ρ(x) in the dual variable k for each slice zp. Following this traditional
notation, the signal acquired by the receiving coil is said to be in the k–space,
while the signal of interest, i.e. the spin density, is defined on the image domain,
which in this dissertation will be referred to as the “x–space”2.

MRI scanners use the protocol described in Fig. 2.2 to acquire the k–space
line–by–line (see Fig. 2.4): for each repetition of the phase encoding, a pulsed Gx
is applied. The frequency encoded radio frequency signal is sampled to achieve
a whole line of the two–dimensional inverse Fourier transform of ρ(x). Then, a
two–dimensional Discrete Fourier Transform (DFT) is used to recover the x–space
from the sampled k–space for each slice zp. The entire acquisition process is often
repeated several times, so that multiple samples of each point in the k–space are
available. The average of all these measurements serves to improve the SNR of the
data set. The number of measurements is commonly referred to as the Number of
Excitations (NEX).

2.4 Fundamentals of Parallel Imaging

The process described in the previous Section is the principle of MRI, being its
main problem the high acquisition time inherent to the image formation process.

2The more conventional notation ‘r’ for the spatial location has been substituted by ‘x’, since in
Chapters 6 and 7 ‘r’ will have another meaning.
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Figure 2.3: An example of a multiple–coil system for Parallel Imaging (BWH4, see Section 1.4). Eight
receiving coils have been placed at different spatial positions; since each of them has its own sensitivity,
each one is more sensible to a certain subset of the x–space. A given antenna receives the radio
frequency signal with higher strength for the spatial region for which it is more sensible. This is a kind
of spatial encoding, which in Parallel Imaging is exploited to reduce the number of phase encoding
repetitions an accelerate the acquisition.

It may be computed for each slice as:

T = TR ·N ·NEX, (2.5)

where TR is the repetition time, i.e. the time it takes for the selected plane zp to
return to its equilibrium after it has been excited by the pulses. N is the number of
steps used for phase encoding, directly related to the resolution in the y axis. For
example, for TR = 1.5s, N = 120 and NEX = 2, it takes 360 seconds to acquire a single
slice. For 20 slices, the acquisition time is more than two hours. In the case of
Diffusion Weighted Imaging (DWI), where multiple data sets have to be acquired,
acquisition times may become an important limitation.

Acquisition times may be reduced with modern MRI techniques, especially in
the case of multiple receiving coils scanners. When a number of independent an-
tennas (receiving coils) work together, each of them acquiring a subset of the k–
space, Fourier domain information may be retrieved faster. This is the principle of
Parallel Imaging, or Parallel Magnetic Resonance Imaging (pMRI). The price to pay
when using these techniques is the necessity of the reconstruction of the whole
k–space (or x–space) from its parts. Besides, the traditional statistical charac-
terization for MRI signals, which has been the keystone for most of the image
processing techniques for this modality, is no longer valid. This issue will be
discussed in Chaper 3.

Multiple array coils in MRI were firstly intended to improve the SNR in MRI
acquisitions while maintaining a large FOV. It was in the late 1990s when parallel
acquisition schemes started their development. As has been mentioned above,
the most time consuming task in MRI is the spatial encoding in the in–plane
direction, i.e. the repetitions needed for phase encoding. The idea behind pMRI is
to use spatially separated antennas to perform some of the spatial encoding taking
advantage of the spatial sensitivity W (x) in eq. (2.4) [Lar07], and so to allow the
use of less repetitions for phase encoding. An illustrative example may be found
in Fig. 2.3. In its simplest form, the use of multiple coils allows a sub–sampling of
the k–space, whose most immediate effect is the aliasing in the x–space due to the
violation of Nyquist criterion (see Fig. 2.4). The signals received by each antenna
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Figure 2.4: Effect of k–space sub–sampling. From left to right, the original T2 image (from the syn-
thetic BrainWeb database, see Fig. 2.3); the ideal k–space for this image (computed as the DFT of the
original image) in logarithmic units; the sub–sampled k–space, in logarithmic units, resulting form the
elimination of one of each two lines in the y direction; the modulus of the image domain (x–space) re-
constructed from the sub–sampled k–space. The Fourier relation between the k–space and the x–space
explains the aliasing in the image domain if the k–space is sub–sampled violating Nyquist criterion.
As a result, two points (in this over–simplified scenario) of the original image contribute to each im-
age location of the reconstructed image. Parallel Imaging algorithms eliminate this artifact using the
redundant information from several receiving coils.

has to be combined in some way to avoid this artifact. The way the signals are
fused is the reconstruction scheme which defines each pMRI algorithm.

The main drawback of pMRI is the reduction of the SNR of the images due to
reduced Fourier averaging. For non–parallel schemes, the computation of the DFT
produces an averaging of the noise components over the samples of the k–space at
each point of the x–space, notably improving the SNR. With parallel acquisitions,
not all the samples in the k–space are acquired, so the increase in the SNR is
minor. Besides, reconstruction schemes introduce an amplification of the noise in
the x–space known as the g–factor (where ‘g’ stands for ‘geometric’).

These concepts, together with their implications on DWI, will be thoroughly
analyzed in Chapters 3 and 4 respectively, so a detailed study makes no sense
at this point. Nonetheless, the different reconstruction algorithms work in dif-
ferent ways, leading to very different properties in the reconstructed image. In
the remainder of this Section, the most common Parallel Imaging techniques
are reviewed; among them, SENSE and GRAPPA are the most relevant due to
their intensive use in commercial MRI applications. Hence, more details are given
about these two approaches. For a detailed description on all these algorithms,
see [Gri02,Hog05,Lar07,Pru99].

2.4.1 Parallel reconstruction algorithms

Sensitivity Encoding (SENSE)

In the easiest scenario, SENSE works by eliminating one of every two lines in the
k–space. The acceleration rate is r = 2, since only half the repetitions for phase en-
coding have to be acquired [Pru99]. Assuming there are two receiving coils (the RF
signals are acquired simultaneously for both of them), the corresponding signals
in the x–space will be, see eq. (2.4):

Ŝ1(x,y) = W1(x,y)ρ(x,y)+W1

(
x,y+

Q
2

)
ρ

(
x,y+

Q
2

)
Ŝ2(x,y) = W2(x,y)ρ(x,y)+W2

(
x,y+

Q
2

)
ρ

(
x,y+

Q
2

)
, (2.6)
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for x = [x,y]T , and Q the number of lines in the y direction: since the k–space has
been decimated with a factor 2 in the phase encoding direction, an aliasing in the
x–space is induced, resulting in the overlap of replicated versions of the image (see
Fig. 2.4). If the sensitivity of each coil at each image location x is known (i.e. if
Wl(x) may be characterized by means of a calibration process), the linear system
in eq. (2.6) may be solved for ρ(x). It is useful to give here some remarks:

• If more than two coils are available, eq. (2.6) turns into an overdetermined
system which may be solved by means of Least Squares (LS) techniques to
palliate the effect of noise.

• SENSE requires to characterize Wl(x) for all coils l. This implies the need for
a calibration stage, being this one of the main drawbacks of this technique.

• Since only half (or in general 1/r times) the lines in the k–space are used,
Fourier averaging is reduced, and the noise power in the x–space is increased
by a factor

√
r. Besides, if LS are used to solve for ρ, an additional space–

dependent amplification of noise, the g–factor, is produced which worsens
the SNR (see [Lar07] for details).

Finally, note that the reconstruction in SENSE is carried out once the x–space
has been recovered via DFT, hence the denomination “image domain method” as
opposed to the spectral or hybrid methods presented below.

Simultaneous Acquisition of Spatial Harmonics (SMASH)

SMASH [Sod97] keeps the coil information in the image domain (x–space), but
operates on the target data in the k–space. Briefly speaking, SMASH reduces the
number of repetitions for phase encoding using the coil sensitivities to explicitly
obtain missing lines. Suppose that the receiving coils are placed along the direc-
tion y of phase encoding; the linear combination of their sensitivities may be used
to obtain a modulation in the y direction, related to the m–th harmonic, as follows:

L

∑
l=1

wm
l Wl(x)' exp( j2πm ·∆ky · y) , ∆ky =

2π

Q
, (2.7)

where ∆k is the minimum step between consecutive lines in the k–space, and
the weights wm

l associated to the m-th harmonic for coil l may be obtained with
LS. Once the phase encoding is explicitly performed for the acquired lines, eq. (2.7)
may be casted into eq. (2.4) to obtain the relation:

ŝ(k) =
∫

V

(
L

∑
l=1

wm
l Wl(x)

)
ρ(x)exp

(
j2πkT x

)
dx

'
∫

V
ρ(x)exp

(
j2πkT x

)
exp( j2πm ·∆ky · y)dx

=
∫

V
ρ(x)exp( j2π (kxx+(ky +m∆ky)y))dx

= s(kx,ky +m∆ky), (2.8)

for k = [kx,ky]T . It is clear form eq. (2.8) that SMASH uses an artificial sensitivity
(by linear combination of coil sensitivities) to refine the k–space in the y direction,
so the phase encoding repetitions may be reduced. Some comments arise from
this discussion:

• To perform LS fits and estimate wm
l in eq. (2.7), it is necessary to know coil

sensitivities, so a calibration process is necessary as it is with SENSE.
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• A key assumption is that the receiving coils are placed along the y direction,
so eq. (2.7) may be solved for wm

l : the main problem of SMASH is that it is
not valid for general coil geometries.

• Although the reduction in Fourier average and the g–factor are not so im-
mediate to identify as in SENSE, they both appear in this (and any other)
reconstruction method.

Generalized SMASH (g–SMASH)

Generalized SMASH is based on SMASH, and it was intended to reconstruct im-
ages with arbitrary coil configurations and sub–sampling schemes [Byd02]. In this
case, the reconstruction is done exclusively in the k–space. Similar to eq. (2.7), in
g–SMASH the following relation is used:

Wl(x)'
q

∑
m=−p

am
l exp( j2πm ·∆ky · y) , (2.9)

for some am
l to be determined. If in eq. (2.4) the Fourier integral is performed only

in the frequency encoding direction x, the signal in the “hybrid space” is obtained:

S(x,ky) =
∫

Q
Wl(x,y)ρ(x,y)exp( j2πkyy)dy, (2.10)

where the first variable of S(x,kx) is in the space domain and its second variable in
the Fourier domain, hence the name “hybrid space”. Once again, casting eq. (2.9)
into eq. (2.10), the reconstructed signal reads:

Ŝ(x,ky) =
∫
FOV

(
q

∑
m=−p

am
l exp( j2πm ·∆ky · y)

)
ρ(x,y)exp( j2πkyy)dy

=
q

∑
m=−p

am
l

∫
FOV

ρ(x,y)exp( j2π (ky +m∆ky)y)

=
q

∑
m=−p

am
l S(x,ky +m∆ky)' S(x,ky). (2.11)

Without entering into unnecessary details, eq. (2.11) represents a system of cou-
pled linear equations for each value of x and receiving coil l, which has to be
solved to reconstruct the whole k–space. Although the corresponding matrix is
highly sparse and therefore may be very efficiently inverted, for more complex sub–
sampling schemes than keeping one of each r phase encoding lines its resolution
may be computationally very intensive. This same problem has been reported for
generalized SENSE, where non–uniform sub–samplings are considered [Pru01].

GeneRalized Auto–calibrating Partially Parallel Acquisition (GRAPPA)

GRAPPA is based on SMASH [Gri02], basing the reconstruction on the direct linear
interpolation of the k–space at each coil, following:

ŝl(kx,ky +m∆ky)'∑
j
∑
p

ωl j(m− p)s j(kx,ky + rp∆ky), (2.12)

for r the speedup, and p an index which select the sampled line to use. Lines at
distances rp∆ky are actually acquired, while lines at distances m∆ky are not. The
weights ωl j(m− p) account for the distance between the line to estimate (m∆ky) and
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the acquired line (rp∆ky) through the dependence in (m− p)3, and for actual spatial
sensitivities of each coil through the double subindex l j.

Like in SMASH, these coefficients are computed with LS, but, instead of deter-
mining the weights to apply for the coil sensitivities to produce the line shifts on
the k–space, GRAPPA aims to directly predict the value of missing lines in terms of
the lines which have been measured. To that end, a set of lines at distance ∆ky are
acquired, the so–called Auto Calibrating Signal (ACS), corresponding to the lowest
frequencies of the specter in the direction of ky. The weights ωl j in eq. (2.12) are
those which best fit the model, in the LS sense, for the calibrating lines. Theoret-
ically, only one ACS line would be necessary (for r = 2) to fit the model, but more
lines are often acquired to achieve a better estimate. Besides, since those lines in
the center of the specter are used, the SNR is the highest possible (since the most
of the energy of the image is concentrated in these frequencies), so the estimate
is quite robust. Furthermore, ACS lines are part of the acquired signal (in fact,
they are used to compute the DFT and obtain the x–space), so the algorithm is
auto–calibrated.

As opposed to the techniques previously introduced, GRAPPA shows a charac-
teristic which clearly distinguishes it: eq. (2.12) holds for each receiving coil, so
instead of a single k–space GRAPPA provides one k–space per antenna, and thus
one x–space (one image) per receiving coil. This feature assimilates GRAPPA recon-
structed signals to systems with multiple coils without k–space subsampling. As
a result, the multiple images have to be combined to obtain the final composite
image. Since the signal in the k–space is arbitrary, the image in the x–space is
in general complex, so in practice the information of interest is the modulus of
this signal. With these two considerations, it has been shown in [Gil07] that the
optimal combination in the sense of LS, when coil sensitivities cannot be charac-
terized, is given by Sum of Squares (SoS):

AL(x) =

√
L

∑
l=1
|Sl(x)|2, (2.13)

for Sl(x) the complex signal in the x–space for each coil, and AL(x) the real–valued
Composite Magnitude Signal (CMS). For single coil systems, eq. (2.13) is still valid
when particularized to the case L = 1. Obviously, in this case, this expression yields
simply the modulus of the complex signal in the x–space. Although in this case
the signal is not composite strictly speaking, the general denomination of CMS
will be employed throughout this dissertation to refer to the modulus of the signal
in the image domain, proceeding either from one single coil or multiple coils.

As a final remark, GRAPPA has two characteristics that make it a very attractive
approach compared to the other methods presented:

• It does not require to characterize coil sensitivities, so no additional calibra-
tion is needed (the algorithm is auto-calibrated).

• It does not require either to invert any linear system of equations, and is
equally simple for arbitrary coil configurations and sub–sampling schemes.

• Non–uniform subsampling schemes are equally simple to use with the inter-
polation described by eq. (2.12), as opposed to the other pMRI techniques.

Although SENSE may be preferable if coil sensitivities may be characterized [Lar07],
GRAPPA is fast and simple, which probably is the reason why commercial parallel
MRI scanners tend to integrate GRAPPA for image reconstuction.

3Although in general the weights are ωl j(m, p), for practical applications a stationary behavior is
assumed, so the weights reduce to ωl j(m− p).
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2.5 Diffusion Weighted Imaging

In what follows, the discussion is centered on Diffusion MRI. This modality goes
beyond anatomical characterization, being mainly useful (but not limited to) de-
scribe the connectivity of nervous fibers in the white matter of the brain. As shown
in Fig. 2.1, conventional MRI allows the study of soft tissues of the brain, allowing
to distinguish gray matter from white matter. The white matter is highly struc-
tured, comprising the nervous fibers (neural axons) which connect different parts
of the brain. The imaging of these structures is carried out taking advantage of
the diffusion of water molecules. Without restrictions, water molecules follow a
random movement known as Brownian motion. If a particle is at position x at
time t, at time t + ∆ t Brownian motion pushes it to a random position x′, which
is Gaussian distributed with mean x and isotropic variance proportional to ∆ t. In
the white matter, water molecules are confined within neural axons, which are
surrounded by myelin coats avoiding water diffusion trough them. Hence, the dif-
fusion process is not isotropic, but instead it is preferentially produced along the
direction of the nervous fiber, in which no myelin barriers are found. This is the
principle used by DWI to infer macroscopic fiber architectures.

Despite these considerations, the Gaussian model cannot be assumed inside
myelin coats. The statistics of restricted diffusion, even for very simple scenar-
ios, are much more complicated. In [Söd95], the neural axon is modeled as a finite
bounded cylinder; the diffusion inside the cylinder is Gaussian, but its walls avoid
any diffusion outsides. This model has been recently used in some works on Dif-
fusion Imaging [Öza06,Prč08]. However, from eq. (2.4), it is easy to note that MRI
scanners do not model the behavior of each water molecule, but the macroscopic
behavior, or ensemble average, of all the spins within the voxel resolution, de-
scribed by the spin density ρ(x). The probability density of the ensemble average,
commonly known as ensemble–average diffusion propagator, is:

P(x′|t) =
∫

Ω

ρ(x)Ps(x′|x, t)dx, (2.14)

where Ps(x′|x, t) is the conditional Probability Density Function (PDF) for each spin,
the so–called self–diffusion probability, which may be modeled as in [Söd95], and
Ω is the physical space of a voxel. It is clear from eq. (2.14) that Ps(x′|x, t) does
not represent the macroscopic PDF of the diffusion process. The PDF at the voxel
level, P(x′|t), may be seen as the marginalization in x of a mixture of independent
and (roughly) identically distributed individual spin PDF. Typical voxel sizes are in
the order of millimeters, while axon diameters are in the order of microns. Inside
each axon, a high number of particles will be present, so it is easy to notice that
the mixture of statistics comprises thousands of water molecules, each of them
following a similar PDF. The central limit theorem allows to conclude that a Gaus-
sian model accurately describes macroscopic diffusion whenever all fiber bundles
in the space of the voxel follow similar statistics, i.e. they are oriented in the same
direction. This assumption will be discussed in Section 2.7.

2.5.1 The Pulse Gradient Spin Echo experiment

The most important conclusion from the previous paragraphs is that Diffusion
Imaging measures the macroscopic diffusion of water molecules. The confinement
of particles in myelin coats creates preferred directions for diffusion, which are
associated to the directions of fiber bundles. In other words, the probability of
diffusion in a given direction inside a voxel may be identified with the probability
of the existence of a fiber bundle in this same direction. Given the macroscopic
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Figure 2.5: Magnetic field gradients for the Pulse Gradient Spin Echo experiment. After the RF pulse
B1(t) is applied, the first pulsed diffusion gradient is activated. Like Gy for phase encoding of the
k–space, this pulse induces a phase–shift in the precession of the spins. The additional RF pulse
inverts the phase of the precession before a second pulsed diffusion gradient is applied. The molecules
which have moved along the diffusion direction g are affected by a different phase–shift for the first
and the second pulse, so a net phase–shift is induced for them. For the particles which cannot move
along g, the three phase–shifts compensate and the received signal is in phase with the baseline T2
image without diffusion gradients.

interpretation of the diffusion process, the analysis of nervous fibers has to be
seen in a macroscopic sense as well: single fibers cannot be characterized with
DWI, but only groups of fibers with similar diffusion statistics.

For this reason, it is interesting to relate the ensemble–average diffusion propa-
gator with the signal measured by the MRI scanner. The basic physical principle in
this case was firstly investigated by Hanh [Han50]: in the presence of a magnetic
field inhomogeneity, thermal motion of the spins lead to the attenuation of spin
echoes. This work was used by Stejskal and Tanner [Ste65] to explicitly measure
the diffusion in the Pulse Gradient Spin Echo (PGSE) experiment, schematically
described in Fig. 2.5. From eq. (2.1), the Larmor frequency is proportional to the
strength of the magnetic field, so, when the first pulsed gradient is applied, a
spatial–dependent deviation in the frequency of spin precession is induced:

ω
′
0(x) = γ

(
B0 +GT x

)
= ω0 + γGT x, (2.15)

where the total deviation of the magnetic field with respect to B0 is its directional
derivative in the desired direction, i.e. the projection of the gradient G on x, GT x.
After a time δ , the pulsed gradient disappears, so the rotation frequency for all
spins is again ω0. Withal, since the spins have been rotating with different veloci-
ties, their phases are different:

φ(x) =
∫

δ

0
ω
′
0(x)dt = δω0 + γδGT x, (2.16)

and the phase difference with respect to the T2 image4, for which no gradient is
applied, is simply:

ϕ(x) = γδGT x. (2.17)

The 180o RF pulse is used to invert the phase of the spins:

ϕ
′(x) =−γδGT x. (2.18)

The second pulsed gradient is applied a time ∆ after the first one. It is assumed
that ∆ � δ , so the motion of particles during the application of the pulses is neg-
ligible compared to the motion during the time between pulses (and the motion

4Note that the PGSE experiment is only feasible for the T2 modality, since it is based on phase–shifts
of the transverse component.
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during δ is negligible compared to GT x). This is known as the narrow pulses con-
dition. After the time ∆ , the particle moves to a random position x′ described by
the conditional (self–diffusion) probability Ps(x′|x, t). Consequently, it is affected by
a different deviation in the Larmor frequency and hence a different phase deviation
than it was as a consequence of the first pulse. From eq. (2.17), and taking into
account that the particle is now at position x′, with an additional phase deviation
of 180o (due to the radio frequency pulse), the total phase deviation is:

ϕ
′′(x) = γδGT x′− γδGT x = γδGT (x′−x), (2.19)

with respect to the measured signal for which no gradients are applied. If the
gradient is applied in a transverse direction to the fiber bundle, then GT (x′− x) =
0, since the particle has to move along fiber directions, and no phase–shift is
induced. The RF signal is acquired after the second pulse disappears, and given
the result in eq. (2.19), it will be related to the original T2 signal (when no gradients
are applied) as:

S(G) = S(0)exp
(

jγδGT (x′−x)
)
⇔ S(G)/S(0) = exp

(
jγδGT (x′−x)

)
, (2.20)

where S is the acquired signal. Obviously, eq. (2.20) holds for each particle, but
given the macroscopic nature of DWI the measured signal will be the superposition
of phase–shifted spins for all the molecules at voxel resolution. Thence, only the
expected value of eq. (2.20) can be computed:

S(G)/S(0) = E
{

exp
(

jγδGT (x′−x)
)}

. (2.21)

2.5.2 The q–space

The expectation in eq. (2.21) may be computed in terms of the diffusion propaga-
tor. Indeed, the expectation has to be calculated for the joint PDF in both x and
x′ to account for the macroscopic effect inside the voxel, for all possible initial
positions x, and final positions x′, after a time ∆ :

S(G)/S(0) =
∫ ∫

P(x,x′|∆)exp
(

jγδGT (x′−x)
)

dxdx′. (2.22)

In Diffusion Imaging, it is not so much the final position x′ as the displacement
R = x′−x what results of interest. In fact, it is the probability of a displacement R
in a given direction r = ‖R‖ which may be related to the existence of fiber bundles
along r, and not the absolute position x′. On the other hand, the joint probability
may be computed as in eq. (2.14), which is a marginalization of this joint PDF, so
eq. (2.22) may be written:

S(G)/S(0) =
∫ ∫

ρ(x)Ps(x+R|x,∆)dxexp
(

jγδGT R
)

dR. (2.23)

At this point, it is useful to introduce the transformed variable q, much like it is
done with the variable k:

q =
1

2π
γδG, (2.24)

which is used to define the so–called q–space as the (scaled) space of all possible
gradient directions and magnitudes for the PGSE experiment. On the other hand,
the marginalization used in eq. (2.14) to obtain the ensemble–average diffusion
propagator may be applied to eq. (2.23):

S(G)/S(0) =
∫

exp
(

j2πqT R
)(∫

ρ(x)Ps(x+R|x,∆)dx
)

dR

=
∫

exp
(

j2πqT R
)

P(R|∆)dR = F−1 {P(R|∆)}(q), (2.25)
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Figure 2.6: Diffusion Imaging as a 6D process. The acquisition is performed by the scanner in the dual
k–space for each pulsed gradient G, which univocally determines q, so the scanner domain is the Carte-
sian product of these two spaces. The x–space (image domain) is obtained, for the frequency/phase
encoding, as the 2D Fourier transform of each slice zp of the k–space. This transformation may be
accomplished for each value of the q–space, so the resulting signal in the DWI domain is the Cartesian
product of these two spaces (obviating the computation of the modulus to obtain the CMS). Alterna-
tively, a whole q–space is defined for each location x, so the diffusion propagator in the R–space is
defined in turn for each x.

where F−1{ f (R)}(q) represents the inverse Fourier transform of f (R) in the dual
variable q. In fact, eq. (2.25) represents the well–known Fourier relationship be-
tween measured signals and displacement probabilities under the short pulses
condition [Cal91]. In practice, it can be demonstrated that it is necessary to char-
acterize only the modulus of S(G)/S(0), so its phase can be neglected [Wed05]. Ac-
cordingly, the signal of interest is given by:

E(x,q) =
∣∣∣∣S(x,G)

S(x,0)

∣∣∣∣= |S(x,G)|
|S(x,0)|

, (2.26)

where |S(x,G)| and |S(x,0)| are obviously the corresponding CMS at x when a gra-
dient G, or no gradient at all, are applied. In the previous equation, the spatial
dependency has been included to stress the fact that eq. (2.25) describes the dif-
fusion process at each voxel. Finally, eq. (2.25) is equivalent to:

P(R|∆) = F{|E(q)|}(R), (2.27)

which is the basis for Diffusion MRI: the PDF of the displacement of water mol-
ecules in the extent of a voxel can be computed as the 3D Fourier transform of
E(q), which is the CMS provided by the MRI scanner at each image location and
for each sensitizing gradient G = 2π/γδ ·q. The data set comprising, at each image
location x, a whole set of measurements of the CMS, |S(G)|, for a number of in-
dependent sensitizing gradients G, is commonly referred to as Diffusion Weighted
Image (DWI).

2.5.3 Diffusion Imaging as a 6D imaging technique

The acquisition of the q–space is independent on the acquisition of the k–space. The
pulse sequence depicted in Fig. 2.5 has to be combined with the pulse sequence
used to code spatial information, so the whole k–space is acquired with each of
the diffusion gradients G. Alternatively, each point in the k–space has to be ac-
quired for all possible values of G. Given the relation between the k–space and
the image domain (the x–space), it is obvious that, for each spatial location x, all
pulsed gradient sequences G are defined as well, see eq. (2.26). From the relation-
ship between acquired signals in the q–space and diffusion propagators, it may be
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concluded that the 3D diffusion propagator is defined for each 3D spatial location
x: at each image voxel x, the diffusion propagator P(R|∆) gives the probability of
diffusion across this voxel to a point x + R. All these relations are summarized in
Fig. 2.6.

Diffusion Imaging may be seen as the 6D Cartesian product between the 3D
x–space and the 3D R–space of ensemble–average diffusion propagators. At the
same time, the dual Fourier spaces on variables k and q form another 6D space.
Since the acquisition of the k–space and the q–space respond to different physical
processes, Fourier analysis may be used to obtain the Cartesian product between
the x–space and the q–space, which is the domain of DWI. Besides, any exist-
ing technique to acquire the k–space, including pMRI, may be used in Diffusion
Imaging. Corresponding to the work–flow in Fig. 2.6, the following problems may
be identified:

1. Acquisition of the k×q–space. The design of pulse sequences and transmit-
ting/receiving coils is beyond the scope of this dissertation. On the other
hand, the accelerated acquisition of the k–space from multiple–coil systems,
although still an open problem, has been partially solved with pMRI.

2. The reconstruction of the x–space, when frequency/phase encoding is used,
may be easily performed with DFT techniques. Therefore, the construction
of DWI signals is not an issue for the work presented here.

3. The reconstruction of the R–space from the q–space is an open problem,
since it is computationally prohibitive to sample the whole q–space and use
the DFT on sampled data. In Section 2.6, Diffusion Tensor Imaging (DTI) is
presented as an analytical solution whenever a Gaussian model may be as-
sumed. In Section 2.7, it is stated that the Gaussian model is very limited in
a variety of scenarios. Accordingly, in a general situation, the reconstruction
of the R–space from a sparse sampling of the q–space has not a closed solu-
tion. This is the main focus of this dissertation, which will be addressed in
Chapters 6 and 7.

4. Finally, all this signal–processing tasks are embedded in a noisy environ-
ment. The propagation and effects of noise on each stage depend on a num-
ber of factors, such as the reconstruction scheme for the k–space and the
R–space. These problems are as well addressed in this dissertation. In Chap-
ter 3, the properties of noise in the k and x–spaces are analyzed. Chapter 4
is devoted to the analysis of the propagation of noise from the q–space to
the R–space. In Chapter 5, a number of techniques in the x×q–space (DWI
domain) are introduced to overcome these adverse effects.

2.6 Diffusion Tensor Imaging

The inference of exact information on the R–space would require the sampling
of the whole q–space to use the Fourier relationship in eq. (2.27). Even so, the
assumption of a Gaussian diffusion propagator allows to analytically solve the
Fourier integral, and thus to easily formalize water diffusion from a few DWI data
sets [Bas94a,Bas96]. From eq. (2.14), it may be inferred that a Gaussian diffusion
propagator can be assumed in case all fiber bundles within the voxel resolution
are nearly identically distributed. In this case, P(R|∆) is a mixture of independent
and (nearly) identically distributed bounded cylinder statistics and, by virtue of
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the central limit theorem, their superposition is Gaussian distributed:

P(R|∆) =
1√

|D |(4π∆)3
exp
(
−RT D−1R

4∆

)
. (2.28)

From eq. (2.25), the measured signal in the q–space is the Fourier transform of
the PDF in eq. (2.28):

E(q) = F−1 {P(R|∆)}(q) = exp
(
−4πτqT Dq

)
, (2.29)

which is the well–known Stejskal–Tanner equation [Ste65]. In the previous equa-
tion, it is not necessary to compute the modulus of E(q), since it is already real and
strictly positive. The effective diffusion time τ = ∆−δ/3 includes a correction δ/3 in
the diffusion time ∆ to compensate the diffusion during the appliance of the pulse.
The diffusion tensor D is the anisotropic covariance matrix of the Gaussian PDF
P(R|∆), and therefore is a symmetric, positive–definite matrix, with positive eigen-
values and orthonormal eigenvectors. Eq. (2.29) is usually re–written in terms of
the b–value, which is a typical parameter in DTI:

E(g) = exp
(
−bgT Dg

)
; (2.30)

b = 4π
2
τ‖q‖2 = τγ

2
δ

2‖G‖2/π. (2.31)

The interest of eq. (2.30) is that E does not depend on q, but only on its direction
g = G/‖G‖ = q/‖q‖ (note that the b–value depends only on the scanning parame-
ters: the duration and spacing between the pulses, the strength of the diffusion
gradients, and the gyromagnetic ratio). At a given voxel, the diffusion may be char-
acterized in terms of only six parameters, the six free components of the diffusion
tensor. As a consequence, once the signal in the q–space has been sampled for a
reduced number of gradient directions (a minimum of six), a linearized version of
eq. (2.30) may be used to solve for the components of the diffusion tensor:

− logE(g)
b

= g2
1D11 +2g1g2D12 +2g1g3D13 +g2

2D22 +2g2g3D23 +g2
3D33, (2.32)

for g = [g1,g2,g3]T , which defines a system of linear equations if a set of independent
gradient directions {gi}N

i=1 is used. If more than N = 6 gradients are available, the
system is overdetermined, and is often solved with LS techniques [Sal05].

2.6.1 Interpretation of tensor data

DTI provides a complete characterization of the diffusion process whenever the
Gaussian model holds. However, the interpretation of tensor data is not so trivial
as in the case of anatomical MRI. In this Section, the techniques for visualization,
interpretation, and quantitative measurements for DTI are briefly reviewed.

Scalar parameters

A number of significant scalar measures may be extracted from tensor data, usu-
ally from eigenvalues and eigenvectors representations. In what follows, the three
eigenvalues of the tensor are assumed to be λ1 ≥ λ2 ≥ λ3 ≥ 0, associated to or-
thonormal eigenvectors e1, e2 and e3. The following groups of measurements may
be distinguished [Wes01]:

Amount of diffusion. The Mean Diffusivity (MD) is defined as the mean value
of the diffusion along each principal direction ei, and gives an idea of how easily
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Figure 2.7: Scalar parameters in DTI: mean diffusivity (left), fractional anisotropy (center), and relative
anisotropy (right) for an axial slice of data set CDR1.

water molecules move in a given tissue:

MD(D) =
λ1 +λ2 +λ3

3
. (2.33)

Anisotropy measures. These indices measure the difference in diffusion capa-
bility between the preferred direction e1 and the remaining directions. A high
anisotropy corresponds to regions where fiber bundles are highly structured in
well defined directions (corresponding to e1). Low anisotropies correspond to re-
gions corresponding either to unstructured tissue or to fiber bundles crossing in
multiple directions. Two indices may be defined; the Fractional Anisotropy (FA):

FA(D) =
1√
2

√
(λ1−λ2)

2 +(λ1−λ3)
2 +(λ2−λ3)

2

λ 2
1 +λ 2

2 +λ 2
3

, (2.34)

and the Relative Anisotropy (RA):

RA(D) =
1√
2

√
(λ1−λ2)

2 +(λ1−λ3)
2 +(λ2−λ3)

2

λ1 +λ2 +λ3
. (2.35)

Both indices lay in the range between 0 (isotropic diffusion) and 1 (completely
anisotropic diffusion, with some λi = 0). Fig. 2.7 shows an example of the repre-
sentations obtained with these parameters for a real data set.

Shape Coefficients. Although anisotropy measures describe the directional be-
havior of diffusion, they are prone to ambiguities in some cases. For example, for
the combinations: λ1 = 1, λ2 = 1, λ3 = 0 and λ1 = 1, λ2 = 1/4, λ3 = 1/4 the FA is in
both cases 1/

√
2, but they correspond to completely different situations. In the for-

mer, the diffusion is isotropic in the plane formed by e1 and e2, while no diffusion
is allowed in the direction e3. The diffusion in this case in ‘planar’, since it pro-
ceeds in a plane. In the latter, diffusion does preferentially along the direction e1,
corresponding to ‘linear’ diffusion. To resolve this ambiguity, the following shape
coefficients may be defined [Wes01]:

cl =
λ1−λ2

λ1
; cp =

λ2−λ3

λ1
; cs =

λ3

λ1
, (2.36)

where cl is the linear, cp the planar, and cs the spherical coefficient. Fig. 2.8 shows
an example of the representations obtained with these parameters.
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Figure 2.8: Scalar parameters in DTI: linear (left), planar (center), and spherical (right) coefficients for
an axial slice of data set CDR1.

Color coding

The aim of color coding is to represent more reach information than with scalar
coefficients. To that end, it is assumed that most of the voxels of the image (or
the slice which is being represented) correspond to linear diffusion (high FA and
cl), and therefore the tensor may be accurately described by the direction of its
principal eigenvector, e1. This is the same as to say that each voxel is only crossed
by one group of fiber bundles in the same direction, which is approximately true
in most of cases. Color coding techniques decompose e1 in three orthogonal com-
ponents, corresponding to physical coordinates ‘x’ (sagittal), ‘y’ (coronal), and ‘z’
(axial). These three components are scaled depending on the FA for each voxel,
and plotted as the RGB (respectively) channels of the colored image, as shown in
Fig. 2.9.

Glyphs

Glyphs are 3D plots which aim to represent the whole diffusion process. Al-
though many glyph drawings are possible [MC08], one very popular approach

Figure 2.9: DTI representation: an example of color–coding over real data set CDR1.
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Figure 2.10: DTI representation: an example of glyphs, combined with an FA map, to represent the
corpus callosum in a human brain (data set CDR1).

is the explicit representation of P(R|∆), or some orientation information associ-
ated to this PDF, in a spherical coordinates plot. For example, the radial integral
of P(R|∆) along each direction r = R/‖R‖, so–called Orientation Distribution Func-
tion (ODF) [Tuc03,Tuc04], may be computed to obtain the orientation information
related to the 3D PDF. At each voxel, a surface is rendered with the following
parametrization:  x(θ ,φ)

y(θ ,φ)
z(θ ,φ)

=

 Ψ(θ ,φ)sin(θ)cos(φ)
Ψ(θ ,φ)sin(θ)sin(φ)

Ψ(θ ,φ)cos(θ)

 , (2.37)

where Ψ(θ ,φ)≡ ψ(r) is the ODF, and spherical coordinates follow physics conven-
tion. In other words, for each orientation r, the amount of diffusion is represented
as the distance from the surface to the origin (placed in the center of each image
voxel). For DTI, this representation is an ellipsoid at each voxel, whose principal
axis are aligned with the eigenvectors ei, and their lengths correspond to the eigen-
values λi [Tuc04]. As a final remark, glyphs may be combined with color coding,
anisotropy maps, or any other information to give richer information. Fig. 2.10
shows an example of this kind of representation.

Tractography

The most widely used application of DTI is tractography or fiber tracking. It con-
sists in the estimation of the trajectories of fiber bundles from diffusion tensors. In
practice, a number of seeding points are placed at selected voxels, and for those
of them for which a certain criterion is met (usually if their FA or linear coefficient
cl is over a certain threshold), the following point in the path is found, following
the direction of the principal eigenvector e1. This new point is used in turn as a
seeding point to follow the path, until the FA no longer meets the criterion. To
regularize this process, fiber tracking algorithms are commonly based on robust
numerical integration of the vector field formed by e1 [Bas00b, Ten02]. Since the
diameter of nervous fibers is in the order of microns, and the voxel size in the
order of millimeters, it remains evident that fiber tracking will not be able to follow
single fibers. Fortunately, the white matter is structured in coarse fiber bundles
whose macroscopic behavior is accurately described, in most of cases, by the dif-
fusion tensor, and tractography is able to find good estimates of these fiber paths.
Besides the rendering of fiber bundles, fiber tracking allows to trace connectivity
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Figure 2.11: DTI representation: an example of fiber tracking using a Runge–Kutta method of order
4, over data set CDR1. The pyramidal tract and the corpus callosum have been traced.

maps between different regions [Fri06]. A representative example is depicted in
Fig. 2.11.

2.7 Limitations of DTI. High Angular Resolution Diffusion
Imaging

The fundamental hypothesis underlying DTI is the Gaussian behavior of P(R|∆).
The ensemble–average described by eq. (2.14) allows to use the central limit the-
orem to infer the Gaussianity of P(R|∆) when the individual diffusion propagators
may be considered as identically distributed. At the same time, if P(R|∆) is nor-
mally distributed, the well–known Stejskal–Tanner relation in eq. (2.30) holds, and
the sampling of E(q) for a unique b–value is enough to characterize the whole func-
tion: suppose that E(q) has been sampled for b = b0; then, for any other b–value:

E(g;b′) = exp
(
−b′gT Dg

)
= exp

(
−b

b′

b
gT Dg

)
= E(g;b)b′/b, (2.38)

and the whole E(q) may be computed from one sampled sphere with radius q0; the
diffusion propagator may then be computed from eq. (2.27) to yield eq. (2.28).

Still, there is a number of situations where the Gaussian model cannot be as-
sumed. The most classical one occurs when two different, well–defined fiber bun-
dles cross in different directions. It is obvious that in this situation the individual
diffusion propagators Ps cannot be considered identically distributed, since they
are clustered around two dominant directions. Two modes appear in the ensem-
ble average diffusion propagator, which no longer fits the Gaussian model. This is
one possible origin of low FA tensors. If, even so, the tensor model is used to fit
data, two similar eigenvalues λ1 ' λ2 appear. It translates in the ambiguity in the
orientation of e1 and e2, so it is impossible to infer the actual orientation of the
fiber bundles. Fig. 2.12 illustrates this behavior. When the tensor model does not
hold, the signal in the q–space may always be written:

E(q) = exp(−bD(b,g)) , (2.39)

where D is the Apparent Diffusion Coefficient (ADC). Comparing eqs. (2.38) and
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Figure 2.12: An example of fiber architecture which cannot be modeled with DTI. Two fiber bundles,
in orthogonal directions and with the same partial volume fractions, cross in the same voxel. On
the left–hand side, the true ODF is represented, which correctly accounts for the two modes in the
distribution. On the right–hand side, a tensor model has been fitted originating to equal eigenvalues
λ1 = λ2 > λ3. There is an ambiguity in the orientation of e1 and e2 which makes it impossible to infer the
actual directions of fiber bundles (depicted in the figure) from the resulting ODF.

(2.39), the positive–definite quadratic form gT Dg is replaced by the positive func-
tion D(g,b) which, in this case, depends on the modulus of q through b. This
implies that the reasoning in eq. (2.38) does not hold for non–Gaussian diffusion
propagators, and therefore the signal in the q–space cannot be completely char-
acterized from data sampled with a unique b for the general case. Explicit Fourier
analysis has to be performed in this case to infer the behavior of P(R|∆).

A number of techniques have recently appeared to deal with this problem. The
most obvious one is to sample the whole q–space (i.e. for all possible orientation
and modulus of q), and numerically estimate P(R|∆) with DFT techniques. This
approach is called Diffusion Spectrum Imaging (DSI) [Tuc03,Tuc04,Wed05]. The
main drawback of DSI is the need to sample the whole q–space, since it may take
prohibitive times for clinical practice. Instead, it is common to use a suboptimal
sampling scheme known as High Angular Resolution Diffusion Imaging (HARDI),
for which the q–space is only sampled for a unique b–value, but for a large number
of gradient directions g. The minimum number of gradient directions for DTI is
6; with HARDI techniques, it is common to acquire 50, 100 or even 200 directions.
Although the complete characterization of P(R|∆) is impossible, HARDI techniques
aim to describe only a certain orientation information like the ODF, not through
the calculation of P(R|∆) and the subsequent integration in R, but by means of
some indirect method. This method has to deal with the incomplete information
provided by HARDI sampling, either including some prior knowledge, or making
certain assumptions. The main HARDI techniques currently existing are:

Higher order tensors [Des06]. The two–dimensional Cartesian tensor D may be
easily generalized to an N–dimensional matrix, so this was one of the first
attempts to overcome the limitations of the tensor model. It has two main
problems: first, it is intended to characterize the ADC D(g) but not P(R|∆),
so it drives to representations quite difficult to interpret. Second, it is able to
characterize D(g) only for the measured b–value, so the assumption that the
ADC is nearly constant for all b–values underlies this model.

Multitensor models [Ber07a,Kre05,Pel06]. They assume that eq. (2.14) may be
written as the mixture of N Gaussian distributions, and the fiber bundles in
the extent of the voxel to be clustered in one of the N modes. Maximum Like-
lihood or Least Squares techniques may be used to infer the tensor param-
eters and partial volumes of each cluster. The main problems of the model
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are: first, the need to know the number N of clusters beforehand; second:
a mixture of Gaussians is an oversimplified model for the complex micro–
architectures of fiber bundles. Besides fiber crossings, situations like fiber
bending or kissing may occur, for which a Gaussian approximation cannot
be justified.

Spherical deconvolution [And05, Des09, Tou07, Tou08], which generalize mul-
titensor models. In this case, it is assumed that a fiber bundle is present
at each an every spatial direction r with a given partial volume fraction
α(r). Given the response E0(q) produced by a fiber bundle at direction r, the
deconvolution kernel, the global response E(q) will be the superposition of
each individual response, pondered by its partial volume fraction. The main
drawback of this technique is the need to estimate the deconvolution kernel,
and besides the need to assume that this kernel is the same for all voxels,
which is not very realistic. Additionally, deconvolution is an ill–posed prob-
lem, so a regularization scheme is needed.

Continuous mixtures of Gaussians [Jia07]. Once again, the aim is to generalize
the multitensor model. Like in spherical deconvolution, it is assumed that
the signal in each voxel is the result of the continuous superposition of indi-
vidual, Gaussian distributed, elemental fiber bundles at each direction. The
elemental fiber bundles are supposed to follow a prior Wishart distribution
which has to be fitted to data, so the orientation information may be com-
puted as the Laplace transform of E(q). Obviously, the limitation of this ap-
proach is the need to assume a prior Wishart distribution.

Persistent angular structures [Jan03]. Instead of the marginalization of P(R|∆)
in R, it is assumed that the diffusion of water molecules is limited to a sphere
of radius R0 for all possible orientations r. This allows to compute the orien-
tation information from a unique b–value as an inverse problem, by means
of maximum entropy constrained optimization. The obvious drawback is the
highly unrealistic assumption of the model, together with a heavy computa-
tional load.

The Diffusion Orientation Transform (DOT) [Öza06]. Like implicitly in higher
order tensors, it is assumed that the ADC is constant for all b–values. This is
equivalent to eliminate the dependence of D with b in eq. (2.39); like in DTI,
this allows to completely characterize E(q) from one single b. This property,
together with a Spherical Harmonics (SH) analysis [Fra02], is exploited to
compute the probability profile P(R0r|∆) for a given R0. The main drawbacks
are: first, the need to assume a very restrictive model for E(q), and second,
the orientation information computed, P(R0r|∆), has not an strict probabilis-
tic interpretation.

Q–Ball imaging [Tuc03,Tuc04]. This is probably the most elegant solution, since
it does not require any assumption on the behavior of E(q) for b–values differ-
ent from the one measured. This is possible thanks to the use of the Funk–
Radon transform (FRT) of the measured signal E(q), which may be proved to
be an accurate estimator of the ODF of P(R|∆). This technique has two main
drawbacks: first, the ODF is not an orientation PDF in the strict sense, so
no probabilistic information may be inferred. Second, the use of the Funk–
Radon transform yields an undesired angular blurring in the ODF, whose
main effect is the increase in the uncertainty of the localization of fiber bun-
dles.

The previous paragraphs are intended to be only a brief review of the most im-
portant HARDI techniques in the recent literature. A detailed analysis of the ap-
proaches closest related to the work presented in this dissertation will be carried
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out in Chapters 6 and 7. However, this study stresses the interest of the formal
characterization of the diffusion propagator beyond DTI, i.e. the importance of the
problem of relating the q–space to the R–space introduced in Section 2.5.3. Indeed,
the works mentioned above have widely reported the greater power of HARDI tech-
niques to characterize neural architectures beyond the information DTI provides.

Many of the techniques surveyed in Setion 2.6.1 for conventional DTI have
been generalized to more complex scenarios by means of HARDI. The scope of
this dissertation lies within the estimation of diffusion propagators and the orien-
tation information inferred from them, so the representation, interpretation, and
higher–level applications derived from this information are off–topics. Even so, it
is interesting to briefly summarize some of the possibilities HARDI analyses pro-
vide. For example, the MD in DTI is defined as the trace of the diffusion tensor
(the summation of its eigenvalues), and represents the overall capability of water
molecules to diffuse through the tissue being imaged. With HARDI data sets, this
measurement can be extended to the generalized trace, defined as the average of
the ADC for all possible orientations [Des06, Öza05]:

gentr(D(g)) =
3

4π

∫
S

D(g)dg, (2.40)

where S is the sphere of radius 1, used to denote the average in the orientations
g. The factor 3 is introduced as an analogy with the MD, which is three times
the average among the eigenvalues. The ADC represents the amount of diffusion
for each direction, much like the eigenvalues of the diffusion tensor represent the
amount of diffusion for the principal directions given by the eigenvectors. Hence,
the interpretation of the generalized trace is exactly the same as that of the MD.

On the other hand, the FA in conventional DTI admits a simple interpretation
in terms of the trace of the normalized, squared diffusion tensor, which suggests
the definition of a generalized variability of the form [Öza05]:

V (D(g)) =
1
3

(
gentr

(
D2

n(g)
)
− 1

3

)
, for Dn(g) =

D(g)
gentr(D(g))

. (2.41)

Since this value is usually unbounded, a normalization is required:

GA(D(g)) = 1−
(

1+(250V )e(V )
)−1

, for e(V ) = 1+(1+5000V )−1, (2.42)

which defines the Generalized Anisotropy (GA) which now ranges from 0 to 1. This
parameter is a generalized measure of the variability of diffusion for each spatial
direction. Given this interpretation, a much more direct extrapolation of the FA
can be thought of: in fact, the FA is the variance of the eigenvalues of the diffusion
tensor normalized by their mean squared value. Hence, like it is done for the
generalized trace, the eigenvalues (amount of diffusion for each principal direction)
can be substituted by the ADC (amount of diffusion for each measured direction)
to define:

GA(D(g)) =

1
4π

∫
S

D2(g)dg−
(

1
4π

∫
S

D(g)dg
)2

1
4π

∫
S

D2(g)dg
, (2.43)

and this value lies already in the range [0,1] without the need of further regular-
ization. The integrals in g of eqs. (2.40) and (2.43) are replaced by summations
for the directions measured. In any case, these indices provide richer information
than the FA: those voxels where fiber crossings are present will drive to planar
or spherical tensors, thus producing similar eigenvalues and a reduced FA. But
a small value of the FA does not correspond to a poorly structured tissue, with
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Figure 2.13: An example of glyph representation with HARDI, for an axial slice in the upper
brain. Compared to the ellipsoids obtained with DTI, this kind of glyphs provides information on fiber
crossings and complex neural architectures.

nearly isotropic diffusion but just the opposite. In these situations, the use of the
GA can resolve this ambiguity.

Obviously, glyph representations may highly benefit from HARDI techniques,
as suggested by Fig. 2.12. Indeed, this has been the preferred representation for
diffusion propagators in the related literature [And05,Des09,Jan03,Öza06,Tou07,
Tou08,Tuc03], and it is also the representation used for the results presented in
this thesis. Fig 2.13 shows an illustration of the potential of these techniques, for
an axial slice in the upper brain, where multiple fiber bundles of interest cross
in all possible directions. Besides the glyph representation described in eq. (2.37),
the background is colored according to the GA of the corresponding voxel, and
glyphs are colored following color–coding conventions. This is a very representative
example of how the combined use of the data provided by HARDI can offer highly
valuable anatomical information in a very intuitive way.

Finally, as mentioned above, fiber tracking is the preferred application in the
framework of Diffusion Imaging. The ability of HARDI techniques to resolve fiber
crossings, bending, and other sources of ambiguity in the estimation of fiber pop-
ulations is very useful for this task, and hence a number of recent efforts have
been reported in this sense [Ber07b,Ber08,Des09,Zha09]. Still, it has been shown
that tactography based on HARDI approaches can be used to elucidate neural
architectures and connectivity which remain hindered in DTI studies [CA08].



3
Statistical characterization of noise in the

k–space and the x–space

The present Chapter is focused on the study of the propagation of noise from the k–space
to the q–space. For each gradient direction (each point in the q–space), an entire MRI ac-
quisition has to be performed, so this is equivalent to study the propagation of noise from
the k–space to the CMS. The noise in the k–space is mainly due to thermal disturbances
in the MRI scanner, and its propagation to the q–space strongly depends on the algo-
rithms used to reconstruct the DWI data set. The methods to reduce the amount of noise
in this stage are beyond image processing, corresponding instead to hardware/scanning
design. Consequently, this Chapter presents a statistical analysis of noise centered on
existing techniques, but not new proposals to this respect. First, the statistics of noise in
the k–space are studied: the common case of conventional MRI is generalized to multiple
coils scanners. The study follows with the propagation of noise to the x–space by means of
Fourier analysis. Finally, the Composite Magnitude Signal (CMS) has to be computed from
complex signals computed from each receiving coil. In conventional MRI and most of pMRI
algorithms, only one complex signal for all coils is available, so the Rician model holds.
For multiple–coil MRI or the GRAPPA algorithm, one complex signal is available at each
coil, so a more general model has to be used. The main contribution in this Chapter is in
fact the study of such model. It is shown that under very weak assumptions GRAPPA sig-
nals can be modeled by means of non-central Chi statistics, which have been commonly
used to described data sets acquired by phased arrays. Although the variance of noise
may vary across different locations of the image domain, it is shown that a stationary
model can be assumed in most of cases. Besides, it is argued that other pMRI techniques,
such as SENSE, has to show this same feature, so image processing algorithms based on
neighborhood operators apply as well for pMRI, since the statistics of noise are the same
for all voxels inside the vicinity.

3.1 Introduction

As stated in the previous Chapter, the starting point for the image processing pro-
cedures in Diffusion Imaging are Diffusion Weighted Images (DWI). The methods
presented in this dissertation may be seen as a processing pipeline, whose input
are the DWI comprising the Composite Magnitude Signal (CMS) for each gradi-
ent image and baseline. Hence, no further processing is to be carried out in the
raw images corresponding to the k–space or the complex x–space. However, MRI
scanners and reconstruction protocols perform a number of operations in these
domains that need to be analyzed to properly characterize the CMS, which is the
aim of the present Chapter. In the simplest case of conventional acquisitions with
one single receiving coil, the complex x–space is reconstructed from the k–space
by means of Fourier transforming, thus carrying out purely linear operations.
The noise can be assumed to be Gaussian in the complex x–space, but once the
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modulus of this signal is taken to compute the CMS, the statistics have to be mod-
eled as Rician [Gud95], which highly complicates the analysis of DWI data sets.
Nonetheless, the Rician model has been the keystone for most of the processing
techniques in MRI, including noise filtering [AF08c, Bas06, Cou08, MF09, TV08],
noise estimation [AF08a], and diffusion tensor estimation [Sal05], which stresses
the paramount importance of the statistical characterization of noise.

With multiple coils systems or pMRI protocols, the modeling becomes more
problematic. Coils systems with multiple channels were developed to enhance the
SNR of the CMS while maintaining a large Field of View (FOV) [Con97]1. If each
coil is used to acquire the whole k–space independently, the SNR may be im-
proved by simply averaging the multiple acquisitions. Yet, the pMRI techniques
described in Chapter 2 extend the applicability of these systems by increasing the
acquisition rate via subsampled takes of the k-space. This is especially impor-
tant in Diffusion Imaging, where large amounts of data have to be acquired to
characterize the q–space. In this case, each coil acquires a part of the k–space in
parallel, and a reconstruction algorithm has to be used to gather these data and
form a complete k–space. Dominant among these techniques are SENSE [Pru99]
and GRAPPA [Gri02], and so the discussion will be centered on them.

Opposite to their original conception, multiple–coil systems for pMRI are not
used to improve the SNR. Still, it is known that the SNR is drastically reduced by
the use of these protocols due to two factors: first, to achieve a speedup in the
acquisition time, the temporal averaging performed by the DFT is reduced; as a
consequence, the noise power is increased proportionally to the square root of the
speedup. Second, the reconstruction scheme, often based on a linear combination
of measured k–space data, introduces an amplification of the noise level. This
amplification has been characterized in SENSE reconstructions through the g–
factor; although the interpretation of this parameter is not obvious for other pMRI
algorithms, all of them suffer from this same artifact [Lar07]. The g–factor is used
to indicate an intrinsic limit to the speedup of a given reconstruction scheme and
receiver coil configuration. An additional difficulty related to the g–factor is that it
is spatially variant, since it depends on the location of the coils employed. So, the
noise power varies across the image.

From Section 2.4.1, a fundamental difference between the pMRI algorithms
reviewed can be recognized: SENSE performs the reconstruction in the image
domain, and so a unique complex x–space is available. Given this property, the
CMS is computed as the modulus of a Gaussian distributed complex variable, and
therefore SENSE data sets may be related to conventional MRI under a statisti-
cal point of view. A Rician behavior can indeed be assumed, and all the existing
techniques for processing of conventional MRI can be used whenever the obstacle
of the spatially variant noise power may be somehow overcome. On the contrary,
with GRAPPA, a complete k–space, and consequently a complex image domain, is
reconstructed for each receiving coil. This feature assimilates GRAPPA to multiple
coils systems without subsampling. Concerning the characterization of DWI, this
scenario drives to a non–central Chi model [Con97] if no subsampling is used and
the CMS is computed by means of Sum of Squares (SoS). For GRAPPA, not only
the noise variance is different at each image location, but also for each receiv-
ing coil at the same voxel. Although there exist some preliminary studies [Thu07],
and even the non–central Chi model has been previously used without further jus-
tification [Die08], it is shown in this Chapter that the formal characterization of
GRAPPA signals by means of the non–central Chi model is not so trivial in general,
due to the different variance at each coil.

1Increasing the FOV requires sampling the k–space more densely to avoid aliasing artifacts. As a
consequence, the acquisition has to be accelerated by decreasing the number of repetitions (NEX), the
relaxation time, or both, thus worsening the SNR.



CHARACTERIZATION OF NOISE IN THE k–SPACE AND THE x–SPACE 41

Consequently, the most challenging problem in the statistical characterization
of the CMS is in GRAPPA reconstructed signals, since theoretical foundations
for all the other common scenarios exist. GRAPPA reconstruction is entirely per-
formed in the k–space, as opposed to SENSE, for which the reconstruction is
performed in the image domain and does not need to interpolate the k–space.
Nonetheless, SENSE can be mapped to a k-space reconstruction yielding the
mSENSE method [Wan01], so in fact the results presented for GRAPPA may typ-
ically be generalized to other pMRI reconstruction methods as well. Thus, the
study in this Chapter will be mainly focused on this algorithm, although a survey
of known statistical properties of MRI data sets is provided as well for the sake of
completeness. In particular, the following problems are addressed:

1. Statistical characterization of noise in the k–space. For conventional acquisi-
tions, points in the k–space are directly provided by the receiving coils as RF
signals with constant noise power. For parallel acquisitions, the character-
ization depends on the algorithm used. In particular, GRAPPA performs an
interpolation of the k–space, giving rise to a variable noise power depending
on wether the line has been directly acquired or it has been interpolated.

2. Statistical characterization of noise in the complex x–space. For conventional
acquisitions, this signal is related to that in the previous stage by the DFT.
For parallel acquisitions, the relation depends on the particular algorithm
used. For GRAPPA, since the interpolation is carried out in the k–space, this
same Fourier relation holds.

3. Statistical characterization of the CMS. The cases to contemplate are wether
one single complex x–space (conventional MRI and SENSE acquisitions) or
multiple spaces (multiple coils without subsampling and GRAPPA) are avail-
able. Besides, for GRAPPA it is necessary to analyze the conditions to fulfill
for the non–central Chi model to hold.

3.2 Noise statistics in the k–space

3.2.1 Non–parallel MRI and pMRI without k–space sub–sampling

The physical principle driving the formation of the k–space from the phase/freq-
uency encoding sequences was given in eq. (2.4), which is reproduced here for
convenience:

sl(k) =
∫

V
Wl(x)ρ(x)exp

(
j2πkT x

)
dx, (3.1)

where ρ(x) is the (weighted) excited spin density function throughout the volume
V , x is the spatial position within the FOV, and Wl(x) is the spatial sensitivity of
the receiving coil l at x. Compared to eq. (2.4), an index l has been included to
account for the possibility of multiple receiving coils, 0≤ l < L. In conventional MRI,
L = 1. To acquire each complete line in the k–space, the sequences are repeated
with a different phase encoding each time. For each line, the RF signal is uniformly
sampled at the desired rate. As a consequence, points in the k–space provided by
the MRI scanner are independent samples measured from an RF signal, for which
the noise can be modeled as a complex stationary Additive White Gaussian Noise
(AWGN) process, with zero mean and variance σ2

K. From a merely statistical point
of view, the acquired signal sl(k) in eq. (3.1) may thus be modeled as:

sl(k) = al(k)+Nl(σ2
K), (3.2)

with al(k) the noise–free signal, Nl(σ2
K) = Nlc(k;σ2

K)+ jNls(k;σ2
K), and Nlc and Nls inde-

pendent AWGN processes with variance σ2
K.
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3.2.2 pMRI with k–space sub–sampling

As stated before, GRAPPA reconstruction is based on the interpolation of the whole
k–space at each coil out from a subsampled k–space [Bla04,Gri02,Hog05]. On one
hand, Nl(σ2

K) is no longer white noise, since the linear interpolations to estimate
missing lines introduce strong correlations between measured and interpolated
lines. On the other, this process affects as well the stationarity of the noisy pro-
cesses: missing samples are computed as a linear combination of measured ones
with noise power σ2

K, so the resulting noise power will be σ2
K pondered by the mean

squared value of the coefficients ωl j used for the interpolation.

The details on the derivation of GRAPPA reconstruction were reviewed in Sec-
tion 2.4.1). While the sampled lines (those directly provided by the MRI scanner),
sS

l (k), remain the same, the reconstructed (interpolated) lines at each coil, sR
l (k),

are estimated through a linear combination of existing samples, both from the
same and from different coils. Weighted data in a neighborhood η(k) around the
estimated pixel from several coils are used for such estimation:

sR
l (k) =

L

∑
m=1

∑
c∈η(k)

sS
m (k− c)ωm(l,c,k), (3.3)

with ωm(l,c,k) = αm(l,c,k) = + jβm(l,c,k) the complex reconstruction coefficients for
coil l. In self-referenced reconstructions, these coefficients are determined from
the low-frequency coordinates of the k-space, the so-called Auto Calibrating Sig-
nal (ACS) lines, which are sampled at the Nyquist rate (i.e. unaccelerated). Al-
though the coefficients can vary across k, this is not the most usual case, so the
coefficients will be considered to be the same for all k. Yet, they are in general
different for each receiving coil, i.e. ωm(l,c,k) = ωm(l,c). The reconstructed lines are
estimated linearly, and consequently the resulting data at each coil will match the
following model:

sl(k) = âl(k)+Nl(k;σ
2
K(l,k)), (3.4)

with âl(k) the (estimated) signal in the absence of noise, which has to be interpo-
lated if k corresponds to an unsampled line. Nl(k;σ2

K(l,k)) are Gaussian noises with
variance σ2

K(l,k) which now does depend on k: the noise in the interpolated lines
will be the weighted sum of different Gaussian noise realizations, so the noise in
the final signal (in the k–space) will also be Gaussian with zero mean, but neither
stationary nor uncorrelated. For interpolated samples, the noise power will be, for
the real part (the noise power of the imaginary part can be computed in the same
way, and with the same result):

σ
2
K(l,k) = E

{
ℜ

{
sR

l (k)−E{sR
l (k)}

}2
}

= E
{

ℜ

{
NR

l (k;σ
2
K(l,k))

}2
}

= E

{
L

∑
m=1

∑
c∈η(k)

(
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∑
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2
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= σ
2
K

L

∑
m=1

∑
c∈η(k)

|ωm(l,c,k)|2, (3.5)

where ω∗ denotes the complex conjugate of ω, and the independence between
sampled values (and real and imaginary parts) has been exploited to compute the
expectation of the modulus of the noisy process. Summarizing this Section, sam-
pled lines have a constant noise power σ2

K determined by thermal disturbances of
the scanner. Interpolated lines, on the contrary, have a noise power dependent on
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their k–space location and receiving coil l. Besides, the noise is not uncorrelated,
neither between positions in k, nor from coil to coil.

3.3 Noise statistics in the complex x–space

3.3.1 Non–parallel MRI and pMRI without k–space sub–sampling

The complex x–space is obtained from the k–space by computing the 2D iDFT of
sl(k) for each slice. Since the iDFT is a linear operator, the noise in the complex
signal in the x–space for each coil (if more than one is used) will also be Gaussian,
and it can be expressed as:

Sl(x) = Al(x)+nl(x;σ
2
n ), (3.6)

where nl(x;σ2
n ) = nlc(x;σ2

n )+ jnls(x;σ2
n ) is a complex Gaussian process with zero mean

and variance σ2
n (x). From eq. (3.2), the variance σ2

n (x) of nl(x;σ2
n ) may be easily com-

puted following a similar reasoning to that in eq. (3.5). Consider that P samples
have been measured for the first component of k (the frequency encoding direc-
tion), and Q samples for the second component (phase encoding). Consider as well
the following matrix:

Q =
[

P 0
0 Q

]
, (3.7)

whose determinant det(Q) = PQ is the number of samples in the domain Ω of the
image, |Ω | = det(Q) = PQ. The noise power in the iDFT (for the real part) may be
expressed in the form:

σ
2
n (x) = E

{
ℜ
{

nl(x;σ
2
n )
}2
}

= E

ℜ

{
1
|Ω | ∑

k∈Ω

Nl(k;σ
2
K)exp

(
j2πkT Q−1x

)}2


=
1
|Ω |2 ∑

k∈Ω

σ
2
K
∣∣exp

(
j2πkT Q−1x

)∣∣2 =
1
|Ω |2 ∑

k∈Ω

σ
2
K =

σ2
K
|Ω |

. (3.8)

In fact, the noise power σ2
n is the same for all x within the FOV, so that nl is

a stationary process. Note that all samples in the k–space are combined in a
weighted average to compute each sample in the x–space. Even so, it is easy to
prove that the noise in the complex x–space is uncorrelated:

E{nl(x;σ
2
n )n∗l (x

′;σ
2
n )}

= E

{
1
|Ω |2 ∑

k∈Ω

Nl(k;σ
2
K)exp

(
j2πkT Q−1x

)
∑
l∈Ω

N∗l (l;σ
2
K)exp

(
− j2πlT Q−1x′

)}

=
1
|Ω |2 ∑

k∈Ω

∑
l∈Ω

E
{

Nl(k;σ
2
K)N∗l (l;σ

2
K)
}

exp
(

j2π
(
kT Q−1x− lT Q−1x′

))
=

1
|Ω |2 ∑

k∈Ω

2σ
2
K exp

(
j2πkT Q−1(x−x′)

)
=

2σ2
K

|Ω |2
P−1

∑
k f =0

exp

(
j2π

k f (x f − x′f )

P

)
Q−1

∑
kp=0

exp
(

j2π
kp(xp− x′p)

Q

)
, (3.9)

where the notation k = [k f ,kp]T , and x = [x f ,xp]T has been used, and it has been
exploited that Nl are uncorrelated for different wave numbers k. In the previous
equation, if x = x′, the arguments of the exponentials are 0, so all terms in the
summations are simply 1 and the expression reduces to twice the variance of
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noise in the x–space (since both the real and imaginary parts are considered in
the previous development). For x 6= x′, it is easy to check that both summations are
null; for the first one:

P−1

∑
k f =0

exp

(
j2π

k f (x f − x′f )

P

)
=

exp
(

j2π
P(x f−x′f )

P

)
−1

exp
(

j2π
(x f−x′f )

P

)
−1

=
1−1

exp
(

j2π
(x f−x′f )

P

)
−1

= 0, (3.10)

since eq. (3.10) is the sum of a geometric progression, and x f − x′f is necessar-
ily an integer. Summarizing this Section, the noise in the complex x–space, for
conventional acquisitions, can be modeled as a stationary AWGN process with
zero mean and variance σ2

n = σ2
K/|Ω |. For multiple coils systems without k–space

subsampling, this same model holds for each coil.

3.3.2 pMRI with k–space sub–sampling

An analogous development to that in eq. (3.8) is not so trivial for GRAPPA recon-
structions. First, the noise variance is different at each location in the k–space,
and second, the noisy samples are not uncorrelated after interpolation, so the ex-
pectation of the modulus of the summation is not equal to the summation of the
moduli of each term. The expression of the noisy process, of course, is the same
as in the previous case, involving the iDFT summation. Consequently, the noise in
the complex image domain is still a Gaussian process with zero mean. It is conve-
nient to separate those terms depending on sampled lines from those depending
on interpolated ones:

nl(x;σ
2
n ) =

1
|Ω | ∑

k∈Ω

Nl(k)exp
(

j2πkT Q−1x
)

=
1
|Ω |

(
∑

k∈S
NS

l (k)exp
(

j2πkT Q−1x
)
+ ∑

k′∈R
NR

l (k′)exp
(

j2πk′T Q−1x
))

, (3.11)

where the dependency with σ2
K(l,k) in Nl has been dropped for the sake of clar-

ity. All samples corresponding to the subset S ⊂ Ω are independent, since they
correspond to values actually acquired by the MRI scanner. On the contrary, sam-
ples in R ⊂ Ω are linear combinations of samples in S , so independence cannot
be assumed. These lines are obtained as described in eq (3.3), which can be used
to derive the form of the interpolated noisy processes:

NR
l (k) =

L

∑
m=1

∑
c∈η(k)

NS
m (k− c)ωm(l,c)

= ∑
c∈η(k)

NS
l (k− c)ωl(l,c)+ ∑

m 6=l
∑

c∈η(k)
NS

m (k− c)ωm(l,c). (3.12)

Sampled values have been separated in two different sets for convenience: one
corresponds to samples in the same coil as the sample to interpolate, and the
other to samples in the remaining coils. Besides, it is convenient to distinguish
between two different subsets in S : the ACS lines, belonging to subset A , are not
used to interpolate any line inside R. A new subset S ′ ⊂S ⊂Ω is introduced such
that S = A ∪S ′, denoting those lines in S which are actually used to interpolate
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lines in R. With this notation, eq. (3.12) can now be casted into eq. (3.11) to yield:

nl(x;σ
2
n ) =

1
|Ω | ∑

k∈S ′

(
NS ′

l (k)

(
exp
(

j2πkT Q−1x
)
+ ∑

c∈η(k)
ωl(l,c)exp

(
j2π(k+ c)T Q−1x

))

+ ∑
m6=l

NS ′
m (k) ∑

c∈η(k)
ωm(l,c)exp

(
j2π(k+ c)T Q−1x

))

+
1
|Ω | ∑

k∈A
NA

l (k)exp
(

j2πkT Q−1x
)
. (3.13)

In the previous equation, only values actually sampled have been used, so inde-
pendence between them can now be assumed. Once again, the linearity of the op-
erations in the previous equation assures that the noise in the complex x–space is
Gaussian. Since it has zero mean, its variance equals its mean squared value. The
variance of the real part of eq. (3.13), E{n2

lc}, is computed next (for the imaginary
part, exactly the same derivation can be followed). To simplify the expressions, the
notation x̃ = 2πQ−1x is used in what follows. The variance is computed as:

E{n2
lc} =

1
|Ω |2 ∑

k∈S ′

[(
cos(kT x̃)+ ∑

c∈η(k)
αl(l,c)cos((k+ c)T x̃)

− ∑
c∈η(k)

βl(l,c)sin((k+ c)T x̃)

)2

E{N2
lc(k)}+

(
sin(kT x̃)

+ ∑
c∈η(k)

αl(l,c)sin((k+ c)T x̃)+ ∑
c∈η(k)

βl(l,c)cos((k+ c)T x̃)

)2

E{N2
ls(k)}

+ ∑
m6=l

( ∑
c∈η(k)

αm(l,c)cos((k+ c)T x̃)− ∑
c∈η(k)

βm(l,c)sin((k+ c)T x̃)

)2

E{N2
lc(k)}

+

(
∑

c∈η(k)
αm(l,c)sin((k+ c)T x̃)+ ∑

c∈η(k)
βm(l,c)cos((k+ c)T x̃)

)2

E{N2
ls(k)}


+

1
|Ω |2 ∑

k∈A

(
cos2(kT x̃) E{N2

lc(k)}+ sin2(kT x̃) E{N2
ls(k)}

)
. (3.14)

The previous equation admits some simplifications taking into account that
E{N2

lc}= E{N2
ls}= σ2

K, since only sampled lines are considered. Even so, the result-
ing expression is far more complicated than the simple relation in eq. (3.8). The
proof of the following result, although quite tedious, is straightforward from the
previous development:

σ
2
nl

(x) = E{n2
lc}= E{n2

ls}=
σ2

K
|Ω |2

(
|S ′|(1+ϒl(x))+ |A |+ ∑

k∈η(k)
Wl(k)2

)
, (3.15)



46 NOISE STATISTICS IN THE COMPOSITE MAGNITUDE SIGNAL

where, as always, |S ′| and |A | denote the cardinals of subsets S ′ and A . The
functions ϒ and W are defined for each coil as:

ϒl(x) = 2 ∑
c∈η(k)

(
αl(l,c)cos(cT x̃)−βl(l,c)sin(cT x̃)

)
+

+
L

∑
m=1

(
∑
c6=q

(αm(l,c)αm(l,q)−βm(l,c)βm(l,q))cos((c−q)T x̃)

+2∑
c,q

αm(l,c)βm(l,q)sin((c−q)T x̃)

)
; (3.16)

Wl(k)2 =
L

∑
m=1

∑
c∈η(k)

|ωm(l,c,k)|2. (3.17)

In the most common case, the reconstruction coefficients are equal for all wave
numbers k: ωm(l,c,k) = ωm(l,c), and Wl does not depend on k. Therefore, eq. (3.15)
simplifies, without much loss of generality, to the following expression:

σ
2
nl

(x) =
σ2

K
|Ω |2

(
|S ′|

(
1+W 2

l +ϒl(x)
)
+ |A |

)
. (3.18)

As opposed to the conventional case (without k–space subsampling), now the vari-
ance of noise does depend on the image location x thorough ϒ (x). Noise in the
complex x–space is no longer stationary, unless the spatial variability of ϒ (x) is
small enough. Even if this assumption does not hold, the result in eq. (3.18) gives
a map of noise variances and allows to characterize the SNR of the MRI data set,
much like the g–factor does for SENSE. Although it is widely known that the vari-
ance of noise is not uniform in pMRI recontructions (see [Thu07] for instance), no
theoretical results have been given before to this respect for GRAPPA.

Finally, the interpolation in the k–space introduces a certain statistical corre-
lation between the samples, so the noise is not AWGN. When the iDFT is used to
recover the image domain, this correlation translates to the x–space, so it cannot
be assumed either that the noise is white in the image domain, as opposed to the
conventional case without subsampling.

3.4 Noise statistics in the Composite Magnitude Signal

3.4.1 Conventional MRI

As described in Section 2.5, it is enough to know the magnitude of the signal in
the image domain to characterize the diffusion process. In the simplest scenario
of conventional MRI with one coil, each location x is characterized by a complex
Gaussian noise with variance σ2

n = σ2
K/|Ω |. Consequently, the CMS is:

M(x) =
√

S2
c(x)+S2

s (x) =
√

(Ac(x)+nc(x;σ2
n )2 +(As(x)+ns(x;σ2

n ))2, (3.19)

where the subindex l has been deliberately dropped down since only one coil is
being considered. Eq. (3.19) drives to the well–known Rician model traditionally
used in MRI [Gud95]. The PDF of the measured value is expressed as [Dru93]:

fM(t;A,σn) =
t

σ2
n

exp
(
− t2 +A2

2σ2
n

)
I0

(
A t
σ2

n

)
u(t), (3.20)
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where A is the magnitude of the noise–free signal, A =
√

A2
c +A2

s , I0 is the modi-
fied Bessel function of the first kind and index 0, and u is Heaviside’s step func-
tion. Although the dependence with x has been dropped down for brevity, the
noise–free signal A (and therefore M) depends on the location x. For conventional
MRI, eq. (3.20) holds at each image location with the same noise variance σ2

n . Be-
sides, since the complex Gaussian process is white, Rician distributed samples in
the CMS are indeed independent. For SENSE acquisitions, the CMS is computed
as well as the modulus of a complex Gaussian variable, so the Rician model still
holds. It is easy to understand that this same consideration is valid for all pMRI
algorithms for which one single complex image domain is recovered. Yet, with
pMRI acquisitions, the noise variance is not the same for all image locations, and
noisy samples are not independent in general.

3.4.2 Multiple coils MRI

For multiple coils MRI, several replicates of the complex image domain are avail-
able, and they have to be somehow combined to obtain the CMS. The most popular
way to do so is the SoS method [Con97,Roe90]:

ML(x) =

√
L

∑
l=1

S2
lc(x)+S2

ls(x) =

√
L

∑
l=1

(Alc(x)+nlc(x;σ2
n ))2 +(Als(x)+nls(x;σ2

n ))2, (3.21)

where the notation ML is used to make it explicit that the CMS is the combination
of the signals from L receiving coils. In fact, SoS is not only an heuristic to combine
the L signals; it has been proved in [Gil07] that it represents the optimal estimate,
in the sense of LS, when the sensitivity of each receiving coil is unknown, and
therefore has to be estimated from data.

In case no subsampling is performed in the k–space, the noise variance σ2
n is

the same for all image locations, and also for all coils: σ2
n = σ2

K/|Ω |. If the noises
at each coil are considered independent (see Section 3.5 for a discussion on this
topic), the CMS, ML(x), is described in terms of a non–central Chi distribution,
with PDF [Abr72]:

fML(t;AL,σn,L) =
A1−L

L
σ2

n
tL exp

(
− t2 +A2

L
2σ2

n

)
IL−1

(
AL t
σ2

n

)
u(t), (3.22)

where now IL−1 is the Bessel function of the first kind an order L− 1. It is easy
to verify that, for L = 1, this PDF reduces to the Rician distribution in eq (3.20),
since it is the same case as if one single receiving coil were used. Like in this
former equation, ML and AL in eq. (3.22) depend on the spatial location x. If no
subsampling is performed, non–central Chi–distributed samples are over again
independent from each other.

Nonetheless, the generalization to pMRI is not so easy in this case. From
eq. (3.18), it remains clear that the noise variance in GRAPPA reconstructions
depends on x through ϒl. What is more important, such function has a different
definition for each coil, and as a consequence the noise variance σ2

n (x, l) is differ-
ent for each coil. The non–central Chi distribution can only be assumed if the
variance (but not the mean value) for all coils is the same, so it is not valid for
GRAPPA signals in principle, as opposed to what it has been stated in [Die08]2.
The remainder of this Section is centered on the conditions the complex signals at
each coil must fulfill for the non–central Chi model to approximately hold. To that

2Yet, there is an additional artifact which complicates the modeling of the CMS: the non–central Chi
model requires that the noisy processes at each coil are independent from each other, which might not
be the case. This issue is discussed in Section 3.5.
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end, the squared CMS has to be studied instead of the CMS itself, i.e. the random
variable XL = M2

L is defined:

XL(x) =
L

∑
l=1
|Sl(x;σ

2
nl

)|2 =
L

∑
l=1

(
S2

lc(x;σ
2
nl

)+S2
ls(x;σ

2
nl

)
)
, (3.23)

where the notation σ2
nl

is used instead of σ2
n to point out that the noise variance is

different for each coil. In case all σ2
nl

are equal, i.e. σ2
nl

= σ2
n , XL follows a non-central

Chi squared distribution, with PDF [Abr72]:

fXL(t;AL,σn,L) =
A1−L

L
2σ2

n
t(L−1)/2 exp

(
− t +A2

L
2σ2

n

)
IL−1

(
AL
√

t
σ2

n

)
u(t), (3.24)

which is closely related to the PDF of ML in eq. (3.22). On the other hand, if the
variance σ2

nl
at each coil is different, the distribution of XL is no longer non-central

Chi squared. For each coil, Xl = |Sl(σ2
nl

)|2 will follow a non-central Chi squared
law with L = 1. Its characteristic function, defined as GXl (w) = E{exp( jwXl)} [Pap91]
(note the relation with the inverse Fourier transform of fXl ), will be:

GXl (w) =
1

1−2 jwσ2
nl

exp

(
|Al |2 jw

1−2 jwσ2
nl

)
. (3.25)

The characteristic function of XL can be easily computed if independence between
all Xl is assumed. The resulting characteristic function is the product of the indi-
vidual ones for each Xl:

GXL(w) =
L

∏
l=1

GXl (w) =
L

∏
l=1

1
1−2 jwσ2

nl

exp

(
jw|Al |2

1−2 jwσ2
nl

)
, (3.26)

which for equal variances reduces to:

GXL(w) =
1

(1−2 jwσ2
n )L exp

(
∑

L
l=1 jw|Al |2

1−2 jwσ2
n

)
=

1

(1−2 jwσ2
n )L exp

(
jw|AL|2

1−2 jwσ2
n

)
. (3.27)

The previous expressions are very useful for the subsequent developments. The
PDF of the resulting variable XL for different σ2

nl
cannot be explicitly computed,

but its characteristic function can in fact be given an analytical expression. Fur-
thermore, the moments of this distribution can be related to the derivatives of its
characteristic function evaluated at w = 0 [Pap91], which allows to compute the
mean and variance of XL:

E{XL}= E{M2
L} =

{
A2

L +2σ2
n L, equal σ2

nl
= σ2

n ;

A2
L +2σ2

n L, different σ2
nl

;
(3.28)

Var{XL}= Var{M2
L} =

 4A2
Lσ2

n +4Lσ4
n , equal σ2

nl
= σ2

n ;

4A2
Lσ2

n +4Lσ2
n

2
, different σ2

nl
;

(3.29)

where:

σ2
n =

1
L

L

∑
l=1

σ
2
nl

(3.30)

is the mean noise power. In fact, with the previous definition, the mean of the
distributions of XL, either with the same σ2

n or with different σ2
nl

, is exactly the
same. The variance is not equal due to the second term in eq. (3.29). The equiva-
lence (with respect to the first two moments) would be complete if the equality:

σ4
n = σ2

n
2
⇒ σ4

n −σ2
n

2
= 0⇒ Var{σ2

nl
}= 0 (3.31)
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held, which is only possible if all σ2
nl

are equal. Nonetheless, the previous devel-
opment suggests that the statistical characterization of XL for the case of different
σ2

nl
, in case their variance is not too large, can be assimilated to a non–central Chi

squared variable, with equivalent constant noise power σ2
n . Hence, the condition

for the non–central Chi model to hold for GRAPPA reconstructed data sets is pre-
cisely the small variability of noise variances at each receiving coil. Besides, the
previous development provides a valuable tool to validate such assertion. Given
the uniqueness of the Fourier transform, two random variables have the same
PDF (i.e. they are equally distributed) if and only if they share the same charac-
teristic function. Comparing eqs. (3.26) and (3.27) through the definition of σ2

n in
eq. (3.30), the accuracy of the approximation may be tested.

As a summary of this Section, the non–central Chi model applies to GRAPPA
reconstructed signals whenever the variances of noise for each coil are approxi-
mately the same. This result is the main contribution in this Chapter, and thus
will be thoroughly validated in Section 3.6. Contrary to the case of multiple coils
systems without k–space subsampling, the model for GRAPPA is not stationary
in principle (see Section 3.3), and the noise is not uncorrelated either. Yet, it is
empirically shown in Section 3.6 that in fact GRAPPA signals can be considered
nearly stationary under very weak assumptions.

3.5 Applicability of the models proposed

The previous developments have been carried out assuming ideal conditions. In
particular, for multiple coils systems, the noise at each coil has been considered
independent from the noises at the remaining coils, which is a condition for the
non–central Chi model to hold. However, it is known that correlations between
coils in phased arrays do exist [Har92,Hay90,Red92]. Yet, the effect of such corre-
lations is often left aside due to their minimal impact and practical considerations.
In [Con97] it is stated that the outcome of noise dependencies is minimal over hu-
mans and phantom data, although a bias in SNR estimation may appear.

For GRAPPA reconstructed signals, there is still another source of correla-
tion. Even if the signals acquired by each receiving coil are independent, missing
samples in the k–space are interpolated at each coil taking into account samples
from all the remaining coils, which obviously introduces an additional interdepen-
dency between the noises at each reconstructed x–space. This artifact could alter
the statistical characterization of the CMS following a non–central Chi distribu-
tion. However, it is considered in what follows that the overall correlation between
the x–spaces may be kept low enough to guarantee the accuracy of the model de-
scribed. As an additional remark, the study of correlation–related artifacts is still
a current matter of study [Bro04], and it will be considered beyond the scope of
this dissertation.

As a final comment, the assumption of independence between acquired sam-
ples in single coil systems may be unfulfilled in some situations. In Echo Planar
Imaging (EPI) data sets, for example, not only the RF pulses, but also their echoes,
are received and interpreted by the MRI scanner, so the acquisitions of different
samples at the k–space are not completely independent [Pos95]. This artifact may
introduce noticeable spatial correlations in the complex image domain, so that
the noise is no longer AWGN. However, neither the Rician character of first order
statistics, nor the stationary behavior of noise is altered in this case. Nonetheless,
neighboring spatial samples are not independent with these protocols, which can
affect some image processing algorithms based on local neighborhoods, like those
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Figure 3.1: Map of variances in the x–space for a synthetic image reconstructed with GRAPPA, for the
first of 8 receiving coils. In (a), the variance has been directly estimated from local variances averaged
for 1000 Montecarlo trials. In (b), the theoretical expression given in eq. (3.18) has been evaluated for
the first trial.

described in Chapter 5 for noise removal.

3.6 Validation of the statistical characterization

This Section is devoted to validate the accuracy of the non–central Chi model in
GRAPPA reconstructions. First, the fluctuation of the noise variance along each
coil in the x–space is analyzed through the use of synthetic data. Noise is sim-
ulated in the k–space in an 8-coil system, by generating eight 256× 256 complex
Gaussian noisy images Nl(k;σ2

K), with zero mean and equal standard deviation
σK = 20. The data is decimated using a 2× line–subsampling of the k-space, while
13 1× ACS lines are used near the origin of the k–space. Missing lines are then
interpolated using GRAPPA, and the iDFT is computed to reconstruct the x–space
corresponding to each coil. This experiment is repeated for 1000 realizations,
keeping the reconstruction coefficients, ωm(l,c), of the first realization for the sake
of statistical validity. The theoretical variance is calculated using eq. (3.18), and
the experimental variance is estimated at each spatial location as the sample vari-
ance in a local neighborhood of 5× 5 pixels. This value is further averaged for
the 1000 Montecarlo trials. Fig. 3.1 shows the results for the estimated variance
and for the theoretical one; only the results for the first coil are shown. Obvi-
ously, the theoretical expression accurately describes the variance derived from
GRAPPA reconstruction. In addition, the fluctuation of the variance across the
image is not too high (it ranges from 2.9× 10−3 to 3.6× 10−3). Yet, it is quite slow:
considering nearby pixels in a spatial sense, the variance of noise is approximately
constant. This consideration justifies the computation of the map in Fig. 3.1 by
means of neighborhoods operations. Besides, it partially assures the consistency
of image processing techniques, such as denoising filters, based on neighborhood
operations. Nevertheless, the fluctuation of noise variance across the image is still
too large to consider a nearly stationary behavior of noise.

The previous study suffers from two limitations: first, no signal is added to the
noise in the k–space, which could drive to unrealistic values of the weights ωm(l,c)
and thus of ϒ (x)3. Second, the noisy signals for each coil are generated without
taking into account the sensitivity of the receiving coils. To overcome them, a
number of experiments with real data sets BWH4, PULSAR1, and PULSAR2 (see

3Since the signal considered is pure noise, no correlations between lines should be present, so the
LS fitting of interpolation weights is not significant. However, this first experiment aims only to check
the accuracy of the analytical expressions obtained, and hence this is not an issue.
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Figure 3.2: Data set BWH4: an axial slice in the upper brain, for each receiving coil in the 8 coils
system.

Section 1.4) are presented next. Figs. 3.2 to 3.4 show respective slices of these vol-
umes for all receiving coils available. For all these data sets, the different spatial
sensitivity of each receiving coil is perfectly noticeable. The brightness of those ar-
eas of the image corresponding to the strongest sensitivities is much higher than
the one of those with the lowest sensitivities. This way, the structures of the tis-
sues being imaged are exactly the same for all image domains, but the brightness
and contrast achieved in each zone are clearly different. Yet, the relative positions
of the receiving coils may be inferred from this characteristic: in the brain images,
coils are located in a plane parallel to the axial view, surrounding the brain. In
the spine image, the disposition of coils is longitudinal. This behavior is espe-
cially noticeable in data set PULSAR2 depicted in Fig. 3.4: the second coil yields
a very poor contrast and an overall much lower brightness than the other three
coils. Assuming the noise power at each image location is somehow related to the
brightness in the corresponding position of the image domain, it is clear that the
variability of the noise power from coil to coil for this volume can be quite large,

Figure 3.3: Data set PULSAR1: an axial slice in the middle brain, for each receiving coil in the 8 coils
system.
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Figure 3.4: Data set PULSAR2: a slice corresponding to a human spine is shown, for each coil in the
4 coils–whole body system.

so the non–central Chi model is at stake. To formally characterize this idea, the
spatial pattern of noise variances has been computed for all these data sets follow-
ing the previous methodology. Instead of the noise variance itself, a normalized
parameter is introduced at this point. The stationary map is defined as:

gG
l (x) =

σ2
nl

(x)

σ2
full

√
r, (3.32)

where σ2
full stands for the noise variance if no subsampling is performed (σ2

full =
σ2

K/|Ω |), and r is the acceleration rate (downsample factor). The definition of this
parameter is similar to the g–factor in SENSE, but its interpretation is not the
same: gG

l (x) is intended to account for noise power inhomogeneities, and not for
noise amplification. The reason for the normalization involving the acceleration
rate is very intuitive: in case no interpolation is performed (i.e. ωm(l,c) = 0⇒Wl =
ϒ (x) = 0), the mere acceleration (subsampling) does not introduce any inhomo-
geneity, so gG

l (x) = 1. This parameter has been computed for the three GRAPPA
data sets previously presented, which are 2× subsampled with 13 ACS lines and
GRAPPA reconstructed. Using corresponding reconstruction weights, gG

l (x) is com-
puted for each coil, along with its average, its standard deviation, and its coeffi-
cient of variation (CV) across all coils. The CV is defined as:

Cv{gG
l (x)}=

√
Var{gG

l (x)}
E2{gG

l (x)}
=

L√
L−1

√√√√ L

∑
l=1

(
gG

l (x)− 1
L

L

∑
m=1

gG
m(x)

)2

L

∑
l=1

gG
l (x)

. (3.33)

Figure 3.5: Data set BWH4: stationary map of the variance of noise for the axial slice in Fig. 3.2.
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Figure 3.6: Data set PULSAR1: stationary map of the variance of noise for the axial slice in Fig. 3.3.

From the definition of gG
l (x) in eq. (3.32), it is trivial to show the following relations

between its mean, variance, and CV and those of σ2
nl

(x):

E{σ2
nl

(x)} =
σ2

full

r
E{gG

l (x)}; (3.34)

Var{σ2
nl

(x)} =
σ4

full

r2 Var{gG
l (x)}; (3.35)

Cv{σ2
nl

(x)} = Cv{gG
l (x)}, (3.36)

so the study of the CV of gG
l (x) is equivalent to the study of the CV of σ2

nl
(x) (but

the former is easier to interpret). The values of gG
l (x) for the GRAPPA data sets

in Figs. 3.2 to 3.4 are represented in Figs. 3.5 to 3.7, respectively. In all cases,
gG

l (x) is greater than 1 for most of the pixels, which in some sense illustrates the
amplification of noise inherent to parallel reconstruction algorithms, which has
been typically characterized through the g–factor in SENSE. For the brain images,
its values range in [1,1.8], while the spine data shows a greater variability, ranging
in [1,9]. The higher variability of the spine data set is consistent with the stronger
contrast changes noticed in Fig. 3.4, and justifies the previous assertion that the
noise variance should be related with the brightness of the images formed by
each coil at each image location. Besides, even when gG

l (x) (and, consequently,
σ2

nl
(x)) varies from pixel to pixel across each coil, the fluctuation is rather slow,

much like what happened with the synthetic data set in Fig. 3.1: in the worst
scenario, a certain local homogeneity can be assumed that assure a good behavior
of neighborhood–based filters.

The other interesting study is about the variation of the noise power across the
receiving coils. With this regard, the mean, variance, and CV of each data set have

Figure 3.7: Data set PULSAR2: stationary map of the variance of noise for the slice in Fig. 3.4.
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Figure 3.8: Data set BWH4: mean (left), variance (center), and coefficient of variation (right) of the
stationary map of the variance of noise, for the axial slice in Fig. 3.2.

Figure 3.9: Data set PULSAR1: mean (left), variance (center), and coefficient of variation (right) of the
stationary map of the variance of noise, for the axial slice in Fig. 3.3.

been computed, and represented in Figs. 3.8 to 3.10. For the CV, obviously, the
closer this value to 1, the more similar the variances at each coil, and consequently
the more accurate the non–central Chi model. The stationary map and its related
parameters form well defined spatial patterns, whose variation is slow enough in
all cases. For the brain images, the variances are always below 1, with typical
values near 0.3 to 0.5. For the spine data set, the overall values of gG

l (x) are
much higher, so both the mean and the variance are far larger for PULSAR2, with
typical values in the range of tens. The most interesting parameter, however, is
the CV, since it represents a variability normalized by the scale of the values being
compared. The CV for PULSAR2, in fact, is more similar to the corresponding
values for the other two parameters than its mean or variance are. Yet, note that
the maximum of the CV for PULSAR2 is near 1.4 (see color bars), while for BWH4
and PULSAR1 it is near 0.4, i.e. it is 3.5 times smaller.

The analysis in terms of the CV is used next to characterize whether or not a
non–central Chi model can be accurately fitted in each particular situation. To

Figure 3.10: Data set PULSAR2: mean (left), variance (center), and coefficient of variation (right) of
the stationary map of the variance of noise, for the slice in Fig. 3.4.
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that end, the following (relative) Mean Squared Error (rMSE) is measured:

rMSE =

∫
∞

∞

| fXL(t)− f̃XL(t)|
2dt∫

∞

∞

| f̃XL(t)|
2dt

, (3.37)

where fXL is the true PDF of the CMS obtained by SoS (without the square root);
f̃XL is an equivalent non–central Chi squared PDF, see eq. (3.24), where it is as-
sumed that the variance for all coils is equal to σ2

n , see eq. (3.30). By virtue of
Parseval’s theorem, the definition in eq. (3.37) may be re–written in terms of the
characteristic functions of both distributions:

rMSE =

∫
∞

∞

|GXL(w)− G̃XL(w)|2dw∫
∞

∞

|G̃XL(w)|2dw
, (3.38)

where GXL can be computed using eq. (3.26), and G̃XL using eq. (3.27). This error
is calculated and plotted in Fig. 3.11 as a function of the CV of σ2

nl
, for different

SNR (defined as
√

A2
l /σ2

n ). Consider the range of CV values given by the brain data
sets in the previous experiments (BWH4 and PULSAR1), i.e. Cv ' 0.4 at most. The
relative errors are practically null for all SNR and coil configurations considered
in Fig. 3.11: generalizing this result, it may be concluded that the non–central Chi
model may be assumed for GRAPPA reconstructed images of the brain without
any loss of generality. On the other hand, for higher values of the CV, the error in
the approximation rapidly increases. In particular, for values ranging from 1.0 to
1.4, which are the majority in data set PULSAR2, the error is appreciable even for
relatively high SNR. For 8 receiving coils, and SNR ranging in [2,4] (which may be
quite realistic in DWI), the relative error can be over 1%. For high SNR, both the
true PDF and the non–central Chi squared approximation tend to a Gaussian, so
the error remains small.

As an additional experiment, sample data corresponding to the characteristic
function in eq. (3.26) are generated. A total of 1000 experiments are carried out; for
each of them, different variances σ2

nl
are chosen so that Cv = 0.8. The SNR is 2, and

L = 8 coils are considered. For each experiment, sets of samples of size ranging in
[1,150] are taken, and a Kolmogorov–Smirnov test is used to decide whether or not
the sample data follow a non–central Chi squared distribution (with equal noise
variances σ2

n ), at a significance level α = 0.05 [Ste74]. For comparison purposes,
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purposes. Significance level is α = 0.05, and SNR= 2 has been used to generate data.

the test is repeated for a Gaussian distribution with mean and variance given by
eqs. (3.28) and (3.29). Besides, 1000 additional experiments are set up in a similar
way, generating true non–central Chi squared samples (with equal variances σ2

n
at each coil) and performing Kolmogorov–Smirnov tests under the hypothesis of a
non–central Chi squared distribution. The whole methodology is finally repeated
with Cv = 1.2. Fig. 3.12 represents the rate of sets (among the 1000 Montecarlo tri-
als) for which the null hypothesis cannot be rejected (i.e. the percentage of cases
for which the data can be assumed to follow the corresponding distribution). Since
the significance level is α = 0.05, the ideal value of the non–reject rate is 95%. In
fact, this is approximately the value achieved for the non–central Chi squared dis-
tribution when the test is performed over true non–central Chi squared data (equal
variances). For different variances with Cv = 0.8, the non–central Chi squared ap-
proximation is very accurate, with a very similar behavior to the ground–truth
with equal variances. This assertion is justified at the sight of the curve for the
Gaussian distribution: the larger the size of the sample, the easier for the test to
reject the null hypothesis, so the non–reject rate of the Gaussian model rapidly
decreases to values far below 95%, and it can only be accepted for very small popu-
lations. For Cv = 1.2, the variances at each coil are very different, and the resulting
distribution is no longer similar to a non–central Chi squared. The non–reject
rates for both the Gaussian and the non–central Chi squared models drop down
to zero very fast, indicating that none of these models is a good approximation
to the actual distribution of the sample data generated. Comparing these results
with Fig. 3.11, the former scenario with SNR = 2 and Cv = 0.8 corresponds to a very
small rMSE, below 0.5%, while the latter corresponds to a much higher error with
rMSE ' 2%. For the brain images presented, Cv < 0.4, which yields a rMSE below
0.5% for all SNR, so it can be concluded that the non–central Chi approximation is
in general accurate enough for this kind of data. For the spine data set, the CV is
far larger, so the validity of the model is not ensured unless voxels with large SNR
are considered.
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3.7 Conclusions

The main target in the present Chapter was to statistically characterize the CMS
provided by the MRI scanner, since this is the signal of interest in the develop-
ments to be carried out in what follows. However, this characterization requires
to study the properties of noise at each stage of the acquisition process. At the
same time, this analysis has allowed to infer additional properties regarding the
stationary (or nearly stationary) character of signals or the spatial correlations.

In conventional MRI, where no subsampling of the k–space is performed and
the acquired samples can be considered independent, the noise in the complex
image domain is modeled by a complex AWGN process. The power of noise is the
same for all image locations. When the CMS is computed as the modulus of this
process, the well–known Rician statistics arise, and the pixels at each image loca-
tion are still independent from those at other locations. In multiple–coils systems
without subsampling, the situation is very similar: for each coil, an entire com-
plex image domain is reconstructed, all of them corrupted with an AWGN process
with the same noise variance. When SoS is used to compute the CMS, the result-
ing signal follows a non–central Chi distribution, whenever correlations between
different coils may be neglected (and this is usually the case).

With pMRI techniques, the final model strongly depends on the particular al-
gorithm used. In general, those reconstructing one single image domain drive to
a Rician distribution, since the CMS is computed as the modulus of a Gaussian
variable. In practice, most of the existing algorithms, except for GRAPPA, pro-
vide a unique x–space, so Rician statistics are still of great interest. Contrary to
conventional MRI, the noise in the image cannot be considered stationary strictly
speaking, since its variance shows fluctuations across the image. Besides, noisy
samples cannot be considered independent either, due to interpolation artifacts.

The analysis of GRAPPA reconstructed signals is more difficult. Although its
feature of providing one complete image domain for each receiving coil assimilates
it to conventional multiple coils systems, the non–central Chi distribution does
not directly apply to this case. Apart from the aforementioned interpolation arti-
facts related to non–stationary noisy patterns and correlations, the noise variance
for each receiving coil is different with this kind of reconstruction. Hence, a non–
central Chi model cannot be assumed in general. For brain images, which are the
data sets of interest in this dissertation, it has been shown that in fact this distri-
bution is a very accurate approximation to the actual statistics of noise. For other
kinds of data, such as the spine of PULSAR2, this is not the case. The character-
ization of GRAPPA signals has allowed also to study the spatial variability of the
the statistics of noise (variance) across the MRI volumes. It has been shown that
the variability of the noise power is not very important, and yet it is slow enough to
allow the use of image processing algorithms assuming stationary signals. Other
pMRI algorithms can be mapped to reconstructions in the k–space (for example,
the mSENSE extension to SENSE), so this same property is expected to be shared
by all of them: although they have to be described by Rician statistics, since the
computation of the CMS is based on a unique x–space, the interesting part is that
a quasi–stationary model can always be assumed.

The Chapter has been primarily focused on multiple coils systems and GRAPPA,
mainly because the theoretical foundations for the latter have not been thoroughly
studied before. In Diffusion Imaging, multiple coils systems without subsampling
are not as interesting as pMRI algorithms, due to the necessity to accelerate the
acquisition process. Among these techniques, GRAPPA (together with SENSE) is
the most popular due to its penetration in commercial machinery. Hence, the
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importance of studying non–central Chi statistics, and generalizing existing image
processing methods to this kind of signals, is fully justified.

It is convenient to stress the limitations of the study performed in this Chapter.
As mentioned above, the main ones are those related to correlations between the
signals recovered by each coil in the scanner. This problem is even more important
with GRAPPA, since the interpolation of the k–space introduces additional depen-
dencies of data. Besides, the analysis and validation have been carried out taking
into account anatomical MRI data sets. With diffusion data sets, the difference
relies on the inclusion of additional pulsed gradients in the sequences; regardless
on the particular sequences described by the protocol being used, values in the
k–space are always acquired as samples of the phase/frequency encoded signal
received by a RF antenna, so no fundamental differences should be present. Fi-
nally, certain MRI techniques, such as EPI, which can show their own peculiarities
with regard to the statistical characterization of noise, has been removed from the
study.



4
Impact of noise in Diffusion Imaging

The previous Chapter was focused on the analysis of the statistics of noise in the complex
x–space and the CMS. In this Chapter, it is analyzed how this noise is propagated from the
q–space (at each point of the x–space) to its corresponding R–space. It is demonstrated
that the particular statistics of noise in the CMS entail an important bias in the estimation
of the diffusion propagator. This bias cannot be eliminated after the estimation, so it has
to be accounted for at the level of DWI (i.e., in the x×q–space). The analysis is carried
out through the case study of DTI with diffusion tensor estimation based on Weighted
Least Squares (WLS), and then extrapolated to more general, non–Gaussian estimators
of the diffusion propagator. In particular, it is shown that the bias in the estimation
of the components of the diffusion tensor may be as important as its variance for non–
central Chi signals. This implies that the use of more gradient directions, up from a given
number, may be useless to reduce the error in the estimation, stressing the importance
of the unbiased filtering techniques proposed in Chapter 5. This case study corresponds
to one of the most popular Difussion Imaging techniques nowadays, so it constitutes an
interesting analysis even beyond the scope of this dissertation. The original contribution
in this Chapter is threefold: first, the theoretical prediction of the impact of Rician noise
in the estimation of the diffusion tensor, which until now had been described only in
terms of empirical results. Second, the generalization of this study to multiple–coils/pMRI
systems. Third, the guidelines to decide whether it is useful to increase the number of
gradient directions or the number of repetitions (NEX) in a given situation.

4.1 Introduction

Rician distribution is an accurate model for the CMS in non–parallel, single coil
MRI. As described in the previous Chapter, this same model holds for most of the
existing pMRI techniques (SENSE, SMASH), whenever a unique complex x–space
is recovered for all receiving coils, either from reconstructions on the k–space,
the x–space, or both. However, for non–parallel, multiple coil MRI, a whole x–
space is available for each coil, and the CMS is computed as the combination of
all of them. For parallel reconstructions based on GRAPPA, a whole k–space is
reconstructed for each coil, so the situation is very similar. In these cases, the
SoS yields a non–central Chi distribution for the CMS. Besides, the Rician model
is a particular case of the non–central Chi, so the latter may be seen as a general
model for the most common parallel and non parallel acquisition schemes.

One known issue with these distributions is their bias. The expected value
of the distribution is not the actual value of the noise–free CMS, and as a con-
sequence the measurement of the corrupted CMS introduces a systematic error
in the estimation of the true CMS. The effect of this bias in Diffusion Imaging
has been previously reported in the literature for the case of Rician distributed
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Figure 4.1: The PDF of Rician (left) and log–Rician (right) data for different values of A and σn = 1
(thus, for different SNR). Blue straight lines represent the theoretical PDF, while the bar plots have
been drawn from 106 Montecarlo trials in each case. Red discontinuous lines represent a Gaussian
PDF with the same mean and variance as the corresponding Rician or log–Rician PDF. It may be seen
that both distributions tend to a Gaussian distribution very fast.

signals [Bas00a,Jon04,Sal05]. These studies are merely empiric and focused on
DTI, but they have shown that Rician noise introduce a systematic error (underes-
timation) in the computation of the FA which cannot be removed after the diffusion
tensor has been estimated. Similar results have been reported in [Bas06] for the
MD and the FA. Although these conclusions are grounded in empirical studies,
they all suggest that noise in the CMS is propagated from the q–space to the R–
space rendering errors which cannot be recovered.

The most common technique to estimate the diffusion tensor in DTI is Least
Squares (LS) or, more often, Weighted Least Squares (WLS) [Sal05], based on the
formulation in eq. (2.32). In this case the logarithm of the DWI is computed, so the
signals no longer follow Rician or non–central Chi distributions, but log–Rician or
log–non central Chi. It has been shown that, although the bias of original DWI
persists in the log–compressed images, log–Rician distributed signals are nearly
unbiased for reasonably high SNR [Sal05] (see Fig. 4.1). It follows that the artifacts
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associated to the bias in the CMS for DTI, at least for Rician distributed noise, are
relatively subtle.

For non–Gaussian diffusion propagators (see Section 2.7), it is common to work
directly with the CMS and not with its logarithm. It has been previously reported
in [Cla08] that, in this case, the Rician noise propagated from the q–space to the
R–space noticeably distorts the computation of orientation information, even for
moderate–high SNR, enclosing an undesired angular blurring.

On the other hand, although the effects of Rician noise have been empirically
assessed, the impact of non–central Chi noise in Diffusion Imaging is not clear.
Moreover, all the aforementioned studies are empirical, and no theoretical analysis
has been performed to yield solid conclusions on this issue. In this Chapter, the
aim is, first, to carry out an analytic study on the propagation of noise for the
case study of Gaussian diffusion, i.e. for DTI. Second, the study is generalized
to non–central Chi signals, and it is stated that the bias is even more important
for this statistics. The case study is centered on DTI based on WLS estimation
of the diffusion tensor; this is without any doubt the most widespread Diffusion
Imaging technique nowadays, so in fact this survey constitutes itself an interesting
result. For more general HARDI techniques, an analytic study is not feasible for
two reasons:

• The estimation of the diffusion propagator from the signal in the q–space is
in general highly non–linear or even iterative.

• The techniques reviewed in Section 2.7 have very different foundations and
characteristics, so a general approach gathering all of them is not possible.

Nonetheless, the work in [Cla08] evidences that the effect of noise for this kind
of estimators is more important than it is for DTI. This result may be used to infer
the impact of non–central Chi (and thus of Rician) distributed signals in HARDI
estimators of the diffusion propagator. In particular, the importance of correctly
accounting for noise effects in the estimators presented in Chapters 6 and 7 will
be fully justified.

4.2 Characterization of log–non–central Chi signals

4.2.1 Closed forms for the mean and variance

As described in Chapter 3, the statistics of the CMS when SoS is used follow a
non–Central Chi distribution, whose PDF is reproduced here for convenience:

fML(t;AL,σn,L) =
AL

σ2
n

(
t

AL

)L

exp
(
− t2 +A2

L
2σ2

n

)
IL−1

(
AL t
σ2

n

)
u(t), (4.1)

where ML is the measured CMS; σ2
n is the noise power at each point x of the

complex x–space (it is assumed to be roughly the same for all receiving coils); L
is the number of receiving coils; IL−1 is the modified Bessel function of the first

kind an order L− 1; u(t) is Heaviside’s step function; AL =
√

∑
L
l=1(A

2
lc +A2

ls) is the
ideal value of the CMS reconstructed from the L signals at each coil by SoS (see
eq. (3.21)). For L = 1, eq. (4.1) reduces to the Rician distribution. The mean and
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variance of this distribution may be computed in closed form [Die08]:

E{ML} =
√

2σn
Γ (L+1/2)

Γ (L) 1F1

(
−1

2
,L,− A2

L
2σ2

n

)
; (4.2)

Var{ML} = A2
L +2Lσ

2
n −E{ML}2, (4.3)

where Γ stands for Euler’s Gamma function, and 1F1 is the confluent hypergeo-
metric function of the first kind [Abr72]. As stated in Section 4.1, the statistics of
interest are those of log(ML) and not ML. The corresponding PDF may be computed
from eq. (4.1) using the fundamental theorem of probability:

flogML(t;AL,σn,L) = fML(log−1 t;AL,σn,L)
d log−1 t

dt

=
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(
et

AL

)L+1

exp
(
−e2t +A2

L
2σ2

n

)
IL−1

(
AL et
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n

)
. (4.4)

The corresponding mean and variance may be computed in the following form (see
appendix A):
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with:

ÑL(z) = e−z
∞

∑
k=0

zk

k!

(
ψ(k +L)2 +ψ

1)(k +L)
)

,

where ψ(x) is the polygamma function, and ψ1)(x) is its first derivative. Eq. (4.5)
generalizes the expression given in [Sal05, eq. (11)] for the mean of the log–Rician
distribution, while eq. (4.6) has not been previously reported. Indeed, the previous
expressions can be particularized to L = 1 (see appendix A) to obtain:

E{log(M)} =
1
2

Γ
(l)
(

0,
A2

2σ2
n

)
+ log(A); (4.7)

Var{log(M)} =
1
4

(
Ñ1

(
A2

2σ2
n

)
+
(

Γ
(l)
(

0,
A2

2σ2
n

)
+ log

(
A2

2σ2
n

))2
)

. (4.8)

The expected value of log(ML) tends to log(AL) for high SNR, as depicted in Fig. 4.1
for the log–Rician case. This is the reason why, for high SNR, the estimation of the
diffusion tensor from Rician distributed DWI is nearly unbiased.

4.2.2 Operative linear approximations

The complexity of eqs. (4.5) and (4.6) does not allow a detailed analysis, so prac-
tical approximations have to be developed [TV09c]. In what follows, it is assumed
that the CMS for multiple receiving coils has the form:

AL =

√
L

∑
l=1

A2
lc +A2

ls ≡

√
L

∑
l=1

A2 +02 =
√

L A, (4.9)

i.e. the same real signal A is ideally acquired by all receiving coils l: Alc = A, Als =
0. This assumption does not impose any loss of generality, but the notation in
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the developments to be carried out is far simpler. The Taylor series expansion of
log(ML) for σn� AL is:

log(ML) = log(AL)+
1

AL

L

∑
l=1

nlc +
1

2A2L2

L

∑
k=1

L

∑
l=1

(Lδkl−2)nkc nlc

+
1

2LA2

L

∑
l=1

n2
ls +O

(
σ3

n

A3

)
, (4.10)

with δ the Kronecker delta function and nlc , nls the phase and quadrature (respec-
tively) zero–mean, Gaussian noises corresponding to the real and imaginary parts
of the complex signal in the x–space. From eq. (4.10), it follows:

E {log(ML)}= log(AL)+(L−1)
σ2

n

A2
L

+O

(
σ3

n

A3

)
. (4.11)

In fact, since the expectation of all terms in O(σ3
n /A3) represent odd–order mo-

ments of Gaussians, O(σ4
n /A4) could have been written instead. The MSE in the

estimation may be computed as the variance plus the squared bias, so the ex-
pansion of the variance to order 4 (comparable to bias2 = O(σ4

n /A4
L)) has to be

computed. This requires to compute the expansion of log(ML) to order 3. After
some calculations, it yields:

Var{log(ML)}=
1
2

a−1− 3L−4
4

a−2 +O
(
a−3) ; (4.12)

bias2 {log(ML)}=
(L−1)2

4
a−2 +O

(
a−3) , (4.13)

where the variable:

a =
A2

L
2σ2

n
(4.14)

is a normalized SNR (according to the standard notation, a = SNR2/2). For the
Rician case (L = 1), the squared bias is in the order of O(a−3) = O(σ6

n /A6
L), so it is

not so important, as it has been noted in [Sal05] (see Fig. 4.1). For L > 1, the bias
may be important if L is in the same order of magnitude as AL/σn.

4.3 Tensor fitting based on Weighted Least Squares

As stated in Chapter 2, the Stejskal–Tanner model [Ste65] may be used to linearize
the estimation of the diffusion propagator. Taking into account the noisy nature
of the CMS, eq. (2.30) may be re–written in the form:

log(AL,0)− log(ML,i) =
[
g2

i,1, 2gi,1gi,2, 2gi,1gi,3, g2
i,2, 2gi,2gi,3, g2

i,3
]

· [bD11, bD12, bD13,bD22, bD23, bD33]
T + εi, (4.15)

for i = 1 . . .N with N the number of diffusion gradient directions. The noise ε is con-
sidered additive (which is roughly true for high SNR as suggested in Fig. 4.1). Note
that the complex signal S(g)/S(0) may be substituted by its modulus by virtue
of the result in eq. (2.27), so the CMS may be used instead. In eq. (4.15), the
subindex i is used in AL and ML to denote the gradient direction they correspond
to (0 corresponds to the non–weighted baseline). As opposed to [Sal05], AL,0 is not
included in the estimation, i.e., it is considered that the impact of noise in the
baseline AL,0 is negligible (ML,0 ' AL,0). The baseline is generally far less noisy than
the gradient images, and moreover, several baseline images are often available.
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Hence, the error due to AL,0 is negligible compared to the error due to AL,i, and it
does not appreciably affect the analysis. Nevertheless, a similar study to that here
presented may be carried out including AL,0 in the estimation, with almost identi-
cal conclusions. Given the problem statement in eq. (4.15) as an overdetermined
(if N > 6) set of linear equations with noisy observations, the natural solution is
the use of LS, or more precisely WLS. WLS is useful since the variance of each
observation ML,i is different, as remains evident from eq. (4.12). Its formulation is
as follows:

GTW (Y−GX) = 0⇒ X =
(
GTWG

)−1
GTWY, (4.16)

where Y is an N× 1 vector representing each of the DWI data log(ML,i)− log(AL,0),
X is the 6× 1 vector of unknowns (bDi j), G is the N× 6 matrix resulting from the
concatenation of each row in eq. (4.15), [g2

i,1, . . . ,g
2
i,3], and W is the N×N matrix of

weights. The Gauss–Markov theorem states that, under very weak assumptions,
the WLS solution is the minimum variance estimate if W is chosen to be the in-
verse of the covariance matrix of data, CYY. If the estimator is unbiased (as is
approximately the case for Rician noise), WLS is in fact the Best Linear Unbi-
ased Estimator (BLUE). Since the noise in each gradient image is assumed to be
independent, CYY reduces to a diagonal matrix with diagonal elements equal to
the variance of each term log(ML,i)− log(AL,0). This variance is the same as that of
log(ML,i), since the noise in AL,0 has been neglected. Therefore, W = diag(Wii), and
from eq. (4.13):

Wii = Var−1 {Yi} '
1

a−1
i /2−a−2

i (3L−4)/4
' 2ai +(3L−4) . (4.17)

In what follows, the terms of order a−2
i will be neglected, so that Wii = 2ai = A2

L,i/σ2
n .

There are two reasons for this:

1. This formulation is identical to the traditional WLS for Rician noise, see
[Sal05], and is the one implemented in all software tools for the estimation
of the diffusion tensor. Note that even in the case of Rician noise, the term
in a−2 is not null (but very small), and even so WLS is always performed with
this formulation.

2. The weights Wii have in fact to be only proportional to 2ai. With this formu-
lation, it is not necessary to know the exact value of σn, since any weight
proportional to A2

L,i may be used; if the term in a−2 is included, it is necessary
to estimate σn at each image location and to include the number of coils, L,
as an additional parameter of the algorithm.

Once again, the whole analysis may be performed with the exact expression for Wii
with very similar conclusions. Finally, note that the weights Wii depend on AL,i (not
ML,i), so they cannot be known a priori; this pitfall may be obviated by iteratively
estimating X and updating the value of W [Sal05]. In the remaining it is assumed
that Wii are known without uncertainty.

4.4 Bias and variance of the tensor components

Once the model for the estimation of the diffusion propagator has been presented
(see Section 4.3), it remains to study the propagation of noise from the q–space
to the R–space. Let L = (GTWG)−1; from eqs. (4.11), (4.12), (4.16), and (4.17), the
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covariance matrix of X reads:

CXX = E
{
(X−E{X})(X−E{X})T

}
= L GTWCYYW T GL T

= L GTWdiag
(

1
2

a−1
i −

Θ(L)
4

a−2
i

)
WGL

= L GTWGL−Θ(L)
4

L GTWdiag
(
a−2

i
)

WGL

= L−Θ(L)L GT GL , (4.18)

where Θ(L)= 3L−4 and W , L are symmetric. Note that the second term in eq. (4.18)
appears due to the fact that Wii = 2ai is used instead of the true value of Var−1{Yi},
and it is not null even for the Rician case1. For the bias, since bias{Yi} = a−1

i (L−
1)/2 = (L−1)/Wii:

bias{X}= (GTWG)−1GTWbias{Y}= (L−1)L GT 1, (4.19)

where 1 is an N×1 vector of ones. The 6×1 vector GT e1 may be easily characterized
if the gradient directions are assumed to be uniformly distributed on the sphere.
Each component gk, k = 1,2,3 may be seen as a uniform random variable, so:

gk ∼U(−1,1)
N

∑
i=1

g2
i,k ' NE{g2

k}= N/3

N

∑
i=1

2gi, jgi,k ' 2NE{g j}E{gk}= 0


⇒ GT 1 =

N
3

[1,0,0,1,0,1]T = Nν , (4.20)

for ν = [1/3,0,0,1/3,0,1/3]T . In fact, this assumption is very realistic for gradient
directions chosen as antipodal pairs (the most common case), and it may be em-
pirically shown that eq. (4.20) describes a real situation pretty accurately. Finally,
the MSE is defined as:

MSE = Var{X}+bias2 {X}= b2 (
∆

2
11 +∆

2
12 +∆

2
13 +∆

2
22 +∆

2
23 +∆

2
33
)

= tr(L )−Θ(L)tr
(
L GT GL

)
+(L−1)2N2

ν
T L 2

ν , (4.21)

for ∆i j = Di j− D̃i j and D̃i j the WLS estimate of Di j.

4.5 Numerical results

4.5.1 Bias and variance in the DWI components

In this Section, the accuracy of the approximations given by eqs. (4.12) and (4.13)
for the noise in the q–space is tested. In Fig. 4.2 (left), the true values given by
eqs. (4.5) and (4.6) are represented, together with empirically obtained values (for
2000 independent samples for each a and L). The proposed approximations are de-
picted superimposed to show their high accuracy, except for very low (unrealistic)
values of a. The larger L, the larger the value of a below which the approxima-
tion diverges from the actual value. Nevertheless, note that the difference is only
noticeable for L = 8 (below a = 60). As shown later on (and in Fig. 4.2, right) for
L = 8 the values of interest for a are in the order of 140; for larger values of L, the
approximations are inexact for higher a, but at the same time the study of the bias
is also of interest for higher a, so the approximation is extremely accurate in all
cases.

1Yet, Θ(L) is negative for L = 1, so for the Rician case the variance is greater than L , contrary to the
case L > 1.



66 NUMERICAL RESULTS

020 5040 10060 15080 200100 250120 300140
0

160

5

180

10

200

15

0

20

0.005

25

0.01

30

0.015

0.02

a=AL
2/2!2

Va
r{

Y}
, b

ia
s2

a=139.95

a=A

{Y
}

L

Variance

2

bias

/2

2

!2

L

Emprirical
Linear approx.
Real

N=6
N=15

L=1
N=27

L=4
N=51

L=8
N=100

n n

Figure 4.2: Left: bias and variance in the DWI signals, as a function of a for different numbers of coils;
true and empirically computed values, together with linear approximations, are represented. Right:
minimum number of receiving coils required (for each a and N) so that the (squared) bias equals the
variance in the diffusion tensor components (see eq. (4.24)).

4.5.2 Bias and variance in isotropic tensor components

The foregoing presents an analysis on the effect of the bias of the non–central
Chi distribution in the computation of the diffusion tensor. The aim is to show
that the bias in the q–space propagates to the R–space; yet, it is even amplified
rendering important errors in the estimation even for high SNR. First, a simplified
scenario of isotropic diffusion, where all diffusion directions behave the same, is
considered:

Wii = 2ai = 2a = SNR2. (4.22)

The MSE reduces in this case to:

MSE =
(

a−1

2
−a−2

4
Θ(L)

)
tr
((

GT G
)−1
)

+a−2 (L−1)2N2

4
ν

T (GT G
)−2

ν , (4.23)

since L = a−1/2(GT G)−1. The behavior of GT G has to be analyzed to study the re-
lation between the bias and the variance. A similar reasoning to that made for
the calculation of ν in eq. (4.20) shows that it always has the eigenvector ν/‖ν‖,
associated to the eigenvalue N/3, for antipodal pairs. Besides, the approxima-
tion: tr((GT G)−1) ' 29.3/N is extremely accurate2 for all values of N. With these
equivalences, the MSE may be re–written:

MSE ' 29.3
N

(
a−1

2
−a−2

4
(3L−4)

)
+a−2 9(L−1)2N2

4N2 ν
T ννT

‖ν‖2 ν

=
29.3

N

(
a−1

2
−a−2

4
(3L−4)

)
+a−2 3(L−1)2

4
, (4.24)

since (GT G)−2 has the eigenvector ν/‖ν‖ associated to 9/N2, and all other eigen-
vectors are orthogonal to ν. While the variance diminishes with the number of
gradients N, this is not the case for the bias: Fig. 4.2 (right) shows the number
of coils needed for each a and N so that the term corresponding to the bias in
eq. (4.24) equals the term corresponding to the variance. For example, with L = 8
coils and 51 gradient directions, it is shown that, if a < 139.95, the bias is more
important than the variance. Alternatively, for a < 139.95 and L = 8, it makes little
sense to take more than 51 gradients, since the variance is reduced but not the

2This estimate has been carried out empirically, since no theoretical foundation has been found for
it. However, note that it does not affect the general validity of the analysis performed; yet, it is not
necessary –or useful– for the study presented in Section 4.5.3.
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Figure 4.3: Log–plot of the maximum value of a0 = A2
L,0/2σ2

n which makes the squared bias equal to the
variance of the components of the diffusion tensor, for different tensor shapes. Minimum, mean, and
maximum values among all possible orientations are shown.

bias, so the acquisition time is increased unfruitfully. For a = 50, L = 8, the situ-
ation is the same for more than 15 gradients. It follows that in some situations
it may be more convenient to increase the number of repetitions (NEX) in the ac-
quisition than using more gradient directions. This has the effect of dividing the
noise power σ2

n by NEX (since the signals are averaged in the k–space, where the
noise is Gaussian distributed, see Chapter 3), so that:

MSE =
29.3

N ·NEX

(
a−1

2
− a−2

4 NEX
(3L−4)

)
+a−2 3(L−1)2

4 NEX2 . (4.25)

A constant value of N ·NEX takes a constant acquisition time, and besides provides
a constant reduction factor for the variance, but the bias depends only on NEX
(squared). It may be concluded that, for a given combination of a, N and L which
makes the squared bias similar to the variance (see Fig. 4.2), it is preferable to
increase NEX than using more gradient directions.

4.5.3 Generalization to anisotropic tensors

When the weigths Wii are not equal (the usual anisotropic situation), the analysis
is more complex, since it directly depends on all the involved variables (L, N, the b–
value, and the tensor components themselves) in a non trivial way. An illustrative
experiment with typical values L = 8; N = 15, 27, and 51; b = 1500s/mm2; MD = 0.8 ·
10−3mm2/s has been intended. The maximum value of a0 (defined as a0 = A2

L,0/2σ2
n ,

with AL,0 the amplitude of the baseline image) for which the contribution of the
bias is greater or equal than the contribution of the variance is computed using
eq. (4.21). Since this result depends on the orientation of the diffusion tensor,
Fig. 4.3 shows maximum, minimum, and mean values of a0 for different FA. Two
cases are considered: a prolate tensor (λ1 > λ2 = λ3) and an oblate tensor (λ1 =
λ2 > λ3). For FA=0 (isotropic diffusion, equal weights), the situation is the same
as in Fig. 4.2 (right). With non–isotropic tensors, the bias becomes even more
important (a0 may be one order of magnitude over the value for FA=0 with the
prolate tensor), so the conclusions arised from Section 4.5.2 are even reinforced.
For example, with 51 directions and a prolate tensor with FA=0.8, even for a0 = 104

(AL,0/σn ' 140), the bias is as important as the variance; although this corresponds
to the baseline image, which typically shows a high SNR, it is evident that this
value may be found in many image voxels. Besides, for AL,0/σn ' 300 (this SNR is
an upper limit for a realistic DWI data set), the bias will be roughly 1/4 of the
variance, which is clearly not negligible.
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4.5.4 Discussion

It has been shown that the impact of the bias in Rician signals for WLS tensor–
fitting is in general quite subtle. Notwithstanding, empirical simulations have been
widely reported that reveal the clinical importance of this bias in real–world sce-
narios. For non–central Chi distributed signals, the bias may be a much more
important source of error; the larger the number of receiving coils L, the more crit-
ical. While the variance in the estimation may be reduced increasing the number
of gradient directions, this is not the case for the bias. In some cases, increasing
the number of gradients will not improve the estimation, since the main source of
error will be the bias and not the variance. In these cases, it may be preferable
to improve the SNR by increasing NEX (unless a minimum number of gradient
directions is needed for some purpose).

As an additional difficulty, the traditional WLS approach is not optimal for
non–central Chi signals, since the weights commonly used are not those yielding
minimum variance; although a modification to avoid this problem may be used, it
makes necessary to characterize the noise power for all image voxels.

4.6 Conclusion

The importance of accounting for the impact of noise in the CMS is now evident.
In particular, the bias in the q–space is propagated to the R–space producing
estimation errors which cannot be removed by further regularization. In DTI, the
bias has been proved a critical source of error in the case of pMRI, multiple–coils
systems, or in general CMS following a non–central Chi distribution, while for
Rician signals the impact is quite subtle [Bas00a,Bas06,Jon04,Sal05].

For non–Gaussian diffusion propagators, the bias of Rician–distributed DWI
data sets may have a great impact even for high SNR [Cla08]. For non–central
Chi statistics, it follows that the noise in the DWI might constitute an important
limitation for an accurate estimation. Therefore, it will be essential to account for
this factor by some means.

For DTI, WLS techniques for the estimation of the diffusion tensor may be
substituted by non–linear methods such as Maximum Likelihood [Lan07], which
takes into account the statistical model of noise. This strategy jointly accounts for
the noise in the q–space and the R–space. It shows two main drawbacks:

• It is only valid for the Rician case, and not for non–central Chi signals; WLS
remains valid for the two distributions.

• It is far more complex and slower than WLS.

In fact, one clear advantage of WLS is their general validity for any statistics of
noise [Kay93]. In particular, suppose that the noise in the CMS may be modeled
as additive Gaussian (this assumption is quite realistic for high SNR, see Fig. 4.1).
A similar development to eq. (4.10) may be carried out to yield:

log(ML) = log(AL +n) = log(AL)+
n

AL
− n2

2A2
L

+
n3

3A3
L
−·· · , (4.26)
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so the mean and variance are:

E {log(ML)} = log(AL)− σ2
n

2A2
L

+O

(
σ4

n

A4
L

)
;

Var{log(ML)} =
σ2

n

A2
L

+O

(
σ4

n

A4
L

)
, (4.27)

and the WLS problem has exactly the same formulation as in [Sal05], since the
weights may be chosen exactly the same as in eq. (4.17). This result has even a
deeper meaning; if an unbiased filtering stage is implemented prior to the estima-
tion of the diffusion tensor, the residual noise in the CMS may in fact be accurately
modeled as additive Gaussian, so the WLS remains valid but the propagation of
the error to the R–space is mostly palliated: first, the SNR will be increased, and
second, the residual noise will follow an approximate Gaussian distribution, so
that the bias will be removed. As opposed to the approach in [Lan07], the problem
is decoupled in two different problems, one in the q–space and the other in the
R–space, as follows:

1. Unbiased filtering of the CMS, which is addressed in Chapter 5.

2. Estimation of the diffusion propagator assuming that the CMS is noise–free,
studied in Chapters 6 and 7.





5
Noise removal in Diffusion Weighted Imaging

The particular characteristics of noise in DWI data sets were discussed in Chapter 3. The
consequences of the specific nature of these signals were studied in Chapter 4, where it
was shown that the noise in the images may induce large errors in the computation of
the diffusion tensor or other orientation information. Moreover, these errors cannot be
recovered by further regularization. At this point, the necessity of correctly accounting
for the noise in DWI data sets in any estimation task should remain clear. The current
Chapter deals with this topic. The first part is focused on showing the convenience of
filtering DWI data sets as a pre–processing step. Although other approaches are possible,
this method allows to decouple the noise removal and the estimation of fiber orientations;
therefore, the denoising is independent on the estimation technique to be used, showing
general validity. Amongst the available techniques in the literature, the Linear Minimum
Mean Squared Error (LMMSE) filter and the Unbiased Non–Local Means (UNLM) filter are
paid especial attention due to their high performance. On the other hand, it is shown
that the traditional approach in DWI filtering, independently processing each gradient
and baseline image, can be improved by the use of ad hoc techniques. DWI data sets are
not only a multi–channel set of images; gathering all the channels, and the correlations
between them, is the only way to account for the rich structural information provided by
this modality. This is referred to as joint information, and the main focus of this Chapter
is to exploit this joint information to improve the performance of denoising. Extensive
experiments have been intended that evidence the goodness of this approach. The main
original contribution in this Chapter is the use of joint information for DWI denoising,
through the introduction of joint extensions of LMMSE and UNLM. Besides, these filters
are extended to the non–central Chi case in the final part of the Chapter. In the method-
ological part, some insights are given about the adequacy of phantoms commonly used
in the literature to assess filtering accuracy; it is shown that oversimplified phantoms
may drive to erroneous conclusions in the comparison of filtering techniques, proposing
a methodology to overcome this problem.

5.1 Introduction

The impact of noise in Diffusion Imaging should remain clear from Chapter 4.
DWI are collected by applying a sensitizing gradient in a known direction, which
produces an attenuation in the T2 (baseline) image following an exponential law
(see Chapter 2 for a detailed description of the underlying physical processes). As
opposed to conventional MRI, DWI data sets usually show a poor SNR: the aver-
age signal power is much lower due to diffusion attenuation, but the noise power
is the same, since it is governed by the thermal disturbance in the MRI scanner
(see Chapter 3). This is especially the case with modern HARDI techniques (see
Section 2.7 for a brief review of them), where very strong gradients (and therefore
very strong attenuation) are often applied in order to improve the contrast between
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different diffusion directions1. Moreover, the nature of noise in the CMS (Rician
or non–central Chi) may render strong biases in the estimation of diffusion prop-
agators, as shown in Chapter 4. This same biased behavior prevents the use of
conventional, Gaussian-based filtering techniques.

5.1.1 State of the art on denoising of Diffusion Images

The great impact of noise in Diffusion Imaging has been widely reported previ-
ously [AF08c, Bas00a, Bas06, Jon04], and as a consequence, a number of spe-
cific techniques for noise removal in DWI/DTI have been proposed in the liter-
ature. These methods may be summarized following the classification proposed
in [MF09]:

1. Regularization of the tensor fields after the diffusion tensor has been esti-
mated [Che02,Che05,CM07,Cou04,MF04,Pen06,Pou00].

2. Estimation of the diffusion tensor (or more general orientation information)
accounting for the Rician model, where regularization and tensor estimation
are done simultaneously [Fil07,Pen06,Wan04b].

3. Denoising of DWI volumes previous to the estimation of the diffusion tensor
or the orientation information.

It is worth noticing that the survey above is centered on DTI; for more advanced
HARDI techniques, the third alternative is the most attractive, since it does not
rely on any particular model. Naturally, some exceptions may be found in the
literature. In [Bar08], a technique is proposed for the regularization of general
displacement probability PDF fields, which may be enclosed in the first category.
In [Cla08], the Rician nature of noise is accounted in some models for the es-
timation of these PDF, so it may be considered in the second group. However,
the preferred methodology is the third one. First, the denoising process does not
depend on the particular application (DTI estimation or HARDI reconstruction);
second, accurate statistical models for noise, like those described in Chapter 3,
are available. Additionally, the scheme presented in Section 2.5.3 holds, so that
the estimation of the x×q–space out from noisy samples and the estimation of the
x×R–space may be considered as independent problems.

This Chapter is centered on the third group of techniques, which comprise a
number of approaches in the recent literature: the conventional approach [McG93],
based on the properties of the second order moment of Rician data; Maximum
Likelihood [Sij04] and Expectation–Maximization [Mar95] approaches; wavelets
[Now99, Piž03]; unbiased Wiener filtering [MF07, MF09] or anisotropic diffusion
[Ger92, Kri09] have been used. Among these approaches, the Linear Minimum
Mean Squared Error (LMMSE) filter first introduced in [AF07, AF08a, AF08c] for
conventional MRI, and the Non–Local Means (NLM) and Unbiased Non–Local Means
(UNLM) as proposed in [AF08b, Cou08, Des08, Man08, WD07, WD08] have been
shown to outperform the most common approaches in the literature.

On the other hand, it has been pointed out in [Fil07] that filtering each DWI
component independently is not the best way to perform denoising, since only the
combination of all the DWI can reveal the complex structure of the white matter. In
other words, due to the particular nature of DWI data sets, one single DWI channel
is not enough to characterize the underlying structures in the multi–dimensional

1This topic will be further discussed in Chapter 6.
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image, so all the available information has to be considered as a whole. This way,
not only the information of all channels, but also the correlations between them
are exploited to estimate the noise–free signals. This concept has been referred to
as joint information in [TV08].

As a final remark, all these techniques are grounded on the assumption of a
Rician distribution of the noise in the CMS, since this is the most common case
for single–coil MRI and most of the pMRI reconstruction algorithms. However, it
was shown in Chapter 3 that two important scenarios in MRI, i.e. reconstruction
from multiple array coils and the GRAPPA algorithm for pMRI, are described by
non–central Chi distributions. The first part of this Chapter is focused on the
description of two novel techniques for Rician noise removal in DWI, accounting
for the joint information in these data sets; in the last part of the Chapter, these
approaches are extended to the important non–central Chi case, thus covering a
wide specter of current MRI techniques.

5.2 DWI filtering based on Rician moments

The Rician model has been the traditional keystone in MRI [Bas00a,Gud95,Jon04],
as discussed in Section 3.4. The CMS can be modeled as described by eq. (3.19).
However, it will be useful in this Chapter to use an alternative representation as-
suming that the signal of interest is real, i.e. A = Ac + j0. Without loss of generality,
eq. (3.19) may be replaced by2:

Mi =
√

(Ai +nc,i)
2 +n2

s,i, (5.1)

where the subindex i has been added to denote each gradient direction. The PDF
of Mi is exactly the same as in eq. (3.20). The main issue with Rician signals is
that the expected value of Mi is not Ai, and yet the bias depends on Ai, so common
filtering approaches based on averaging samples of Mi are not adequate. Although
odd order moments of Mi have complicated expressions, the even order moments
are easier to compute, and above all they represent estimates of the corresponding
moments of Ai with a constant bias. For these reasons, they represent the basis
for most of the filtering techniques in the literature.

In the following developments, it is useful to consider Ai itself not as a mere
parameter to estimate, but also as a random variable. With this consideration,
the first two even order moments of Mi can be computed from eq. (5.1). Hereafter,
such moments (expected values), will be denoted as 〈Mr

i 〉:

〈M2
i 〉 ≡ E{M2

i }= E
{

(Ai +nc,i)
2 +n2

s,i

}
= E

{
A2

i
}

+2E {Ainc,i}+E
{

n2
c,i
}

+E
{

n2
s,i
}

= 〈A2
i 〉+2σ

2
n ; (5.2)

〈M4
i 〉 ≡ E{M4

i }= E
{(

(Ai +nc,i)
2 +n2

s,i

)2
}

= E
{

A4
i
}
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{

A3
i nc,i

}
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{
A2

i
(
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s,i
)}
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{
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(
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s,i
)}

+2E
{

n2
c,in

2
s,i
}

+E
{

n4
c,i +n4

s,i
}

= 〈A4
i 〉+8〈A2

i 〉σ2
n +2σ

2
n σ

2
n +6σ

4
n = 〈A4

i 〉+8σ
2
n 〈A2

i 〉+8σ
4
n , (5.3)

since the moments of the Gaussian noises ni (nc,i or ns,i) are: 〈ni〉 = 0, 〈n2
i 〉 = σ2

n ,
〈n3

i 〉 = 0 and 〈n4
i 〉 = 3σ4

n . In what follows two filtering techniques based on these

2The representation in terms of complex signals, Aci + jAsi , is completely equivalent, but the notation
is more complicated. Note that this same model was used in the previous Chapter.
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results are presented. They are the LMMSE filter and the UNLM filter, which as
mentioned above have been successfully used in the recent literature in a number
of problems.

5.2.1 The Linear Minimum Mean Squared Error filter

LMMSE estimators find estimates of Âi, which is modeled as the realization of
a random variable, out from measured samples of Mi [Kay93]. This philosophy
allows to include some prior information of the behavior of Ai to improve the esti-
mation. The advantage of using a linear estimator is that it is only necessary to
characterize the first and second order moments of the data to estimate. For the
Rician distribution described by eq. (3.20) it is not trivial to compute the first or-
der moment, so the strategy proposed in [AF08a,AF08c] is to estimate the squared
value of Ai. The LMMSE estimator of A2

i (x) at each image location x in the domain
Ω of the image reads [Kay93]:

Â2
i (x) = 〈A2

i (x)〉+CA2
i M2

i
(x)C−1

M2
i M2

i
(x)
(
M2

i (x)−〈M2
i (x)〉

)
, (5.4)

where the cross covariance CA2
i M2

i
and the auto–covariance CM2

i M2
i

are computed in
a similar way to the moments of Mi:

CA2
i M2

i
(x) = E

{(
A2

i (x)−〈A2
i (x)〉

)(
M2

i (x)−〈M2
i (x)〉

)}
= 〈M4

i (x)〉−〈M2
i (x)〉2−4σ

2
n
(
〈M2

i (x)〉−σ
2
n
)
,

CM2
i M2

i
(x) = E

{(
M2

i (x)−〈M2
i (x)〉

)2
}

= 〈M4
i (x)〉−〈M2

i (x)〉2. (5.5)

In practice, the moments of Ai and Mi are not known, so they have to be estimated
from samples in a neighborhood Nx ∈Ω around the pixel at x:

〈Mr
i (x)〉 ' 1

|Nx| ∑
c∈Nx

Mr
i (c)≡Mr

i (x), (5.6)

where |Nx| is the number of samples in Nx. For the moment 〈A2
i 〉 in eq. (5.4), the

relation in eq. (5.2) may be exploited:

〈A2
i (x)〉= 〈M2

i (x)〉−2σ
2
n 'M2

i (x)−2σ
2
n . (5.7)

This is the LMMSE filter in [AF08a,AF08c]. Eq. (5.4) is applied independently for
each gradient and baseline image. The estimation of the covariances in eq. (5.5)
has to be repeated as well for each gradient and baseline.

5.2.2 The Unbiased Non–Local Means filter

The original NLM formulation for each gradient direction and baseline image fol-
lows [Bua05]:

Âi(x) = ∑
c∈Ω

wi(x,c)Mi(c), (5.8)

where wi are a set of weights computed as:

wi(x,c) =
1

Ui(x)
exp
(
−di(x,c)

h2

)
, Ui(x) = ∑

c∈Ω

exp
(
−di(x,c)

h2

)
, (5.9)
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where h is a parameter related to σn and di(x,c) is a distance between the voxels at
positions x and c; instead of using a geometrical distance, NLM uses a distance in
the domain of the gray levels of the image, which is:

di(x,c) = (Mi(Nx)−Mi(Nc))
T Gρ (Mi(Nx)−Mi(Nc)) , (5.10)

where Mi(Nx) and Mi(Nc) are column vectors containing the gray values of the
voxels in the neighborhoods Nx and Nc of voxels x and c, respectively. Gρ is a
Gaussian kernel (diagonal matrix) which gives a higher weight to the voxels of
the neighborhood geometrically closer to the center of Nx. The computational load
associated to eq. (5.8) is prohibitive, so the domain Ω is usually substituted by
a neighborhood N ′

x of voxel x. Besides, it is proposed in [Man08] to change the
weight w(x,x) in eq. (5.9) by the maximum of w(x,c), c 6= x to avoid over–weighting
the central voxel of N ′

x . A similar procedure is applied to the center of Gρ .

The optimality of NLM for additive and multiplicative noise has been shown
in [Bua05]. For Rician noise, the average of noisy samples Mi(c) would introduce
a bias in the estimation [Xu08]. Like for LMMSE, the squared value of Ai may be
estimated instead3 [Des08,WD08], so eq. (5.8) reads:

Â2
i (x) = ∑

c∈Ω

wi(x,c)M2
i (c)−2σ

2
n . (5.11)

The second order moment 〈M2
i (x)〉 is estimated as a non–local sample average,

and eq. (5.2) is used to compute the estimation Â2
i as the non–local second order

moment 〈A2
i (x)〉. This is the so–called UNLM filter, for which each gradient image

and baseline are filtered independently (like for LMMSE).

5.3 Exploiting joint information: filters in the x×q–space

The filtering techniques reviewed in Sections 5.2.1 and 5.2.2 process each gradient
image (and baseline) as an independent image. This methodology does not allow
to exploit the correlations (joint information) present in diffusion data sets: corre-
sponding voxels of different volumes correspond to the same anatomical structure,
so gathering the information of all the gradient images as a whole might be use-
ful to better model image properties and improve the estimation. This way, the
filtering is not performed in the 3D x–space, but instead the dimensionality is
extended to the x× q–space. Hence, neighborhoods are not limited to the space
domain, comprising proximal points in the q–space, together with their statistical
correlations. In the remainder of this Section, the LMMSE filter and the UNLM
filter are extended to meet this requirement.

5.3.1 Notation

The vectors M2 and A2 denote the set of noisy measurements [M2
0 , . . . ,M2

Z−1]
T and

the set of noise–free values to estimate [A2
0, . . . ,A

2
Z−1]

T , respectively. The spatial
dependency M2(x) and A2(x) will be made explicit were needed and dropped down
elsewhere. Note that the set of indices i = 0, . . . ,Z−1 comprise both gradient images
and baselines: M2

0 , . . . ,M2
Zb−1 are the Zb (squared) baselines, and M2

Zb
, . . . ,M2

Z−1 are the

3Other approaches based on the first order moment of the Rician distribution are possible [AF08b].
In this work, an analytical correction of the bias, dependent on the estimated value of Ai, has to be
computed. Only the traditional methodology based on even order moments [McG93] is discussed here.
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Zg (squared) gradients. Therefore, Z = Zb +Zg, where Zb < Zg. For convenience, the
following auxiliary set of indices for each integer N, 0 < N ≤ Zg, are defined:

Θ
N
i =


{ j|0≤ j < Zb}, if 0≤ i < Zb (baselines).

The set of indices of the N clos-
est gradient directions to gi.

, if Zb ≤ i < Z (gradients). (5.12)

If the index i corresponds to a baseline, Θ N
i is the whole set of baseline indices

{0, . . . ,Zb−1} for any value of N. If i corresponds to a gradient image, Θ N
i is the set

of the N indices corresponding to the gradient directions most similar to the i–th
direction. For N = 1, Θ N

i reduces to i. For N = Zg, Θ N
i = {Zb, . . . ,Z−1}. Accordingly,

Ai|N denotes the vector of components of A corresponding to the indices in Θ N
i .

The expected value of A(x) is denoted 〈A(x)〉, and its sample moment in a
neighborhood Nx ⊂ Ω of x reads A(x). Ω ⊂ R3 is the domain of the image (the
x–space). Finally, the cross covariance matrix CA2M2(x), and the auto covariance
matrix CM2M2(x) are defined as:

CA2M2(x) = E
{(

A2(x)−〈A2(x)〉
)(

M2(x)−〈M2(x)〉
)T
}

.

CM2M2(x) = E
{(

M2(x)−〈M2(x)〉
)(

M2(x)−〈M2(x)〉
)T
}

. (5.13)

5.3.2 Multi–channel LMMSE based on joint information

Generalizing eq. (5.4) to the vector case is straightforward [Kay93]:

Â2(x) = 〈A2(x)〉+CA2M2(x)CM2M2(x)−1 (M2(x)−〈M2(x)〉
)
. (5.14)

In this approach, one single estimator is defined for all the gradient and base-
line images as a whole. The moments 〈M2〉 and 〈A2〉 are estimated from samples
directly extrapolating eqs. (5.6) and (5.7) for each component of M2 and A2. The
estimation of CA2M2 and CM2M2 is more involved, since it requires the computation
of all crossed moments E{(Xi− 〈Xi〉)(Yj − 〈Yj〉)}, see eq. (5.13). This computation
heavily increases the computational load, which is O(Z2). An alternative approach
has been proposed in [TV08], which is included in Appendix B. Under some as-
sumptions, the following equivalences hold:

CA2M2 = ς〈A2〉〈A2〉T ;
CM2M2 = ς〈A2〉〈A2〉T +4σ

2
n diag

(
〈A2〉

)
+4σ

4
n IZ , (5.15)

where:

ς =
〈A4

β
〉−〈A2

β
〉2

〈A2
β
〉2

> 0, (5.16)

is the normalized local structural variability measured for any of the baseline
images β , so 0≤ β < Zb. IZ is the identity matrix, and 〈A4

β
〉may be estimated from M4

β

using eq. (5.7). Note that the computation of the matrices in eq. (5.15) requires only
to estimate the second–order moment of each component of A2, so the complexity
is only O(Z). On the other hand, the inversion of CM2M2 at each image location x
is a clear computational burden. Instead, it has been proved in [TV08] that the
following recursive approximation may be used in practically all image voxels:

C−1
M2M2

(
M2−〈M2〉

)
' wO ;

wl+1 =
(
M2−〈M2〉

)
−4σ

2
n C̃−1

M2M2wl ;

w0 =
(
M2−〈M2〉

)
;

C̃−1
M2M2 = η11T +diag(e), (5.17)
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where η is a scalar constant and 1,e are Z×1 vectors defined by:

η =−

(
4σ

2
n

(
4σ2

n

ς
+

L

∑
i=0
〈A2

i 〉

))−1

; ei =
(
4σ

2
n 〈A2

i 〉
)−1

; 1i = 1,

see Appendix B for details. In practice, it is enough to use only one term in the
recursion, so O = 1. Besides, the products with C̃−1

M2M2 are very efficient to compute
due to its simple structure (it is easy to check that the complexity remains O(Z)).

Eqs. (5.15) and (5.17), together with the estimation procedure described for
the moments of M2 and A2, may be casted into eq. (5.14) to perform the joint
LMMSE filtering. The main advantage of this approach compared to the LMMSE
described in Section 5.2.1 is that it accounts for the joint information of the whole
data set: to estimate the value of Ai(x), not only the measurements Mi(c),c ∈Nx
are considered, but all the measurements M j(c),c ∈Nx of other channels as well.
Besides, the covariance matrices CM2M2 and CA2M2 account for the correlations be-
tween different channels. Although the joint LMMSE has been shown to outper-
form LMMSE, some ringing artifacts and over–blurring may appear under some
circumstances [TV08]. To further study this behavior, eq. (5.14) may be re–written
explicitly using eqs. (5.15) and (5.17):

Â2 = 〈A2〉+ ς〈A2〉〈A2〉T Q = 〈A2〉+ 〈A2〉 ·χ, (5.18)

for:

Q = C−1
M2M2

(
M2−〈M2〉

)
;

χ = ς〈A2〉T Q,

where Q is the column vector recursively computed in eq. (5.17), and χ is its inner
product with ς〈A2〉. The moments in eq. (5.18) are computed as local sample av-
erages: 〈A2〉 'M2−2σ2

n . The estimated value Â2 is thus computed as the low–pass
filtered M2−2σ2

n , and further corrected with the term 〈A2〉 ·χ, which is proportional
to ς :

• If the local variability of the image is small, ς vanishes and the estimated
value is approximately the (unbiased) local average of the image, M2−2σ2

n .

• If the local variability is higher, this local average is corrected with the term
〈A2〉 ·χ to avoid the low–pass filtering and preserve the contours.

The difference with the conventional LMMSE is that the factor χ is the same
for all baselines and gradient images, and it is fixed taking into account the joint
information of all channels. This technique has two main drawbacks, which are
responsible of the aforementioned artifacts:

1. The correction factor χ is the same for the baselines as well as for all the gra-
dient images, which show very different properties depending on the tissue.

2. In the presence of strong eddy current distortion, a corresponding voxel in
two different gradient images does not necessarily correspond to the same
physical point [And02,Net04,Nie04], introducing an important source of error
in the joint model.

To overcome these problems, it can be considered that the baseline images, if
more than one, have identical properties. For the gradients, images corresponding
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to similar directions have similar properties, and are affected in a similar way by
eddy currents. Thus, the filter LMMSE-N is defined as:

Â2
i = 〈A2

i 〉+ ς〈A2
i 〉
(
〈A2

i|N〉T C−1
M2

i|N M2
i|N

(
M2

i|N−〈M
2

i|N〉
))

= 〈A2
i 〉+ χi|N〈A2

i 〉, (5.19)

Eq. (5.19) is formally very similar to eq. (5.14), but now the estimation is done in a
different way for each channel. Only the joint information shared by the channels
in Θ N

i and their correlations are accounted to filter the channel i. This way, only
volumes with similar characteristics are filtered together. For the baselines, the
correction χi|N is computed only once, since Θ N

i is the same for all of them (the
whole set {0, . . . ,Zb−1}). For the gradient images:

• If N < Zg the correction χi|N is computed for each gradient, because each set
Θ N

i is different from each other. Since there is a set of size N for each of the
Zg gradients, the complexity is O(NZg).

• If N = Zg, all Θ N
i are the same (the whole set {Zb, . . . ,Z−1}), so χi|N is computed

once and the complexity is only O(Zg).

Under a different point of view, a neighborhood in the q–space is defined, so
that only the points which are proximal in this space are considered to process
each voxel. Given this idea of proximity, both in the space domain and in the
domain of the gradients, LMMSE–N may be considered to work in the x×q–space.

5.3.3 Multi–channel UNLM based on joint information

In order to adapt the same idea behind LMMSE–N, the notion of neighborhood in
the q–space is to be used; assuming once again that similar gradient directions
show similar behaviors, the UNLM–N filter is defined as:

Â2
i (x) = ∑

j∈Θ N
i

∑
c∈N ′

x

w j
i (x,c)M2

j (c)−2σ
2
n , (5.20)

where now:

w j
i (x,c) =

1
Ui(x)

exp

(
−

d j
i (x,c)

h2

)
, Ui(x) = ∑

j∈Θ N
i

∑
c∈N ′

x

exp

(
−

d j
i (x,c)

h2

)
, (5.21)

and:
d j

i (x,c) = (Mi(Nx)−M j(Nc))
T Gρ (Mi(Nx)−M j(Nc)) . (5.22)

UNLM works by averaging voxels with weights w found by correlating patches
around the voxels of interest. UNLM–N looks for these correlated patches not only
in the same gradient image i, but also in gradient images j near the direction
i. This way, correlations between the DWI channels (i.e. the joint information)
are exploited. Although this is not the first attempt to adapt UNLM to a multi–
channel environment [WD07], the former work shows a very poor performance.
In the approach here presented the non–local behavior is reduced to the spatial
domain, but in the q–space local neighborhoods are considered instead to avoid
artifacts. Like LMMSE–N, UNLM–N works by averaging voxels in neighborhoods
in the x× q–space; this neighborhoods are non–local in the the spatial domain
(where distances in the gray levels are considered) and local in the domain of the
gradients (where geometrical distances are used).
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Figure 5.1: Overview of the construction of the synthetic phantom. The input is the original (real) DWI
volume, and the output the synthetic volume.

5.4 Performance of the filtering algorithms

5.4.1 Design of phantom data for quantitative evaluation

The quantitative assessment of filtering performance has been carried out in dif-
ferent ways. They include visual assessment [AF08c,TV08,WD07,WD08] and in-
direct measures based on the properties of DTI volumes recovered from filtered
DWI [AF08c, MF09]; in this case, the computation of related parameters, such
as the smoothness in the fiber tracts estimated from DTI [MF09], makes it dif-
ficult to evaluate the filtering performance, since the final result depends on
a number of factors others than the filtering itself. On the other hand, direct
evaluation on filtered DWI is a difficult task; in [WD07], 12 acquisitions of the
same patient are available, so a leave–one–out strategy is used to filter one of
the volumes each time and compare the result to a noise–free image obtained
from the remaining 11 volumes. When multiple observations are not available,
phantom data has to be used. As opposed to conventional MRI, for which very
realistic phantoms exist and have been intensively used [Col98], there is not a
DWI synthetic data set widely accepted as a standard, so over-simplified mod-
els are used like in [AF08c, TV08, WD08], based on large homogeneous regions
simulating coarse crossing fiber tracts. Commonly used configurations are cross-
ing sections in two [AF08c,MF09,WD08] and three dimensions [TV08], although
other approaches like the earth and logarithm in [MF09], or the logarithmic spiral
in [AF08c] are possible. These simple configurations are not representative of the
complex architecture of the white matter of the brain, which in general presents
multiple fiber crossings, bending and sharp changes in curvature/orientation in
the space of a few voxels. On the other hand, a classical methodology to obtain
phantom data with image characteristics similar to real data may be:

1. Pick up a real data set and denoise/regularize it by some means. This will
be the golden standard.

2. Corrupt the regularized data set with a known random process.

3. Filter the noisy data set, and compare it with the ground truth.

In order to adapt this methodology to the DWI case, the process depicted in Fig. 5.1
is followed [TV09a]. In point (1), a real DWI data set with 8 baselines A0, . . . ,A7 and
51 gradient directions A8, . . . ,A58 is considered. To that end, volume BWH3 has
been selected, since it has a good spatial resolution, enough gradient directions
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to resolve complex micro–architectures, and yet a small enough b–value to keep a
high SNR. The denoising/regularization proceeds in three stages:

Stage 1 UNLM denoising for each DWI channel and baseline average.

Stage 2 Regularization of the DWI data set across the gradient directions.

Stage 3 Median filtering.

These techniques are further explained next.

UNLM denoising of each channel

UNLM–1 (i.e., the conventional UNLM) is chosen as a well tested algorithm, and as
well to avoid any bias which could favor either LMMSE–N or UNLM–N. Assuming
that the residual noise in the images is close to Gaussian, or at least symmetrically
distributed, the eight filtered baselines are averaged to achieve a nearly noise–free
baseline A′′0. The gradient images are renumbered A′1, . . .A

′
51.

Regularization of the DWI data set across the gradient directions

According to [Fil07], a correct regularization of a DWI data set must account for
the relations between the images in different gradient directions. While stage 1 is
centered on the spatial regularization of all channels (i.e. in the x–space), in stage
2 the regularization is performed in the q–space. To that end, the technique pro-
posed in [Des06,Des07] is used. Going back to eq. (2.39), the Apparent Diffusion
Coefficient (ADC) may be expressed with total generality in the form:

Di ≡ D(b,gi) =−1
b

log
(

A′i
A′′0

)
i = 1 . . .51, (5.23)

where gi is the i–th unitary gradient direction, which may be expressed in terms
of its spherical coordinates –in physics convention– (θi,φi). Di are a sampled noisy
version of the ADC at the measured b–value. To regularize this function (which is
defined in the sphere of radius q =

√
b/4πτ belonging to the q–space), it has been

proposed in [Des06] to expand it in the basis of Spherical Harmonics (SH)4:

D′ (b,g) =
3

∑
l=0

2l

∑
m=−2l

Cm
2lY

m
2l (g), (5.24)

where Y m
l are the basis functions and Cm

l are the coefficients of the expansion,
fitted to data by LS. The regularization is achieved by two means:

1. Truncating the SH expansion to order 2l = 6.

2. Introducing a Tikhonov regularization term in the LS fitting, which is the
parameter λ used in [Des06] (its suggested value is λ = 0.006).

4SH have been of paramount importance in the development of diffusion imaging based on HARDI.
The reader is referred to Section 6.4 and Appendix D for a detailed mathematical description of this
tool. At this point, it is enough to say that SH form an orthonormal basis for all those functions
defined on the sphere of radius 1 (which is to say, all those functions taking values for the gradient
directions gi). Basis functions of lower orders l correspond to lower energies of the second order angular
derivatives, and therefore to slow variations in the ADC profile.
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Eq. (5.24) represents the ADC for any direction g, so the regularized gradients may
be computed for an arbitrary gradient direction using eq. (2.39):

A′′j ≡ A′′
(
g′j
)

= A′′0 exp
(
−b′D′

(
b,g′j

))
, (5.25)

where a more usual b–value for practical applications has been chosen: b′ =
1200 s/mm−2. This election serves to increase the contrast between each DWI
volume5. Two data sets have been generated using eq. (5.25):

• ph15, with 15 gradient directions g′j taken from CDR1.

• ph51, with 51 gradient directions g′j taken from BWH2.

Median filtering

Due to a poor fit of SH, some outliers may appear in the background of the image
or in the ventricles. Although these zones will be avoided in the computation of the
similarity measures (see Section 5.4.2), median filtering is carried out to achieve a
visually adequate result. The data set is median filtered slice by slice and gradient
by gradient with a mask of size 3×3.

Noise corruption

The point 2 in the methodology described is to corrupt the phantom with Rician
noise:

M j =

√(
A′′′j +nc

)2
+n2

s , j = 0 . . .Z′g, (5.26)

where nc and ns are independent Gaussian random processes with zero mean and
variance σ2

n . Spatially correlated noises nc,s, instead of white noise, are generated
to simulate realistic scanning conditions. From white Gaussian noises ñc,s with
noise power σ2

n , the following transformation is performed:

nc,s(k1,k2) =

(
∑

p1,p2

G2(p1, p2)

)−1

∑
p1,p2

ñc,s(p1, p2)G(k1− p1,k2− p2), (5.27)

where G is a Gaussian kernel with isotropic variance η2. The signal is divided by
the energy of G to keep its power constant.

The results for an arbitrary gradient direction of the noise–free phantom (ph15),
the noise–corrupted phantom for PSNR=41.9 (σn = 200) and PSNR=53.8 (σn = 50),
together with an original slice of V3 may be seen in Fig. 5.2. As a final comment,
it is important to stress that the data set proposed is not intended as a realistic
anatomical phantom, but only as a noise–free phantom to assess the performance
of filtering. The edge configurations and image structures are similar to what may
be found in a real data set, but obviously not the underlying neural architectures
or connections.

5.4.2 Filtering performance criteria based on ground truth

The point 3 in the methodology used is to compare the filtered image with the
noise–free phantom. To that end, two different criteria are used:

5Note that the ADC is assumed to have a similar shape both for b and b′: D(b,g) ' D(b′,g). This
assumption, which is the keystone for a number of HARDI techniques [Des06, Öza06], will be further
discussed in Chapters 6 and 7.
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Figure 5.2: Central slices of the DWI phantom for an arbitrary gradient direction. From the original
gradients Ai (a), UNLM is used to regularize the volumes in the x–space (A′i in b). Then the ADC (Di) is
computed and regularized in the q–space (D′j) via SH decomposition, with a total of 28 coefficients Cm

2l
(c shows the first one for l = 0). Arbitrary gradient directions A′′j are generated with a higher b–value (d).
Finally, a median filter is used to obtain the noise–free phantom A′′′j , comprising the averaged baseline
A′′′0 (e) and each of the 15 gradient images A′′′j (f). Correlated noise is added to produce the noisy
phantoms Mi, with a maximum PSNR (see Section 5.4.2) of 53.8dB (SNR=17.6dB, g) and a minimum
of 41.9dB (SNR=5.6dB, h).

• The Peak Signal to Noise Ratio (PSNR) has been commonly used in the recent
literature as an intuitive an easy to compute measure [Cou08, WD08]. It is
defined as:

PSNR = 20log10
A

RMSE
, (5.28)

with RMSE the Root Mean Squared Error and A = maxx A(x) the peak am-
plitude of the signal, which is 25,000 for the phantom data presented in
Section 5.4.1. Other RMSE–related measures have been used in the litera-
ture [AF08c,TV08,WD07], such as the SNR. The SNR is proportional to the
PSNR for a given signal power, so they may be considered equivalent.

• The problem with the PSNR is that it represents too rough a measure of sim-
ilarity, since it does not account for the similarity between image structures,
but only for the similarity between gray levels. To overcome this problem, the
Structural Similarity (SSIM) index introduced in [Wan04a] is used.

Although some other measures related to tensor data, such as the similarity in
the Fractional Anisotropy (FA) or the Mean Diffusivity (MD) might be thought of,
their use has two inherent drawbacks:

1. The estimation of the tensor introduces an extra regularization, since only
6 degrees of freedom are estimated from a typically larger number of gradi-
ent directions. This way, it is difficult to distinguish if a given result is the
effect of the filtering process, of the estimation process, or a combination of
both. Since the interest is only in the evaluation of filtering performance, it
is preferable to isolate the former effect.
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Figure 5.3: Performance indices as a function of the PSNR of the original data, for ph15 (a and b), and
ph51 (c and d): PSNR (a and b), and SSIM (b and d).

2. As stated in Section 5.4.1, the phantom data considered is only intended
to simulate the characteristics of the images but not the anatomical prop-
erties of real data. Evaluating tensor (anatomical) measures would not be
conclusive, since the anatomical properties of the phantom are not realistic.

As a final comment, the indices are computed only in the structures of interest in-
side the image, so the background is removed by automatic thresholding [Ots79].
All the measurements reported refer to mean values amongst the DWI without the
baseline images. The reason is that the SNR in the baseline is much greater, so
including it in the computation could reduce the significance of the results.

5.4.3 Quantitative performance assessment based on ground truth

The LMMSE and UNLM approaches are quantitatively compared and the improve-
ment of using joint information of DWI is measured. As mentioned above, the
direct evaluation of filtering performance over DWI data sets before DTI or HARDI
reconstruction allows to isolate the behavior (and possible artifacts) due to the
filtering from the behavior (and possible artifacts) due to the regularization in the
estimation. Identical methodologies have been commonly used for this task in
the literature [AF08c,Bas06,Cou08,MF09,WD07,WD08]. The phantom data pre-
sented in Section 5.4.1 is used together with the performance criteria in Section
5.4.2 to compare several configurations of LMMSE–N and UNLM–N. For LMMSE,
since the inter–slice distance of the phantom is not very large, the window size is
set to 5×5×3. Four different configurations are tested depending on the scenario:

• For ph15, LMMSE–1, LMMSE–3, LMMSE–5 and LMMSE–15.
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Nx N ′
x ρ h

3×3×3 7×7×3 1 h = σn

Table 5.1: Summary of the parameters used for UNLM–N in all experiments.

• For ph51, LMMSE–1, LMMSE–5, LMMSE–15 and LMMSE–51.

For UNLM, the parameters used in all the experiments reported are summarized
in Table 5.1. The values suggested in [Man08] are mostly used (the sizes of the
neighborhoods are adapted to a 3D image), except for h, which is set to a typical
value for DWI [Cou08,WD07]. Only UNLM–1, UNLM–3 and UNLM–5 are tested in
both scenarios, since using more gradients becomes computationally prohibitive.
A range of PSNR between 41.9 dB and 53.8 dB has been used, which at the sight
of Fig. 5.2 seems reasonable. The results shown in Fig. 5.3 allow to extract the
following conclusions:

1. The two performance indices yield consistent results over a wide range of
input PSNR.

2. The joint model performs clearly better for LMMSE; the more joint informa-
tion, the higher indices. This behavior holds both for 15 and 51 gradient
directions.

3. The use of joint information is more profitable for more gradient directions.
This is especially noticeable for the SSIM index (compare b and d). Exploit-
ing the correlations between different channels allows to better resolve the
structures of the image, which is especially useful to preserve the contours.

4. The improvement with the joint model for UNLM is only marginal, but at least
the results are not worsened (as opposed to the method in [WD07]).

5. UNLM–N performs better than the conventional LMMSE–1 for medium and
high PSNR. But LMMSE–N, even for N = 3 or 5, outperforms all configura-
tions of UNLM–N for medium and low SNR.

Summarizing this Section, the advantage of using joint information for DWI fil-
tering remains clear. The more joint information, the greater the improvement.
This is especially the case for LMMSE–N, although UNLM–N may benefit from this
technique as well. Comparing these two filters, LMMSE–N seems preferable for
medium–low PSNR, but its advantage over UNLM–N is not so clear for medium–
high PSNR. LMMSE–N is thus preferable in scenarios of low SNR with a large
number of gradient directions, which makes it advisable for HARDI scenarios (this
assertion will be further validated later on).

5.4.4 On the use of phantom data

The aim of this Section is to stress the importance of using an adequate phantom
for performance assessment, as opposed to the conventional crossing sections
phantoms used in the literature. To that end, analogous experiments to those in
Section 5.4.3 are presented here, but now the 3D phantom described in [TV08],
and sketched in Fig. 5.4, is used. It consists of a sphere with radius R = 120 inside
a black background. The baseline image has a decreasing magnitude towards
the borders: A0 = 230/(1 + (r/200)2), except for a band with constant magnitude
A0 = 255 for |x| < 35. There are three fiber bundles along each coordinate axis,
with diffusion directions following them: for |y,z| < 35, the eigenvalues are λ =
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Figure 5.4: Synthetic phantom based on crossing sections. The baseline image, together with some
representative fiber bundles, is shown to give an idea of its configuration. Left: noisy phantom. Right:
LMMSE–15 filtered phantom.

[1,0.2,0.2] · 10−3 mm2/s, and so on. The rest of the phantom is isotropic with λ j =
0.25 · 10−3 mm2/s, and b=1200 s/mm2; 15 gradient directions have been used.
For the sake of comparison, UNLM–1 and LMMSE–15 are tested. Additionally,
the Conventional Approach (CA) in [McG93] is included in the experiment. It is
implemented as a Gaussian low–pass filter with isotropic standard deviation of
η = 1.5 voxels, which is applied to the squared signal M2

i and the bias removed
using eq. (5.2). PSNR between 48dB and 54dB (medium and high SNR range) are
tested in Fig. 5.5, comparing the results for the synthetic phantom of Fig. 5.4 and
for the phantom data introduced in Section 5.4.1. The following comments arise
from this experiment:

1. The two indices yield contradictory results with the cross sections phantom,
as opposed to the phantom data used in Section 5.4.3.

2. For PSNR, CA seems to outperform UNLM for medium SNR with the cross
sections phantom. CA is not intended to preserve image contours (it is only
a low–pass filter), so this behavior does not seem reasonable. This is not the
case with the phantom proposed.

3. For SSIM, CA seems to outperform LMMSE for practically all SNR with the
cross sections phantom. The same comment in the previous point holds now.
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Figure 5.5: Filtering performance with the phantom data used (solid) and with a conventional phan-
tom (dashes), for LMMSE–15 (red), UNLM (green) and the Conventional Approach (blue). The PSNR
(left) and the SSIM (right) are shown for 15 gradient directions.
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Figure 5.6: Log–plots of the 2-D histograms in the FA/MD plane (MD is scaled by 1000 for conve-
nience) for the phantom of Fig. 5.4: (a) original noisy data, (b) LMMSE–5, (c) LMMSE–15 and (d)
UNLM–1. The ideal centroids for each region are represented as black spots. Those pairs with a
frequency minor than 10−3 times the maximum one have been removed from the plot.

4. Comparing UNLM and LMMSE, the results for PSNR are approximately the
same for both phantoms. But for SSIM the cross sections phantom yields
a non–consistent result: SSIM measures the structural similarity, but this
kind of phantom data shows practically no structures.

This experiment highlights that the use of inappropriate phantoms may drive to
erroneous conclusions in the assessment of filtering performance. Besides, it is
useful to show the convenience of the phantom data design presented in Section
5.4.1. Only this data set yields consistent results for both performance measures
(since it contains realistic image structures such as edges, changes in contrast,
and so on). Furthermore, the cross sections phantom may yield clearly incorrect
conclusions: the lack of the aforementioned image structures bias the comparison
towards those filters which remove a higher amount of noise at the expense of
blurring the edges, as is the case with CA.

5.4.5 Bias removal

The deficiencies of some synthetic phantoms often used in the literature have been
evidenced in the previous Section. However, these phantoms may be useful to
study some features of the filters such as the ability to remove the bias in Rician
distributed signals. A diffusion tensor has been fitted with the WLS technique
described in [Sal05] for each voxel of the (filtered) phantom in Fig. 5.4, and the FA
and MD have been computed. LMMSE–5, LMMSE–15, and UNLM–1 are compared
in Fig. 5.6, where 2-D histogram plots in the FA/MD plane are shown.

For the original data, the estimation is clearly biased, and yet it is impossible to
distinguish between the two clusters on the left–hand side. Moreover, FA values
greater than 1 and MD values minor than 0 may be found due to the presence
of negative eigenvalues of the tensor. Once the data is filtered, all the clusters
of the histograms are centered in their corresponding ground–truth centroids,
which is, the bias introduced by Rician noise is removed. Comparing LMMSE–
5 and LMMSE–15, the use of a larger number of gradient directions improves
the filtering, especially for the cluster on the left–hand side. UNLM–1 yields the
best results, showing practically no outliers far from the ground–truth centroids.
However, as shown in the previous Section, the goodness of each filter cannot be
inferred from this experiment, which is only intended to show that in fact all the
presented filters are able to remove the bias of Rician signals.

5.4.6 In vivo experiments

In the previous Sections, the noise power was assumed to be known. However,
when dealing with real data, σn has to be estimated. Although this problem is
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Figure 5.7: Color by orientation for CDR1. From left to right: original, UNLM–5, LMMSE–1 and
LMMSE–15. Top: axial; middle: sagital; bottom: coronal.

beyond the scope of this dissertation, Appendix C shows a brief review of the
techniques commonly used for this task. In what follows, one of the methods
proposed in [AF09] is used: the background of the baseline image is automatically
segmented [Ots79], and at each voxel the local first order moment is computed.
The mode of the distribution of this moment, computed as the position of the
maximum in its histogram, is corrected with a factor

√
2/π to yield the estimated

value of σn. This value, together with the peak amplitudes A of the baseline, the
RMSE averaged for all gradient images, the PSNR, and the SNR, are shown in
Table 5.2 for the real data sets used in the experiments of this Section.

In the first experiment, UNLM–5, LMMSE–1 and LMMSE–15 are compared over
CDR1, as an example of conventional medium–high SNR volume with few gradi-
ents. Since the slice thickness is very coarse for this volume, a neighborhood of
size 5×5×1 is used for LMMSE; for UNLM, this is not an issue. Fig. 5.7 shows the
result of color by orientation (see Section 2.6.1) after tensor estimation with WLS.

All methods are able to notably improve the coherence in the orientation and
remove the noise, while adequately preserving the borders of the images. Com-
paring LMMSE–1 and LMMSE–15, the results are very similar: the use of joint
information is not so critical in this case. Comparing LMMSE and UNLM, the lat-
ter produces a slightly greater blurring of the corpus callosum, whose structural
information both LMMSE–1 and LMMSE–15 are able to preserve. On the contrary,
in the union of the corticopontine tract and the inferior longitudinal fasciculus

CDR1 BWH1 BWH2 CSIRO1
σn 38 65 65 10.5

Peak value(A ) 5,161 25,000 25,000 2,500
RMSE 115 385 385 27

PSNR (dB) 42.7 51.1 51.7 47.54
SNR (dB) 9.62 15.45 15.45 8.20

Table 5.2: Noise power σn, peak value A in the baseline, RMSE, PSNR and SNR for some data sets.
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Figure 5.8: Fiber tracking of the cingulum for the original noisy data set (left) and the LMMSE–15
filtered data set (right). The green spots represent the seeding points for the tracking algorithm, and
the green arrows indicate the exact points in the FA map corresponding to the cingulum in each
slice [Mor05].

(the small structures at the right, bottom part of the axial view) UNLM–5 is able to
better preserve the edges without blurring them. UNLM–N is more effective when
the contrast between the structures and their surroundings is high enough, like
in these small structures surrounded by a black background. In the corpus callo-
sum, the contrast is not so high, and LMMSE performs better. When the contrast
is high, the weights in UNLM are much greater for similar structures than they
are for different anatomies. But for low contrast, it is impossible to distinguish
the structures only by correlating similar patches; in consequence, all weights
are quite similar, and UNLM accomplishes a rough average of voxels in a large
neighborhood. The potential of UNLM relies on the ability to adequately adjust the
non–local weights to distinguish between different structures.

To stress the importance of unbiased filtering in DTI, Fig. 5.8 shows an ex-
ample of fiber bundles computed using tractography over the original noisy data
set, and over the data set filtered with LMMSE–15. From the seeding points, a
Runge–Kutta method of order 4 is used to track the direction of the cingulum,
following the direction of the principal eigenvector at each point [Bas00b,Ten02].
The filtered volume yields anatomically correct results, and the reconstructed cin-
gulum crosses the axial and the coronal slices at the correct locations [Mor05].
The noisy volume causes great errors in the location of fiber bundles, and what is
more important, the tracking algorithm is not able to follow the cingulum in the
upper brain, which is mixed–up with the corpus callosum.

In the next experiment, the capability of LMMSE–N in eq. (5.19) to overcome
the drawbacks of joint LMMSE in eq. (5.14) is tested. Several configurations of
LMMSE–N are used to filter BWH1, with a neighborhood size of 5×5×3. For com-
parison purposes, UNLM–5 is used in Fig 5.9. The difference between LMMSE–1
and LMMSE–N is now very clear: LMMSE–1 is not able to properly remove the
noise, and the structural information of the image is mostly lost; with LMMSE–
N, the noise is removed and not only the structures are preserved, but they are
even enhanced (see for example the left–bottom part of the slice, red circle). Com-
paring LMMSE–15 and LMMSE–51, no noticeable differences may be found. But
comparing to joint LMMSE, the details with LMMSE–N are better preserved, the
over–blurring is avoided, and moreover the ringing artifacts near the ventricles
and in the outer contours of the brain mostly disappear. It is worth noticing that
the artifacts are avoided even for LMMSE–N with N = Zg = 51, so it follows that
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Figure 5.9: Central slice of the first gradient direction (gi = [1,0,0]T ) of BWH1: (a) original noisy volume,
(b) LMMSE–1, (c) joint LMMSE (see [TV08]), (d) LMMSE–15, (e) LMMSE-51 and (f) UNLM–5.

the main source of error in the model of [TV08] is the joint estimation of both the
baseline images and the DWI gradients, and not the eddy current distortion. Com-
paring now to UNLM, this filter is able to better remove the noise that LMMSE–1,
while adequately preserving the edges. But the convolved structures in the pe-
ripheral brain are almost hindered, and only LMMSE–N is able to reveal them.
Once again, LMMSE–N is able to properly enhance low–contrast structures, while
UNLM is preferable to preserve the edges when the contrast is higher (see espe-
cially the green circle in the top–left part of the image, for which LMMSE seems to
completely blur the structure).

The previous result is not completely conclusive, since only one gradient direc-
tion has been shown. This clearly does not suffice to assess the capability of the
filters to recover the rich anatomical information DWI data sets provide. Given
the large number of gradient directions in BWH1, it may be analyzed by means of
HARDI techniques. In particular, the Generalized Anisotropy (GA) at each voxel
may be computed [Öza05,Des06] as described in eq. (2.42). Fig. 5.10 shows the GA
for UNLM–5, LMMSE–1 and LMMSE–15. All filters are able to improve the coher-
ence on the anatomical structures while reducing the noise. However, LMMSE–15
is able to yield results more correct anatomically. This is especially noticeable in
the middle (slice 29) and upper (slice 48) brain, although the cerebellar peduncle is
also better delimited with LMMSE–15. In slice 48, LMMSE–15 is able to better re-
solve a large structure such as the corpus callosum, but also to recover the small
nervous terminations in the peripheral brain. The advantage of LMMSE–N when
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Figure 5.10: Pseudo–color representations of the GA for axial slices 15 (up), 29 (middle), and 48
(bottom), of a total of 78 slices from BWH1: original image (first column), UNLM–5 (second column),
LMMSE–1 (third column) and LMMSE–15 (fourth column).

Figure 5.11: Pseudo–color representations of the FA for an axial (top) and a coronal (bottom) view of
BWH1: original image (first column), UNLM–5 (second column), LMMSE–1 (third column) and LMMSE–
15 (fourth column).

compared to LMMSE–1 is obvious in this case (see the third and fourth columns of
Fig. 5.10). Besides, LMMSE–15 does not produce neither over–blurring (it is even
able to better preserve the edges of the GA image) nor ringing artifacts, overcoming
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Figure 5.12: Glyph representations of fiber orientation functions obtained with the DOT for: (a) the
original data set, (b) LMMSE–1 and (c) LMMSE–60. Several tracts of interest may be identified: the
superior longitudinal fasciculus (green glyphs on the left–hand side); the superior corona radiata (blue
glyphs); the cingulus (green glyphs on the right–hand side) and the corpus callosum (red glyphs on the
right–hand side).

the main limitations of the preliminary approach in [TV08].

For the sake of completeness, Fig. 5.11 shows FA maps (over tensor fields
reconstructed by WLS) for the same algorithms tested in Fig. 5.10. In this case
the differences in the performance are not so important. Yet, LMMSE–15 is able
to better remove the noise and yield a cleaner image than LMMSE–1 does, while
correctly preserving the edges of the image. Comparing UNLM–5 and LMMSE–15
in the axial view, the results are slightly better for the former. UNLM–5 yields
a cleaner image without blurring the edges.The difference is especially obtrusive
at the small structures in the peripheral brain. In the coronal view, due to the
smaller resolution in the z axis direction, the qualitative performance of all filters
looks similar, although UNLM–5 seems to blur the structures in the top of the
brain.

The last experiment is intended to stress the advantages of accounting for joint
information in HARDI data sets. To that end, a typical volume for this kind of
techniques, CSIRO1, has been chosen. An axial slice in the upper brain, where a
number of important fiber bundles are known to coexist [Mor05], has been taken.
At each voxel, the Diffusion Orientation Transform (DOT) proposed in [Öza06] has
been used to infer the principal fiber orientations, and a glyph representing this
information has been represented (see Section 2.6.1)6 in Fig. 5.12. LMMSE–60 is

6The estimation of complex fiber orientations configurations is the main focus of this thesis, so the
remaining Chapters are devoted to this topic. In particular, the kind of information to represent, the
techniques used to infer it, and its visual representation will be thoroughly analyzed. At this point,
it is enough to consider the glyphs as entities representing information about the orientation of fiber
bundles in an intuitive way. This interpretation is enough to comprehend the impact of the filtering
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N 1 5 10 20 40 60 (All)
LMMSE–N 25 60 115 325 1,130 75
UNLM–N 6,300 31,500 63,000 126,000 252,000 378,000

Table 5.3: Execution times (seconds) of LMMSE–N and UNLM–N for different values of N.

able to yield an overall smoother result, but the fiber crossings are not hindered at
all by the filtering. To stress the different performance of LMMSE–1 and LMMSE–
60, two regions of interest have been marked in the image. In (1), the DOT is not
able to resolve the crossings between the corona radiata and the corpus callosum.
The image filtered with LMMSE–1 does not improve the estimation, but LMMSE–
60 is able to amend the coherence of the orientation information in this region
and account for the fiber crossings. The situation is even clearer in (2), where only
LMMSE–60 is able to improve the estimation and correctly resolve both the corpus
callosum and the cingulus (this comment holds for all glyphs in the last column
of the images, both in the top and the bottom regions).

5.4.7 Some notes on computational complexity

Since the main drawback of UNLM is known to be its great computational load,
it is worth to include a comparison regarding this issue. CSIRO1 is used as a
benchmark to run the filters programed with the ITK libraries [Iba05] in a 16-
core, 32 GB RAM machine in a Linux environment. The execution times (ET)
provided are measured with the time command, showing here the total user time
(total time for all threads). Since both algorithms have been programmed in a full
multi–threaded way, the comparison is fair. The I/O time has been subtracted
from the computation in all cases. It is easy to comprehend that the ET of UNLM–
N scales linearly with the number of voxels in the neighborhood N ′

x and with N.
From the work by [Man08] it is known that using a smaller N ′

x than 7× 7× 3
notably worsens the results, so this size has been kept as a standard. The ET has
been measured only for UNLM–1, and this result has been extrapolated to UNLM–
N. For LMMSE–N, the neighborhood is of size 5×5×3. The dependency with N is
not so clear in this case, so the ET is measured for a wide range of values of N.
Results are shown in Table 5.3.

LMMSE is several orders of magnitude faster than UNLM in all cases. Some
optimizations have been proposed in [Cou08] to speed–up UNLM, mainly a voxel
pre–selection and a block–wise implementation. Even when these two techniques
may reduce the ET roughly 30 to 50 times, LMMSE is still faster; for example, if for
UNLM–1 the best case is considered, i.e. the ET is reduced 50 times, the ET is 126
seconds, slower than LMMSE-10. Besides, the block–wise implementation (which
supposes the main acceleration of the algorithm) of UNLM worsens the filtering
accuracy, as reported in [Cou08]. Yet, it is not clear how the block–wise technique
could be extended to UNLM–N. As a final comment, if N = Zg, LMMSE–N is only 3
times slower than the conventional LMMSE.

5.4.8 Discussion

The unbiased filtering of DWI data sets not only improves the visual results in DTI
or HARDI, but also meliorates the anatomical correctness of the quantitative anal-
ysis. The most evident example presented is in Fig. 5.8, where the pre–processing

approaches in this experiment.
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allows to better track the fiber bundles of interest, but the advantage is clear as
well in the FA/GA maps and glyph representations.

Regarding the use of joint information, it has been shown that it may be advan-
tageous in many situations. DWI data sets show very particular characteristics
regarding the underlying anatomical and diffusion structures of the white matter.
Therefore, it seems logical to use ad hoc techniques instead of just filtering each
component as if it was an independent data set. Although in conventional DTI
the improvement is not so relevant (see Fig. 5.11), and yet in some situations of
high SNR may be only marginal (see Fig. 5.7), it has been evidenced that for more
general HARDI approaches it is very important to account for all the information
in the data set simultaneously.

The estimation of the diffusion tensor by WLS introduces an extra regulariza-
tion of data, since only six degrees of freedom need to be estimated from a typically
larger number of gradient directions. For this reason, all filters perform in a sim-
ilar way for DTI, whenever they are able to remove the bias of Rician noise (see
Section 5.4.5). Nevertheless, it has been previously reported that the estimation
of the diffusion tensor without previous filtering may introduce errors which can-
not be recovered by the regularization inherent to WLS [Bas00a, Jon04]. In this
sense, it has been shown in Section 5.4.6 that all filters notably improve the re-
sults with respect to the noisy data sets in all situations. It is worth notice that
using joint information to process the data sets is useful in conventional DTI as
well (although not so critical as in HARDI). It has been shown that LMMSE–N is
able to improve the results even for small N, while the computation times are kept
reasonable even for large N (this is especially the case for N = Zg, see Table 5.3).
Although the benefit is not so evident in the in vivo experiments, the quantitative
evaluation presented in Sections 5.4.3 and 5.4.5 suggests that quantitative DTI
may benefit from the joint information filtering approaches.

In HARDI techniques, the prediction of fiber orientations is often an ill–posed
problem, so the regularization in the estimation of the orientation information is
not so profitable. In these scenarios, the use of joint information becomes more
relevant, and the filters accounting for it are able both to better remove the noise
and preserve the anatomical structures (see Figs. 5.10 and 5.12).

With respect to the filters compared, LMMSE–N shows the best overall perfor-
mance for HARDI techniques, Fig. 5.10 clearly illustrating this behavior, and has
been evidenced to improve the anatomical correctness of the GA maps and the
fiber tracking. Besides, the estimation of fiber orientations in LMMSE–N filtered
volumes yields smoother estimations and better resolves fiber crossings in well–
known anatomies (see Fig. 5.12). For DTI, the advantage of UNLM–N is clear.
This filter is able to better preserve the edges of the images while appropriately
removing the noise. Although it may produce a slight over–blurring of large, low–
contrast structures in some situations (like the corpus callosum in the axial view
of Fig. 5.7 or the top of the coronal view of Fig. 5.11), its ability to preserve
and denoise small structures is a clear advantage when compared to LMMSE–N.
However, LMMSE–N has a much lighter computational load (see Table 5.3) with
results similar (although slightly worse) to UNLM–N, which makes it a very at-
tractive alternative. Moreover, the advantage of the use of joint information in
UNLM–N is only marginal (see Fig. 5.3), which is another weakness when com-
pared to LMMSE–N. Generally speaking, UNLM–N is useful when the non–local
weights applied to the averaged voxels can accurately discriminate between dif-
ferent structures of the images. Since these weights are found looking for similar
patches in non–local neighborhoods, there are two main factors which affect the
accuracy of this filter:
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1. If the contrast (difference in the gray levels) between the structures to dis-
tinguish is low, the weights applied to the voxels in each structure will be
similar, yielding an excessive blurring. This assertion is supported by the
experiments in Figs. 5.7 and 5.9.

2. In low–SNR scenarios, the computation of distances in the space of gray–
levels will be strongly affected by the noise, increasing the uncertainty in
the values of the non–local weights. As as result, it will be more difficult to
distinguish the structures of the image. The experiments in Section 5.4.3
evidence this behavior.

The previous discussion may help to choose a particular filtering technique in a
given situation. The choice depends on several factors such as the SNR of the data
set, the anatomical structures of interest, the scanning parameters, and of course
the requirements on computation time.

5.5 Generalization to non–central Chi DWI data sets

To this point, all filtering techniques (and validation methodologies) have been
centered on the Rician case. Without any doubt, this is the most important case
nowadays, since all single–coil systems and the majority of pMRI protocols yield
data sets described by this statistics. This is easy to notice reviewing the literature
on DWI filtering: there are many works focused on Rician noise removal, but cor-
responding approaches to filter non–central Chi signals have not been proposed.
Although the Rician case is currently of capital importance, it was stated in Chap-
ter 3 that protocols driving to non–central Chi signals (such as multiple–coil MRI
or GRAPPA reconstructed images) are gaining an increasing interest.

As stated in Section 5.2, most of the filtering techniques for Rician images are
based on the even–order moments of this distribution. In particular, this is the
case for LMMSE–N and UNLM–N. The even order moments of the non–central Chi
distribution are equally easy to compute, so the extension of the methods pre-
sented to this probability model is straightforward. To begin with, the analogous
results to eqs. (5.2) and (5.3) are:

〈M2
i 〉 = 〈A2

L,i〉+2Lσ
2
n ; (5.29)

〈M4
i 〉 = 〈A4

L,i〉+4L(L+1)σ2
n 〈A2

L,i〉+4L(L+1)σ4
n , (5.30)

where, with the notation in Chapters 3 and 4, A2
L,i = ∑

L
l=1 A2

c,l,i +A2
s,l,i, for Ac,l,i + jAs,l,i

the complex signal corresponding to the i–th gradient in coil l, and L the number
of coils. For L = 1, these expressions particularize to those of eqs. (5.2) and (5.3).

5.5.1 LMMSE–N for non–central Chi signals

The expression of the LMMSE estimator only depends on the first and second order
moments of data, so eq. (5.14) holds without changes (in this case the estimator
is for A2

L and not A2):

Â2
L = 〈A2

L〉+CA2
LM2C−1

M2M2

(
M2−〈M2〉

)
. (5.31)

The estimation of 〈M2〉 is performed as a local average, and 〈A2
L〉 computed from

eq. (5.29). For the covariance matrices CA2
LM2 and CM2M2 , a similar analysis as
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the one carried out in Appendix B yields, whenever the noise may be considered
uncorrelated between different coils:

CA2
LM2 = ςL〈A2

L〉〈A2
L〉T ;

CM2M2 = ςL〈A2
L〉〈A2

L〉T +4σ
2
n diag

(
〈A2

L〉
)
+4Lσ

4
n IZ , (5.32)

for:

ςL =
〈A4

L,β 〉−〈A
2
L,β 〉

2

〈A2
L,β 〉2

.

The recursive rule to approximate the inverse of CM2M2 is now valid if A2
L,i > Lσ2

n for
all gradient images i, and reads:

C−1
M2M2

(
M2−〈M2〉

)
' wO ;

wl+1 =
(
M2−〈M2〉

)
−4Lσ

2
n C̃−1

M2M2wl ;

w0 =
(
M2−〈M2〉

)
;

C̃−1
M2M2 = ηL11T +diag(eL), (5.33)

for:

ηL =−

(
4σ

2
n

(
4σ2

n

ςL
+

Z

∑
i=0
〈A2

L,i〉

))−1

; eL,i =
(
4σ

2
n 〈A2

L,i〉
)−1

.

Obviously, the extension of LMMSE–N is straightforward for non–central Chi sig-
nals, since this filter works by applying the method above described for a subset
of gradient images, which are all of them non–central Chi distributed.

5.5.2 UNLM–N for non–central Chi signals

The extension of UNLM-N is even simpler. Eq (5.20) may be directly extrapolated
changing the bias removal term to take into account the result in eq. (5.29):

Â2
L,i(x) = ∑

j∈Θ N
i

∑
c∈N ′

x

w j
i (x,c)M2

j (c)−2Lσ
2
n , (5.34)

where the weights w j
i are computed exactly the same as in eq. (5.21).

5.6 Conclusion

In this Chapter, empirical evidences of the theoretical study carried out in Chap-
ters 3 and 4 have been given: the noise in DWI data sets induces large errors
which cannot be recovered by further regularization. The experiment in Fig. 5.8 is
especially enlightening in this sense: even for a high SNR scenario, the noise hin-
ders the actual anatomy of the cingulum, despite of the regularization introduced
by the Runge–Kutta integration method. Once again, the need for an adequate
denoising scheme is evident.

Although other approaches, such as tensor estimation accounting for the Ri-
cian model, are possible, the prior filtering of DWI data sets has been demon-
strated highly valuable. Going back to the experiment in Fig. 5.8, this pre–proces-
sing allows to correctly resolve the fiber architecture, yielding anatomically correct
results. The improvement achieved by this methodology is also evident in all the
experiments presented in this Chapter.
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The advantage of filtering the DWI prior to the estimation of diffusion propaga-
tors relies on the independence of this process from the estimation itself. Once the
volume has been denoised, the diffusion propagator may be calculated assuming
that the signal in the q–space is almost noise–free, so the noise model may be
obviated. Conversely, the denoising algorithm has not to take into account the
particular technique which is to be used for fiber orientation estimation. Never-
theless, it has been shown that each filtering technique is better suited for each
given application (for example, UNLM–N is preferable for conventional DTI, but
LMMSE–N is more accurate for general HARDI techniques).

Another important conclusion is the need to take into account the particular
characteristics of DWI data sets, previously suggested in [Fil07]. Gradient images
in the DWI volume are not isolated, independent channels in a multi–channel im-
age, but instead correspond to single coordinates in the 6D space of the Diffusion
Imaging framework (see Fig. 2.6). As such, filtering each image separately is not
the most adequate method.

One important issue is that the filtering techniques described are based on the
computation of local (LMMSE–N) or non–local (UNLM–N) averages of voxels. This
computation makes sense as long as the statistics of the voxels averaged are the
same. The analysis carried out in Chapter 3 suggests that this is not the case for
pMRI techniques. Fortunately, this same analysis shows that the power of noise
varies slowly enough (in fact, much slower than the variation of the structures of
interest in the image) to consider that the statistics of the voxels averaged are very
similar. It is so even for UNLM–N, since the non–local neighborhoods used for this
filter are yet small compared to the range of variation of the power of noise. Nev-
ertheless, this is a theoretical limit for the use of arbitrarily large neighborhoods
with UNLM–N. For both filters (and any other needing the power of noise as an
input), variability maps of σn, similar to those provided in Chapter 3 for GRAPPA
reconstructions, could be used to refine the model.

The final remark in this discussion is centered on the generalization of the
filtering techniques to the non–central Chi case. Although the extension from
Rician–adapted methods is straightforward, the filters proposed are the first ap-
proach to of denoising non–central Chi images to the knowledge of the author.
These results, together with the analysis in Chapter 3 which warranties the slow
variability of the noise power for GRAPPA reconstructions, allow to take advantage
of all the concepts presented in this Chapter for this important imaging protocol.
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Probabilistic estimation of fiber orientations

in the white matter: the Orientation
Probability Density Transform

This Chapter, together with Chapter 7, contains the main contribution of this thesis. It is
focused on the development of a novel estimator of the directions of fiber bundles in the
white matter when the Gaussian assumption of DTI does not hold. The first part is ded-
icated to briefly survey the theoretical foundations of HARDI to analyze the requirements
that the estimator has to meet. Three concepts are detailed later on: the Orientation
Probability Density Function, the Funk–Radon transform, and the expansion of functions
in the basis of Spherical Harmonics. The combined use of these three techniques is the
key for the development of an estimator fulfilling the aforementioned requirements, and is
the basis for the definition of the Orientation Probability Density Transform (OPDT). The
description of the OPDT is the main topic in this Chapter. After the theoretical analysis,
the properties of the novel estimator are empirically tested in a wide variety of numerical
examples, comparing it to other related approaches. The OPDT shows important advan-
tages in a number of situations, especially for low values of the weighting parameter b0,
but also an important limitation, due to the use of the Funk–Radon transform, which will
focus the next Chapter.

6.1 Introduction

It was stated in Chapter 2 that the ultimate aim in Diffusion Imaging is the es-
timation of the directions of fiber bundles, which are in turn associated to the
probability of diffusion of water molecules in these same directions. Although
the assumption of a Gaussian propagator made in DTI is useful for some tasks,
this approach fails to describe complex neural architectures such as fiber cross-
ing, bending or kissing (see Section 2.7) In these cases, the relationship given by
eq. (2.27) has general validity whenever the short–pulses condition (δ � ∆ ) holds.
Eq. (2.27) is reproduced here for convenience:

P(R) = F{E(q)}(R) =
∫ ∫ ∫

R3
E(q)exp(−2πiq ·R)dq; (6.1)

note that the dependence on the diffusion time ∆ has been dropped down. This
notation will be used throughout this Chapter. On the other hand, the modulus
of the diffusion signal, E(q), is always less than 1, so the general representation
in eq. (2.39), reproduced next, is always possible:

E(q) = exp(−bD(q)) , (6.2)
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where D is the positive Apparent Diffusion Coefficient (ADC), which generalizes the
positive definite diffusion tensor D. From eq. (6.2) it follows that the characteriza-
tion of the ADC is equivalent to the characterization of E(q). Therefore, sampling
the value of either E(q) or D(q) for the whole q–space allows the explicit evaluation
of the integral in eq. (6.1) to estimate the diffusion propagator. The marginal PDF
for all possible directions r = R/‖R‖ can be further computed to estimate the prob-
ability of the existence of a fiber bundle along r. This is the principle of DSI. To
reduce the great computational load required to sample the whole q–space, HARDI
techniques perform a dense sampling of a subset of the q–space comprising all the
spatial directions of a sphere of radius ‖q‖ = q0. All these concepts, together with
a survey of the existing HARDI techniques, were reviewed in Sections 2.5 to 2.7,
and the reader is referred there for a detailed analysis.

The main limitation of HARDI is that in general the ADC depends on both the
direction g and the modulus q of q, so sampling E(q) in the sphere S = {q|‖q‖= q0}
gives only incomplete information on the behavior of the diffusion signal. HARDI
techniques previously used in the literature deal with this problem in several ways
(see Section 2.7 for details). In general, these solutions share one or more of the
following drawbacks:

1. The lack of a true probabilistic interpretation of the estimates. Instead of the
marginal PDF associated to the diffusion propagator, some other orientation
information may be estimated indirectly (i.e. not through the marginaliza-
tion of P(R)) from E(q). This way, the need to characterize the entire dif-
fusion signal may be avoided. Persistent Angular Structures [Jan03] and
Q–Balls [Tuc03,Tuc04] are grounded on this principle. The DOT [Öza06] is
not based on the same idea, but also shares this deficiency.

2. The need to make unrealistic assumptions on E(q). If the behavior of E(q)
is extrapolated from the sampled value at q0 for all possible q, the whole
q–space may be characterized in terms of the sphere S . This way, the diffu-
sion propagator may be explicitly computed using eq. (6.1), and P(R) can be
marginalized to obtain the desired probabilistic orientation information. The
most common assumption, present in higher order tensors [Des06] and the
Diffusion Orientation Transform (DOT) [Öza06], is that the ADC is constant
for all q (D(q)≡ D(g)), which is quite unrealistic.

3. The use of parametric models for the attenuation signal or the diffusion prop-
agator. In multi–tensor approaches [Kre05,Pel06], it is assumed that the dif-
fusion propagator is a mixture of a finite number of Gaussians, which has to
be known beforehand. Spherical deconvolution [And05,Des09,Tou07,Tou08]
generalizes this approach to an infinite number of Gaussians, but all of them
are assumed to have the same particular shape (covariance matrix). Con-
tinuous mixtures of Gaussians [Jia07] do not assume any particular shape,
but the covariance matrix has to follow a prior Wishart distribution, which is
rather restrictive. The problem with all these techniques is that the estimates
are highly prejudiced by poor fits of the parametric model to real data. Ad-
ditionally, the need to estimate the parameters of such model can also be a
pitfall for its application.

Additionally, the requirement of a high b–value (in the order of 3000 s/mm2) is also
present in most of the current techniques. The main focus of this thesis is to find
adequate estimators able to overcome (at least partially) these three pitfalls at the
same time. The next three Sections (6.2 to 6.4) are respectively centered on each
of these topics. The concepts discussed are of capital importance to understand
the estimation techniques introduced in Chapters 6 and 7, which comprise the
most important work in this dissertation.
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Figure 6.1: Examples of theoretically computed orientation functions for a simple tensor model with

eigenvalues [1.7,0.3,0.3] ·10−3mm2/s: (a) Ψ(r) = C1 ·
(
rT D−1r

)−1/2; (b) Φ(r) = C2 ·
(
rT D−1r

)−3/2; (c) ϒ (r) = C3 ·
exp
(
−R2

0 · rT D−1r/4τ
)

(for typical values R0 = 12µm and τ = 20ms). The value of the orientation function
at each direction is represented as the distance of the surface to the origin.

6.2 Diffusion propagators and orientation information
functions

Although E(q) is in general not completely characterized in HARDI, it is not nec-
essary either to completely characterize P(R), but only its underlying orientation
information: displacements in the same directions r are associated to the same
fiber bundle. For each orientation r given by (θ ,φ) in physics convention, the ex-
pression for the marginal probability density of a displacement along direction r
is:

p(r)≡ p(θ ,φ) =
∫

∞

0
P(Rr)R2 sinθdR, (6.3)

with R = ‖R‖ so R = Rr. The term R2 sinθ is the Jacobian of the transformation to
spherical coordinates, and it is therefore required to compute actual probabilities
so that the integral of P(Rr) equals 1:∫ ∫ ∫

R3
P(R)dR =

∫
π

0

∫ 2π

0

∫
∞

0
P(Rr)R2 sin(θ)dRdφdθ

=
∫

π

0

∫ 2π

0

(∫
∞

0
P(Rr)R2dR

)
sin(θ)dφdθ

=
∫

π

0

∫ 2π

0
Φ(θ ,φ)sin(θ)dφdθ = 1, (6.4)

where Φ(θ ,φ) ≡ Φ(r) is the Orientation Probability Density Function (OPDF) de-
fined as:

Φ(θ ,φ)≡Φ(r) =
∫

∞

0
P(Rr)R2dR =

1
2

∫
∞

−∞

P(Rr)R2dR, (6.5)

since P(R) has antipodal symmetry. In the last integral of eq. (6.4), the term sin(θ)
is once again due to the spherical coordinates system, i.e. it is required to com-
pute the integral over the surface of the sphere S . The orientation information
for each direction r is characterized by the OPDF, which is a true probability den-
sity since its integral over all possible directions is 1. This definition has been
already proposed before in [Wed05] as a “weighted radial summation”. Neverthe-
less, it turns out that it is usually easier to compute the Orientation Distribution
Function (ODF) [Tuc03] as the radial projection of P(R):

Ψ(θ ,φ)≡Ψ(r) =
∫

∞

0
P(Rr)dR =

1
2

∫
∞

−∞

P(Rr)dR. (6.6)

The Jacobian of the spherical coordinates is dropped from the definition of Ψ(r),
so this function does not represent a true PDF [Tuc03, Tuc04]. In practice, this
has the effect of blurring the orientation information. Other representations, such
as the probability profile for a given radius R0, ϒ (r) = P(R0r), are possible as well
[Öza06]. For Gaussian diffusion propagators, all these functions may be explicitly
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Figure 6.2: Auxiliary cylindrical coordinates system for the computation of the FRT. The equator
Γ ⊂S ′ is orthogonal to the direction of interest r. It may be easily parametrized in the plane described
by unit vectors t and α, so the integral of E(q0g) along Γ is trivial to compute if E is expressed in the
new coordinates system. A similar system may be considered for the R–space, so the triplets (t,α,z)
and (u,β ,ϑ) are dual spaces with respect to the Fourier transform.

computed: Fig. 6.1 shows rendered surfaces (glyphs) of Ψ(r), Φ(r) and ϒ (r) for a
typical tensor configuration: both Φ(r) and ϒ (r) have sharper profiles than Ψ(r).
The blurring in the orientation information provided by the ODF (Ψ(r)) is a source
of uncertainty in the estimation of fiber directions: two fiber bundles crossing
in proximal directions would be more difficult to distinguish with the ODF than
with the OPDF, since the two local maxima of the ODF could hinder each other.
Besides, note that the OPDF is the only orientation function representing true
probabilities.

6.3 The Funk–Radon transform

The advantage of using the ODF relies on the fact that it may be accurately ap-
proximated by the Funk–Radon transform (FRT) of the attenuation signal [Tuc03,
Tuc04], G {E(q)}(r). The FRT is a linear integral transform defined on the space
of functions whose domain is the sphere of radius 1. The input to the transform
is a function taking values for each unitary direction g, and its output is another
function of the same kind, taking values in the transformed domain of unitary
directions r. For a given output direction r, the FRT of E(q0g) is computed as the
integral of the function along the equator perpendicular to the direction r:

G {E(q0g)}(r) ∆=
∫ ∫

S ′
δ (rT g)E(q0g)dg =

1
q2

0

∫ ∫
S

δ (rT q)E(q)dq, (6.7)

where S ′ = {q|‖q‖ = 1}. To understand the relation between the dual variables1

g and r, consider the cylindrical coordinates system (t,α,z) depicted in Fig. 6.2.

1The variables g and r are normalized (unit radius) versions of q and R. The former is a dual pair
with respect to the FRT, and the latter is a dual pair with respect to the Fourier transform. Instead
of: 1.- Extrapolating the information from q0g to the whole q–space; 2.- Using the Fourier relation to
estimate the diffusion propagator; 3.- Marginalizing P(R) to compute the orientation information, the
FRT directly relates the normalized domains of g and r, so there is no need to know the behavior of
E(q) outside S , i.e., outside of the domain of g.



THE ORIENTATION PROBABILITY DENSITY TRANSFORM 101

� � � � � ��
����

�

���

�

���
�

� �
��
��

�
��

r

Figure 6.3: Illustration of the FRT. The integral of E (which has been sampled in the sphere) along
the equator q0 is equivalent to the integral of P inside the tubes along r; each tube represent a local
extreme of the Bessel function J0 (right). The larger q0, the narrower the tube.

The z axis is aligned with the direction of interest, r, without loss of generality.
The new coordinates system allows the computation of the FRT of E(q0g) for the
unit direction r in a very easy way, since the equator under study admits a simple
parametrization:

G {E(q0g)}(r) =
1
q2

0

∫ ∫
S

δ (rT q)E(q)dq =
1
q2

0

∫ 2π

0
Ẽ(q0,α,0)q0dα, (6.8)

where Ẽ(t,α,z) is the diffusion signal expressed in cylindrical coordinates. The
diffusion propagator will have a different expression P̃(u,β ,ϑ) in the new system,
but the Fourier relation given by eq. (6.1) still holds:

G {E(q0g)}(r) =
1
q2

0

∫ 2π

0
Ẽ(q0,α,0)q0dα

=
1
q0

∫ 2π

0

(∫
∞

−∞

∫
∞

0

∫ 2π

0
P̃(u,β ,ϑ)exp( j2π (q0ucos(α−β )+0ϑ))u dβ du dϑ

)
dα

=
1
q0

∫
∞

−∞

∫
∞

0

∫ 2π

0
P̃(u,β ,ϑ)

(∫ 2π

0
exp( j2πq0ucos(α−β ))dα

)
u dβ du dϑ

=
2π

q0

∫
∞

−∞

∫
∞

0

∫ 2π

0
P̃(u,β ,ϑ)J0 (2πq0u) u dβ du dϑ , (6.9)

where a well–known property of the Bessel function of the first kind J0 has been
exploited [Abr72]. This function is plotted in Fig. 6.3, right. Eq. (6.9) represents
the integral of the diffusion propagator P̃(u,β ,ϑ) along the direction ϑ (i.e, the di-
rection r of interest in the auxiliary coordinates system), pondered by the radial
Bessel kernel J0, which only depends on the transverse distance u. This compu-
tation is illustrated in Fig. 6.3, left. The line integral along r is replaced with a
volumetric integral inside the tubes centered in the ϑ axis. Each one corresponds
to a local extreme in the graph of J0, so the tubes with minor radii contribute more
to the integral. The FRT of E(q0g) constitutes an accurate estimate of the ODF as
defined in eq. (6.6):

G {E(q0g)}(r) =
2π

q0

∫
∞

0

∫ 2π

0
J0 (2πq0u)

(∫
∞

−∞

P̃(u,β ,ϑ)dϑ

)
udβdu

=
4π

q0

∫
∞

0

∫ 2π

0
J0 (2πq0u)Ψ̃(u,β )udβdu' Z(q0)Ψ(r), (6.10)

where Z(q0) is a constant (whose value may be neglected if the estimated ODF is
normalized), and Ψ̃ is the expression of Ψ in the cylindrical coordinates system.
The integration along r is not exact: the blurring due to the Bessel kernel remains
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evident from eq. (6.10). Nevertheless, increasing the value of q0 highly improves
its accuracy, since the lobes of J0 become more concentrated around u = 0.

Summarizing, the use of the FRT allows to directly relate the measured DWI in
the domain of g (the sphere S ) with the orientation information in the domain of r.
Besides, note that absolutely any assumption on E(q) outside S is required. The
approximated estimation of the ODF requires only the sampling of E(q0g), which
is completely characterized by HARDI data sets. This is the principle of Q–Ball
imaging [Tuc03,Tuc04]. This way, the second requirement imposed in Section 6.1
is easily met at the expense of the following disadvantages:

1. The FRT, as conceived in Q–Ball imaging, is only useful to compute the ODF,
which does not represent a true probabilistic information (see Section 6.2).

2. This computation is only approximated. For high values of q0 the approxi-
mation becomes more accurate, so this problem may be somehow palliated.
Note that the need for higher b–values than for conventional DTI was pointed
out in Section 6.1 as a common issue in HARDI.

6.4 Spherical Harmonics Expansions

Both the DWI signal E(q0g) and the OPDF Φ(r) (or any other orientation informa-
tion) are functions defined on the surface of a sphere, i.e., functions which take
values for each unit direction g (or r). For this reason it is very convenient to rep-
resent them in the basis of Spherical Harmonics (SH) [Fra02]. SH are defined as
the eigenfunctions of the Laplace–Beltrami operator ∆b. It is a differential operator
representing the part of the Laplacian operator in the spherical coordinates sys-
tem which does not depend on the radial coordinate; obviously, ∆b applies for the
kind of functions considered:

∆bY (θ ,φ) =
1

sinθ

∂

∂θ

(
sinθ

∂Y (θ ,φ)
∂θ

)
+

1
sin2

θ

∂ 2Y (θ ,φ)
∂φ 2 = νY (θ ,φ). (6.11)

Eq. (6.11) represents a Sturm–Liouville problem which may be decoupled into two
different sub–problems using separation of variables:

Y (θ ,φ) = A(θ)B(φ) :
−m2 =

1
B(φ)

d2B(φ)
dφ 2 (SP1)

m2 = l(l +1)sin2(θ)+
sin(θ)
A(θ)

d
dθ

(
sin(θ)

dA(θ)
dθ

)
(SP2)

. (6.12)

The solution to SP1 is trivial: it is a complex exponential with wave number m.
SP2 is the defining equation for the associated Legendre polynomials Pm

l [Abr72],
so:

A(θ) = Pm
l (cosθ)

B(φ) = e jmφ

Y m
l (θ ,φ) =

√
2l +1

4π

(l−m)!
(l +m)!

Pm
l (cosθ)e jmφ

l = 0 . . .∞, m =−l . . . l, (6.13)

where l is the order of the SH, and the normalizing constant is chosen so that
Y m

l (θ ,φ) form an orthonormal set over the sphere of radius 1, S ′. In fact, from
Sturm–Liouville theory it can be inferred that the (normalized) solutions to eq. (6.11)
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form an orthonormal basis for the functions defined on S ′. Casting eq. (6.13) into
eq. (6.12) yields the actual value of the eigenvalues of the problem:

∆bY m
l (θ ,φ) =−l(l +1)Y m

l (θ ,φ), l = 0 . . .∞, m =−l . . . l. (6.14)

The basis functions Y m
l (θ ,φ) are complex valued, but both the diffusion signal and

the diffusion propagator are real (and positive) functions. Consequently, this basis
is modified to represent the subspace of real valued functions as follows [Des07]:

Ỹ m
l (θ ,φ) =


√

2 ℜ
{

Y m
l (θ ,φ)

}
, −l ≤ m < 0

Y 0
l (θ ,φ), m = 0

√
2 ℑ

{
Y m

l (θ ,φ)
}

, 0 < m≤ l

, (6.15)

which is still an orthonormal basis with the same eigenvalues as in eq. (6.14).
Finally, note that both the diffusion signal and the diffusion propagator have
radial symmetry; it translates in that only even–order basis functions are re-
quired [Des07]. As a corollary, it follows that any real valued function H (θ ,φ)
defined on S ′, and radially symmetric, can be written in terms of its SH expan-
sion:

H (θ ,φ) =
∞

∑
l=0

2l

∑
m=−2l

Cm
2l Ỹ m

2l (θ ,φ).

Cm
2l =

∫
π

0

∫ 2π

0
H (θ ,φ)Ỹ m

2l (θ ,φ)sin(θ)dφdθ . (6.16)

The representation of orientation functions in terms of SH expansions is quite
usual in HARDI [And05,Des06,Des07,Fra02,Öza06]. It has a number of important
advantages:

1. It is non–parametric, so any real, radially symmetric function arbitrarily com-
plex may be accurately approximated in terms of a truncation of the maxi-
mum order L of the basis functions.

2. Although the computation of Cm
2l in eq. (6.16) requires the computation of

the integral defining the scalar product for each 2l and m, these coefficients
can be computed very efficiently by means of LS fitting [Des07]. Appendix D
describes this technique in detail.

3. This same technique may be used to regularize the noisy measurements of
E(q) in a very convenient way (see Appendix D).

As an additional advantage, it has been proved in [Des07] that SH are also eigen-
functions for the FRT operator, so this representation may be combined with
the FRT to obtain a non–parametric estimator not depending on any model for
E(q). Therefore, two of the three requirements introduced in Section 6.1 are si-
multaneously met. In precise terms:

G
{

Ỹ m
2l (g)

}
(r) = 2π(−1)l (2l−1)!!

(2l)!!
Ỹ m

2l (r)

⇒ G {H (g)}(r) =
∞

∑
l=0

2l

∑
m=−2l

2π(−1)l (2l−1)!!
(2l)!!

Cm
2l Ỹ m

2l (r), (6.17)

where the standard notation for the double factorial has been used (see eq. (D.5)
in Appendix D). Hence, the FRT of H is approximated correcting the coefficients
of its truncated SH expansion.
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6.5 The Orientation Probability Density Transform

6.5.1 Estimation of the OPDF from the attenuation signal

The aim of this Chapter is to find an estimator fulfilling the requisites mentioned
in Section 6.1. To avoid (at least in part) the need for any unrealistic assumption
on the behavior of E(q) outside S , i.e. for values other than E(q0g), it was stated
in Section 6.3 the convenience of using the FRT. Therefore, the estimator to be
designed will be written in the form:

p̂(r) = G {H (g)}=
∫ ∫

S ′
δ (rT g)H (q0g)dg

=
2π

q0

∫
∞

0

∫ 2π

0
J0 (2πq0u)

(∫
∞

−∞

P̃(u,β ,ϑ)dϑ

)
udβdu

' 2Z′(q0)
∫

∞

0
P(Rr)dR, (6.18)

for a given function H , whose Fourier transform is P, to be determined next.

The second important requisite is that the estimator p̂(r) has to represent true
probabilistic information. From Section 6.2 it remains evident that p(r) is nec-
essarily an estimator of the OPDF. Attending its definition in eq. (6.5), the last
equality in eq. (6.18) imposes the condition:

P(R) = R2P(R). (6.19)

Since P and H form a Fourier transform pair, eq. (6.18) may be used to infer the
condition H has to meet. From basic Fourier theory, it is clear that this condition
is:

H (q) =
−1
4π2

(
∂ 2

∂q12 +
∂ 2

∂q22 +
∂ 2

∂q32

)
E(q), (6.20)

where q = [q1,q2,q3]T . The right–hand side of eq. (6.20) is clearly proportional to
the Laplacian of E, so joining the previous results, it yields:

p̂(r) = Φ(r)' 1
2Z′(q0)

G

{
−1
4π2 ∆E(q)

}
(r) = C ·G {∆E(q)}(r), (6.21)

for a negative constant C. As stated in Section 6.4, the radial symmetry of the
problem advices to represent the Laplacian operator in spherical coordinates:

∆E =
1

q2 sinθ

∂

∂θ

(
sinθ

∂E
∂θ

)
+

1
q2 sin2

θ

∂ 2E
∂φ 2 +

1
q2

∂

∂q

(
q2 ∂E

∂q

)
=

1
q2 ∆bE +

1
q2 ∆qE. (6.22)

The problem reduces to estimate the Laplacian of the attenuation signal E(q) in
the sampled sphere S to compute its FRT. The operator may be decomposed in a
term proportional to the Laplace–Beltrami operator and a radial–dependent term.
The following Sections are respectively centered in the estimation of each of them.
It results very illustrative in this analysis to consider the closed–form expressions
resulting for Gaussian diffusion propagators. They are surveyed in Appendix E.

6.5.2 Estimation of ∆b

The third condition imposed in Section 6.1 was to get rid of any parametric model
in order to represent both the diffusion signal and the diffusion propagator. It
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will be satisfied by expressing both functions with the SH formulation given in
eq. (6.16). For the diffusion signal:

E(q0g) =
∞

∑
l=0

2l

∑
m=−2l

Cm
2lY

m
2l (g), (6.23)

where the coefficients Cm
2l are theoretically obtained as in eq. (6.16). In practice, the

technique presented in Appendix D is used instead for a truncated version of eq.
(6.23) up to order L = 2L̂. The fundamental property of SH of being eigenfunctions
of the Laplace–Beltrami operator may be easily exploited to calculate the first term
in eq. (6.22):

1
q2 ∆bE(q0g) =

1
q2

∞

∑
l=0

2l

∑
m=−2l

2l(2l +1)Cm
2lY

m
2l (g). (6.24)

Note that only the values of E(q) inside S are required to evaluate eq. (6.24).

6.5.3 Estimation of ∆q

The estimation of the radial term in eq. (6.22) is more involved. Only the infor-
mation on the behavior of E(q) inside S is available, but the computation of ∆q
requires the estimation of radial derivatives. To circumvent this problem, making
a weak assumption on the behavior of E(q) in the neighborhood of q0 is mandatory:

∂E(q)
∂q

≡ ∂E(q,g)
∂q

=
∂

∂q
exp
(
−4π

2
τq2D(q)

)
=

∂

∂q
exp
(
−4π

2
τq2D(q,g)

)
= −4π

2
τq
(

2D(q,g)+q
∂

∂q
D(q,g)

)
exp
(
−4π

2
τq2D(q,g)

)
' −8π

2
τqD(q,g)exp

(
−4π

2
τq2D(q,g)

)
. (6.25)

It is required to assume that ∂D/∂q� 2D/q for q = q0; this implies to suppose
a slow variation of the ADC compared to the exponential decay of the diffusion
signal E(q). Compared to the strong assumption of a constant ADC for all q (like
for the DOT or higher order tensors), this one is much weaker for two reasons:

1. It does not require the ADC to be constant, but only to vary much slower
than the diffusion signal itself.

2. This condition has to hold only in a local sense in an environment of q0, and
not for all q.

Nonetheless, the need for a (weak) assumption is a clear drawback of the estimator
proposed compared to Q–Balls. It is important to note that Q–Balls is the only
estimator ever reported not needing any supposition at all. Besides, it will be
shown in Section 6.6.5 that in fact eq. (6.25) represents a very realistic behavior,
so the premise of a local sense–slowly varying ADC is rarely an issue. Another
important point is that the weakness of the assumption is such thanks to the use
of the FRT.

Finally, the same reasoning may be used for the second order derivatives to
compute ∆q:

∆qE(q0g) ' −8π
2
τq2

0D(q0,g)
(
3−8π

2
τq2

0D(q0,g)
)

E(q0g)
= 2logE(q0g)(3+2logE(q0g))E(q0g). (6.26)

It is interesting to notice the formal similarity between this approximation and
the exact closed–form expression for the case of Gaussian diffusion propagators,
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Figure 6.4: Summary of the proposed OPDF estimator, the so–called OPDT. Details on the computation
of each block may be found in Appendix D.

given by eq. (E.4) in Appendix E. In fact, eq. (6.26) is exact for the tensor model,
if the ADC D(q0g) is substituted by the quadratic form gT Dg, which evidences the
consistency of the estimator of ∆q.

6.5.4 Computation of the Orientation Probability Density Transform

Once the Laplacian of E(q) has been calculated, the estimator in eq. (6.21) may be
computed as summarized in Fig. 6.4. The diffusion signal is expressed in the SH
basis, so that the computation of ∆b is trivial. Eq. (6.26) is used to compute ∆q,
and the result is expressed as a SH sum. The linearity of eq. (6.16) is exploited
to compute the SH coefficients of the Laplacian of E(q), and eq. (6.17) is used to
compute its FRT. All these processes may be performed as matrix operations, as
described in Appendix D, to yield the closed–form expression in eq. (D.17). The
implementation given by this equation for the estimator in eq. (6.21) defines the
so–called Orientation Probability Density Transform (OPDT) [TV09d].

The numerical implementation of the OPDT is based on the Q–Balls implemen-
tation in [Des07], so the OPDT shares a number of characteristics with this other
approach, mainly its robustness and fast computation. Under a pure numerical
point of view, the OPDT may be seen as a kind of contrast–enhanced Q–Balls: it
is computed as the FRT of the diffusion signal corrected with the Laplacian op-
erator, which has the effect of sharpening the orientation function computed by
direct FRT, i.e. the ODF. The OPDT has the following advantages:

1. It computes true probabilistic information, since it is designed to estimate
the OPDF.

2. It only needs a very weak assumption on the behavior of E(q).

3. It does not rely on any parametric model, since its numerical implementation
is based on SH.

4. Its computation is fast and robust, due to the regularized matrix operations
described in Appendix D.

5. It is able to yield accurate results even for commonly used low values of q0,
as it is shown in Section 6.6.

Note that the three first points correspond to the requirements imposed in Section
6.1. On the other hand, some drawbacks are present in this novel estimator:

1. Although weak, an assumption on E(q) outside S is still required.

2. The OPDT emphasizes fast varying SH basis functions, so it is more prone to
noise artifacts than regular Q–Balls.
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3. The OPDT is based on the FRT, so it shares the same problem of Q–Balls
regarding the blurring of the orientation information (see eq. (6.10)).

The first problem, as shown in Section 6.6.5, is not very critical since the premise
used is quite realistic. As a consequence, the third condition in Section 6.1 is
mostly met. The second problem may be worked around using the unbiased fil-
tering techniques proposed in Chapter 5, so it is not so critical either. The last
point is more important. Besides the aforementioned blurring of the estimated
OPDF, an additional difficulty arises from the use of the FRT, which is described
in Section 6.5.5, and which motivates the study carried out in Chapter 7 to search
alternatives to the FRT.

6.5.5 Issues in the computation of the FRT

The blurring due to the Bessel kernel in the FRT (see Section 6.3) has an additional
side effect in the OPDT due to J0 is not positive (see Fig. 6.3, right). Consider the
expression of the Laplacian for the tensor model given by eq. (E.3) in Appendix E.
Due to the positive–definite character of D, it may be possible to find that, for the
directions of maximum diffusion (largest ‖Dq‖):

−8π
2
τ

(
−8π

2
τ ‖Dq‖2 + trace(D)

)
E(q) > 0, (6.27)

and so certain directions of q, once the factor −1/(4π2) is applied, contribute to
the FRT integral with negative values. This means that the integrals correspond-
ing to certain directions r of the OPDF orthogonal to the directions q of maximum
diffusion may become negative. Therefore, the modulus of the OPDT estimation
has to be computed in all cases. The orientations orthogonal to those of maximum
diffusion correspond to directions where no fiber bundles are present, so the dis-
tortion in the OPDF is not so important. However, it is clear that an estimator of
a PDF should not yield negative values, so this artifact induced by the FRT is the
most important drawback of the OPDT. Yet, for q0 large enough, eq. (6.27) might
become negative for all possible orientations, so the OPDT would be useless. For
Q–Balls, the FRT averages the values of E(q), which are always positive, along an
equator, so Q–Balls yield always positive estimates. Hence, this artifact is a con-
sequence of combining the estimation of the OPDF (instead of the ODF) with the
Bessel kernel–pondered integral inherent to the FRT.

6.6 Numerical simulations

This Section is devoted to the quantitative evaluation of the OPDT. In particu-
lar, the capability of resolving fiber crossings, and correctly determining their di-
rections in a variety of scenarios, is assessed. This methodology has become a
common benchmark to test the accuracy in the resolution of complex fiber archi-
tectures in HARDI [Des07,Öza06,Prč08,Tou07,Tou08,Tuc04]. To simulate, as far
as it is possible, a realistic environment, there is a number of typical scanning
parameters of interest:

• The value of b0 (related to q0 as: b0 = 4π2τq2
0, see eq. (2.31)).

• The number of sampling gradient directions in S , N.

• The noise power σ2
n , see Chapter 3.
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6.6.1 Methodology

Generation of the synthetic DWI signal

It is assumed that the voxel under study contains a known number of differenti-
ated fiber bundles in well–defined directions. Besides, the time between diffusion
pulses ∆ is short enough so that no water exchange occurs between different
fibers. Under these conditions, the probability of diffusion may be seen as the
mixture of F independent Gaussian diffusion propagators [Des07,Tou07,Tuc04]:

E(q0g) =
F

∑
f =1

p f exp
(
−b0gT D f g

)
, (6.28)

where p f are the partial volume fractions associated to each fiber direction and
D f their respective covariance matrices (diffusion tensors). In practice, the value
F = 2 is used in all experiments except for Section 6.6.4. Despite this is a well–
accepted methodology, in [Öza06, Prč08] the diffusion signal is generated with a
model based on isotropic diffusion inside a bounded cylinder. This is a simplified
model for the microscopic diffusion inside a nervous cell, but not for the macro-
scopic behavior measured by the scanner (see the introduction in Section 2.5 for
a detailed discussion on this topic). This is the reason why eq. (6.28) is used here
instead. Although it has not been previously reported in the literature, note that
using eq. (6.28) for validation could bias the results in favor of those methods
assuming a model based on Gaussian mixtures (spherical deconvolution, multi–
tensor models and continuous mixtures of Gaussians, for example). It is impor-
tant to realize that eq. (6.28) is a highly over–simplified model of the complex
architectures present in the white matter.

Noise corruption

Although the effect of noise may be palliated using the techniques presented in
Chapter 5, studying the impact of MRI noise in the estimation of fiber directions
is a good complement to the analysis carried out in Chapter 4. To that end, some
noisy scenarios have been simulated corrupting the ideal DWI signal given by
eq. (6.28) with Rician noise2. In a real situation, E(q0g) is computed as the quotient
between the diffusion–weighted gradient images and the baseline image, which are
both Rician–distributed. The statistics of noise in this case have not been studied.
For this reason, the same assumption as in Chapter 4 is taken, i.e. the baseline
is supposed to be noise–free, so E(q0g) will be Rician–distributed itself. The noisy
signal will be generated as:

Ẽ(q0g) =
√

(E(q0g)+nc)
2 +n2

s , (6.29)

for nc, ns two independent Gaussian processes with zero mean and variance σ2
n .

The PSNR (see Chapter 5) is used to represent the noise power in each experiment.

Comparison to other related estimators

The OPDT does not rely on any parametric model, so the comparison with spher-
ical deconvolution, multi–tensor models, or continuous mixtures of Gaussians is

2Although it was stated in Chapter 3 that some modern protocols for pMRI may produce non–central
Chi distributed signals, the Rician distribution is currently the most often found case, so the study is
centered on it.
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discarded. Higher order tensors model the ADC and not the probability of water
diffusion, so they are not a good target to compare to either. Persistent angular
structures make use of a very unrealistic assumption, which is a characteristic
the OPDT tries to avoid. There are two remaining methods:

• The DOT [Öza06] shares a number of characteristics with the OPDT: its nu-
merical scheme is based on SH, and it is very fast and robust to compute as
well. The main difference between them is that the DOT requires to assume
a constant ADC for all q, so the comparison will be very useful to stress the
importance of relaxing this premise (see Section 6.5.3). Besides, note that the
DOT is an estimator for ϒ (r) and not φ(r).

• Q–Balls is the closest approach to the OPDT, mainly due to the use of the
FRT, common to both of them. Q–Balls does not require any kind of as-
sumption, but on the other hand it is an estimator for Ψ(r), which does not
represent actual probabilities. Like for the DOT, comparing this character-
istic with the OPDT, which estimate true probabilities, will be very useful
to stress the importance of this feature of the OPDT. The implementation of
Q–Balls is that of [Des07].

Both estimators are non–parametric (due to the use of SH expansions), and may
be computed in a very fast and robust manner. As a final remark, neither the
OPDT, nor the other two estimators to be evaluated, assume a diffusion propagator
writable in terms of a mixture of Gaussians, so the use of eq. (6.28) does not
introduce a bias in the comparison.

Simulation parameters

The tensors D f in eq. (6.28) are generated with eigenvalues [1.8,0.2,0.2] ·10−3mm2/s,
which is a typical value for HARDI evaluation [Bas96]. The principal eigenvectors
are in the XY plane: for the first tensor, the principal eigenvector forms an angle
of (90−α)/2 degrees with the X axis, and for the second one an angle of (90−α)/2
degrees with the Y axis. The directions of both fiber–bundles form an angle of
α degrees, with partial volume fractions p f = 1/2 each. E(q0g) is sampled for N
antipodal symmetric directions inside S . Five different scenarios are considered:
S-1, with b0 = 1200s/mm2 and N = 50; S-2, with b0 = 1200s/mm2 and N = 100; S-3,
with b0 = 3000s/mm2 and N = 50; S-4, with b0 = 3000s/mm2 and N = 100; S-5, with
b0 = 3000s/mm2 and N = 200. The PSNR for noisy scenarios is indicated where
needed.

Parameters used for the estimators

SH expansions up to order L = 6 (H = 28 SH coefficients) have been used in all
cases. For the regularization parameter (see Appendix D), λ = 0.006 is a good trade–
off between smoothness and representation capability [Des07]. For the DOT, the
only parameter (apart from L) which has to be fixed is the radius R0 for which
ϒ (r) = P(R0r) is computed. According to [Öza06,Prč08], a higher value (R0 = 25µm)
is preferable for noise–free, ideal scenarios. In a real situation, a more conservative
compromise of R0 = 12µm has to be considered, so this latter value has been used
in all cases to achieve a fair comparison.
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Figure 6.5: Mean error in the angle of detected fibers as a function of the original angle between
fibers. Fiber directions are identified as local maxima (computed form SH coefficients up to the numer-
ical precision of the machine) of the orientation function in each case. Curves stop when the estimators
are not able to detect the fiber crossings (there are not two maxima in the orientation function).

6.6.2 Capability of resolving two crossing fibers

Fig. 6.5 represents the average angular error between the ground–truth directions
and the directions given by each estimator. Obviously, the closer the angle between
the ground–truth fiber bundles, the more difficult to distinguish between them
and the higher the error. Fibers are detected as local maxima of the orientation
function. In the case of the OPDT, this function (Φ(r)) is a true PDF, so this
methodology represents a maximum likelihood estimator for fiber directions3. This
property does not hold for Q–Balls or the DOT, since they do not estimate actual
probabilities.

The OPDT is able to resolve fibers crossing in closer directions in all scenarios,
and the difference is more important for lower b0 values. The OPDT is more ac-
curate than Q–Balls in all cases. The DOT is more accurate than the OPDT only
for higher values of b0 and fibers crossing in large angles, and yet its advantage is
quite subtle. Comparing Q–Balls and the DOT, their performance is quite similar
for low values of b0, but the DOT performs better for higher b0 (especially with few
gradients); similar results have been reported in [Prč08]. Note that all estimators
are able to better resolve fiber crossings in closer directions for higher b0, since a
greater b0 augments the contrast in the diffusion profile. On the contrary, using
more gradient directions improves the results only marginally: the minimum de-
tectable angle is practically the same, and the improvement on the angular error
is negligible. As a final comment, note the anomalous behavior of the OPDT for
certain crossing angles (55o to 75o degrees depending on the number of gradients)
with b0=3000mm/s2: the angular error decreases as the fiber bundles get closer.
This phenomenon is hardly visible with few gradient directions (scenario S–3), but
it is perfectly visible in scenarios S–4 and S–5. Yet, for S–5, two minima are visible
in the corresponding curve. This artifact will be thoroughly discussed in Section
6.6.5.

As an additional result, Fig. 6.6 shows glyph representations of the orientation

3Using the maximum of the orientation information function is a standard methodology to infer
fiber directions [Blo08]. However, note that it cannot be fully justified unless true probabilities are
estimated, as it is the case for the OPDT.
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Figure 6.6: Glyph representations of the estimated orientation functions for S–4 with Q–Balls (top),
the DOT (middle), and the OPDT (bottom), for crossing angles, from left to right: 90o, 60o, 45o and 40o.
Green lines correspond to the ground–truth, while red lines correspond to the estimated directions.

functions for the three estimators (scenario S–4). The OPDT yields more accurate
estimates and is able to detect the two fibers when the other estimators show only
one maximum (Q–Balls for 45o and 40o) or a maximum which does not correspond
to any of the true fiber populations (DOT for 45o and 40o). The OPDF estimated by
the OPDT is sharper than the information inferred with the other techniques.

From this Section it may be concluded that the OPDT is preferable: first to
resolve fibers crossing in low angles, and second for low values of b0; the third
conclusion is that the OPDF is in general able to yield more accurate results and
a higher angular contrast, with the additional advantage of being a true PDF.

6.6.3 Behavior in the presence of noise

The robustness of the estimators against noise is tested in the experiments de-
picted in Fig. 6.7. For the scenarios with lower b0 values, PSNR=13.3 is used, and
for the higher b0 values PSNR=5.0: since it is easier to detect fibers for higher b0,
the estimators are able to tolerate greater noise powers as b0 increases. Anyway,
note that the PSNR used represent severe noisy scenarios. Even so, all the esti-
mators are still able to satisfactorily infer fiber directions, though obviously noise
worsens their accuracy. As opposed to the noise–free scenarios, in this case us-
ing more gradient directions notably improves both the minimum angle detectable
and the accuracy. Note that increasing b0 improves the result even when the SNR
dramatically decreases.

The advantage of using the OPDT is especially noticeable for lower b0. For
higher b0, the OPDT is also more accurate and show a better resolution capabil-
ity than the DOT, except for vary large crossing angles. Contrary to the behavior
shown in Fig. 6.5, Q–Balls is now more accurate for higher b–values and large
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Figure 6.7: Mean error in the angle of the detected fibers as a function of the original angle between
fibers in the presence of noise. Results are the average of 100 Montecarlo trials. A failure is considered
(and thus the representation of the curves stop) whenever the estimator is not able to detect the two
fibers in the 50% of the trials.

input angles. Qualitatively speaking, Q–Balls works by averaging the attenuation
signal in a whole equator perpendicular to the direction of interest; therefore, this
estimator should be more robust to noise than, for example, the OPDT, which is
based on derivatives computed on the attenuation signal, accentuating the effect
of noise. Nevertheless, the signal averaging inherent to Q–Balls produces an angu-
lar blurring of the orientation information, which justifies the fact that the OPDT
is able to recover lower crossing angles even in noisy scenarios. For low b–values,
this blurring is more important than the effect of noise, and both the OPDT and
the DOT perform better than Q–Balls for all crossing angles.

Note that a value of b0 = 1200s/mm2 is more realistic in practical applica-
tions than 3000s/mm2, so the advantage of the OPDT remains clear. Yet, for b0 =
3000s/mm2, the OPDT is more accurate than the DOT, except for very large cross-
ing angles, and has a better resolution capability. Compared to Q–Balls, the OPDT
is able to resolve crossing angles far lower. An analogous representation to that
of Fig. 6.6 is shown in Fig. 6.8 for scenario S–4, with PSNR=5. Consistently with
the results in Fig. 6.7, Q–Balls gives closer estimates to the true fibers, but its
representation of the fiber populations is less intuitive and more blurred, failing
to find the two populations before the DOT or the OPDT do, so the final remark is
the better representation capability of the OPDT and the DOT when compared to
Q–Balls.

6.6.4 Resolution of more complex architectures

For illustrative purposes, Fig. 6.9 shows a situation with three crossing fiber bun-
dles; the directions are: (θ1,φ1)= (π/2,0), (θ2,φ2)= (π/2,π/2) and (θ3,φ3)= (3π/20,π/2);
the eigenvalues of Di are: [2,0.2,0.3] · 10−3, [1.8,0.4,0.3] · 10−3 and [2,0.1,0.1] · 10−3

mm2/s. The scenarios tested are S–2 with PSNR=13.3 and S–5 with PSNR=5. Q–
Balls completely blurs the orientation information, and it is not able to distinguish
the three fibers. The DOT fails to recover the three fibers for S–2, but for S–5 it
is able to detect all of them with a mean error of 18o. The OPDT is able to yield
acceptable results in both situations, with respective mean errors of 10o and 16o.
This result evidences that the OPDT is more accurate and robust as well for more
complex architectures. As mentioned in Sections 6.6.2 and 6.6.3, its advantage is
clear for lower b0 values.
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Figure 6.8: Glyph representations of the estimated orientation functions in a noisy scenario, for S–4
with Q–Balls (top), the DOT (middle), and the OPDT (bottom), for crossing angles, from left to right:
90o, 75o, 65o and 60o. Rician noise with PSNR=5 has been added to E(q).

6.6.5 Accuracy in the approximation of the Laplacian

It is shown in Fig. 6.10 a pseudo–color representation of (2D/q)/(∂D/∂q) (see
eq. (6.25)) and ∆b/∆q (see eq. (6.22)), computed as described in Appendix E for 2
and 3 crossing fibers. The figure shows averaged values of these quotients for all
b0 between 1000 and 3000 s/mm2. In the most of the (θ ,φ) space, (2D/q)/(∂D/∂q)
is greater than 10, and yet ∆b represents more than the 90% of the total value of ∆ ,
so the error is negligible. The greatest errors (small (2D/q)/(∂D/∂q)) are commit-

Figure 6.9: Glyph representations of the estimated orientation functions with three crossing fibers,
for S–2 with PSNR=13.3 (top), and S–5 with PSNR=5 (bottom).
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Figure 6.10: Pseudo–color representation of (2D/q)/(∂D/∂q) (error in the estimation of ∆q, left) and
∆b/∆q (relative importance of ∆b, right) for 2 (top) and 3 (bottom) crossing fibers. Half the (θ ,φ) space is
represented since the attenuation signal is symmetric. Fiber directions are represented as black spots,
and values greater than 10 have been clipped to this value in all cases.

ted in the directions of the fiber bundles. However, with 2 fibers these directions
correspond to zones where ∆b is clearly greater, so the overall error is small. With
3 fibers, there are directions where (2D/q)/(∂D/∂q) is small, and ∆b/∆q is less than
10, but the minima of (2D/q)/(∂D/∂q) never overlap with minima of ∆b/∆q. It fol-
lows, first, that more complicated fiber architectures yield greater errors, and,
second, that the relative error due to ∆q remains moderated compared to the total
value of ∆ = q2

0(∆q +∆b).

To support these conclusions, Fig. 6.11 shows the relative error in the esti-
mation of the Laplacian as a function of the angle between 2 crossing fibers. The
error decreases in all cases as the fibers get closer, since the structure of E(q)
is simpler. Compared to Fig. 6.5, note that, with the OPDT, the angular error
anomaly decreases for fibers in angles in a range from 55o to 75o, which may be
explained by the fact that for these angles the relative error in ∆q dramatically de-
creases. This artifact, however, depends on the number of sensitizing gradients,
and is not very critical. Yet, when the fibers get too close, the estimator is not able
to resolve them, and the error increases not depending on the error in ∆q, so that
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Figure 6.11: Relative error (averaged for N = 100 gradient directions) in the estimation of the Laplacian
as a function of the angle between 2 crossing fibers.
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the artifact is completely removed.

Note that the error in ∆q is more important with lower b0. The assumption ex-
plained in Section 6.5.3 implies that the exponential decay of E(q) is much faster
than the change in the shape of the ADC. For lower values of b0, the shape of D(q)
changes faster, but for higher b0, E(q) follows an asymptotic mono–exponential de-
cay, so the ADC varies very slowly compared to this exponential decay. Nonethe-
less, it has been previously shown that the OPDT is more advantageous for lower
b0, so it may be concluded that the error in the estimation of ∆q is negligible.

6.7 Conclusion

The OPDT is a simple, robust, but yet very accurate estimator of the probability
density of fiber populations in the white matter. Its complexity is comparable to
that of Q–Balls or the DOT, but it can better resolve fiber crossings and represent
fiber populations. Besides, it has a correct probabilistic interpretation: Q–Balls
only estimates radial projections of true probability densities, and the DOT es-
timates only the value of the probability density at a given radius R0. On the
contrary, the OPDT is an estimator of true marginal probability densities (OPDF),
which turns out to be an important property. In effect, it allows to interpret the
localization of maxima in the OPDF as a maximum likelihood estimate of fiber
populations. The technique proposed is more advantageous for low b0 values, so
its computation is not very restrictive on the machinery used to acquire the dif-
fusion images. However, as any other estimator ever reported in the literature,
its capability to resolve very close crossing fibers improves with higher b0; for this
kind of images, the SNR is highly degraded, so the adverse effect of noise may
overwhelm the higher contrast in some cases. Nevertheless, the OPDT has shown
to be equally very robust to noise.

Compared to other methods not directly evaluated in this Chapter, the OPDT
is the only one fulfilling all the requisites stated in Section 6.1 for an estimator
of fiber populations: contrary to higher order tensors, it estimates true prob-
abilities of diffusion, and does not require to assume a constant ADC for all
q. Regarding multi–tensor models, spherical deconvolution or continuous mix-
tures of Gaussians, the OPDT does not require to suppose any particular model
for E(q), which may take any form. In particular, unlike spherical deconvolu-
tion, the OPDT does not require the prior estimation of a deconvolution kernel,
whose accuracy clearly impacts the ability of the estimator to infer fiber direc-
tions. In this sense, the approach in [Des09] is formally very similar to the novel
ODPT, since it is based on the sharpening of the Q–Balls–computed ODF by the
weighting of its SH parameters. But this method requires to estimate a deconvo-
lution kernel, which makes it more similar to all other spherical deconvolution
approaches [And05,Tou07,Tou08] than to the OPDT. Finally, compared to Persis-
tent angular structures, the OPDT does not require any unrealistic assumption,
and it is able to estimate true probabilities.

The OPDT has a number of drawbacks as well:

• It still requires to make a (weak) assumption on the behavior of E(q) outside
S . As shown in Section 6.6.5, this is rarely an issue, so it may be considered
that in fact the OPDT accomplish the three requirements of interest.

• The weakness of this premise is achieved with the use of the FRT. Besides the
well–known blurring in the computed OPDF due to the use of this technique,
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an additional drawback was detailed in Section 6.5.5, which basically con-
sists in the lack of a positive–definite character of the estimated orientation
functions.

This latter issue is without any doubt the main problem of the OPDT, and
therefore the following Chapter is centered on finding a solution for this problem.



7
Integral approximations to probabilistic fiber

orientation estimators: beyond the
Funk–Radon Transform

In the previous Chapter, a novel technique for the inference of fiber orientations, the
OPDT, was introduced. It was shown that the key for the calculation of probability densi-
ties is the integration of the weighted diffusion propagator along the direction of interest.
This integration was translated to an integral in the dual Fourier domain (i.e. the q–space)
by means of the FRT. With Q–Balls estimation, the FRT allows to approximate radial in-
tegrals without making any assumption on the behavior of the attenuation signal outside
the sampled sphere S . With the novel OPDT, it allows to highly relax such assump-
tions, so that it is only necessary to suppose that the shape of the ADC is approximately
constant in a local sense. The drawback of FRT estimation is the blurring of the radial
integrals, which are estimated as integrals inside Bessel–shaped tubes. Moreover, with
the OPDT there is an additional disadvantage: the orientation information may become
negative under certain conditions. The present Chapter is devoted to avoid this limitation.
First, it is shown that, although it was empirically shown that the negativity problem with
the OPDT is not so critical in practical situations, the calculation based on the FRT is an
important theoretical limitation for this estimator. Then, an alternative solution based on
Stokes’ theorem is given: the assumption of the model is the same as with the OPDT, i.e.
a slow varying ADC, but the blurring due to the FRT is heavily reduced. This technique
may be applied both to Q–Balls and the OPDT. Moreover, the relatively high accuracy of
the DOT encourages to use the premise in this model (a constant ADC for all q) to obtain
alternative expressions. As a result, four novel estimators, two for Ψ(r) and two for Φ(r),
are introduced. They represent the main original contributions in this Chapter, and are
summarized in Table 7.1. All of them admit a representation in terms of the FRT of a
given function obtained from the attenuation signal. This way, the FRT is no longer an
estimator itself, but it becomes a very powerful mathematical tool for HARDI techniques
without the artifacts inherent to its direct use for the calculation of radial integrals.

7.1 Introduction

In the previous Chapter, the FRT has been proved a highly valuable tool for HARDI
estimators of fiber populations. It allows the characterization of diffusion propa-
gators from the values of the attenuation signal sampled only at a sphere of radius
q0. For this reason, it has been successfully used in the literature in Q–Balls es-
timators [Tuc03, Tuc04] and other recent techniques [Des09]. Despite of its FRT
grounding, this latter approach is conceptually a spherical deconvolution method,
hence basically different from Q–Balls. Therefore, it makes sense to consider these
two approaches as different techniques, and the precedent for a part of the work
developed in this thesis.
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Concerning the OPDT presented in Chapter 6, the FRT is also the central tech-
nique for the inference of orientation information. Besides, the calculation of the
underlying line integral becomes simpler with the SH expansions–based imple-
mentation proposed in [Des07]. All these considerations evidence the high interest
of this tool for HARDI studies.

It was previously stated that the main virtue of the FRT is the allowance of any
assumption in the behavior of the attenuation signal outside the sampled sphere
(or, at least, any strong assumption, for the case of the OPDT). Due in part to this
feature, the OPDT outperforms other estimators, like the DOT, in many situations.
Nonetheless, the FRT also shows a number of drawbacks which are shared by all
the estimators based on this technique. As argued in the previous Chapter, there
are two main limitations:

1. The FRT is used to estimate the radial integral along a direction r by the in-
tegration along an equator perpendicular to this direction. This estimation is
not exact, introducing an important blurring described by Bessel functions–
shaped kernels (see eq. (6.10)).

2. For the case of the OPDT, the negativity of the estimated orientation infor-
mation under certain conditions is a problematic side effect of the estimation
of the OPDF instead of the ODF.

While the former is not very critical (both Q–Balls and the OPDT has been shown
to yield accurate estimates regardless on this source of error, and yet the spherical
deconvolution approach in [Des09] has been proved very useful), the latter may
become an important limitation to the use of the OPDT. In particular, consider
eq. (E.3), which represents the Laplacian of the attenuation signal if a simple
tensor model is considered. This expression is reproduced here for convenience:

∆E(q) =−8π
2
τ

(
−8π

2
τ ‖Dq‖2 + tr(D)

)
E(q). (7.1)

As discussed in the previous Chapter, the positive definite character of D en-
sures that, for ‖q‖ large enough, the previous equation may yield positive values.
Since the OPDT is computed as the FRT of the Laplacian multiplied by a nega-
tive constant, negative values of the OPDF may appear. The work–around used
with the OPDT is to eliminate these negative values by simply changing them by
0. This problem becomes more serious if the b–value (and, consequently, q0) is
increased, since the second term inside the brackets in eq. (7.1) (the trace of the
diffusion tensor) does not depend on b, but the first one increases linearly with b
(or quadratically with q0). Yet, if the b–value is arbitrarily increased, eq. (7.1) may
become positive for all q, making the OPDT useless. Although the experimental
work carried out in Chapter 6 has shown that for practical b–values and common
tensor configurations this is not an issue, this problem is an important theoretical
limitation of the OPDT.

The aim of this Chapter is to give an adequate solution to this problem. Such
a solution must not compromise the fulfillment of the requisites defined in Sec-
tion 6.1 for fiber orientation estimators. It is desirable that the proposed solution
estimates actual probabilities with the weakest possible assumptions on the at-
tenuation signal, and that it is still non–parametric. The statement of this problem
drives to the circulation–based OPDT derived in Section 7.4. However, it is shown
in Sections 7.3 and 7.5 that relaxing these conditions in some way drives to esti-
mators which may be useful for some tasks.
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7.2 Line integrals as flux integrals in the q–space

The aim in this Chapter is to compute the line integral in eq. (6.5) (or the one in
eq. (6.6)), avoiding the blurring introduced by the FRT, by means of an alternative
representation in the transformed Fourier domain. To that end, the methodology
is as follows:

1. Deduce the exact expression relating the integral of the diffusion propagator
along a given direction r (possibly weighted by the Jacobian of the spherical
coordinates system) to its equivalent in the Fourier domain. It translates to
an integral in the orthogonal plane to r, Π (see Fig. 7.1).

2. Approximate this calculation by the integral in a bounded domain, i.e., inside
the disk Ω delimited in Π by the sphere S .

3. Relate the latter integral to a line integral along the equator of S described
by its intersection with the plane Π (i.e., along the boundary Γ of Ω ).

In what follows, each of these steps is motivated and discussed.

7.2.1 Representation of line integrals in the Fourier domain

Consider the auxiliary cylindrical coordinates system described in Fig. 6.2, where
the ‘z’ axis has been aligned with the direction of interest, r. The integral of the dif-
fusion propagator P(R) (or, alternatively, the weighted diffusion propagator R2P(R))
may be easily computed from eq. (6.6) as:

Ψ(r) =
1
2

∫
∞

−∞

P(Rr)dR =
1
2

∫
∞

−∞

P̃(u,β ,ϑ)dϑ

∣∣∣∣
u=0

=
1
2

∫
∞

−∞

(∫
∞

0

∫ 2π

0

∫
∞

−∞

Ẽ(t,α,z)exp(− j2π (t ·0 · cos(α−β )+ zϑ)) t dz dα dt
)

dϑ

=
1
2

∫
∞

0

∫ 2π

0

∫
∞

−∞

Ẽ(t,α,z)
(∫

∞

−∞

exp(− j2πzϑ)dϑ

)
t dz dα dt

=
1
2

∫
∞

0

∫ 2π

0

(∫
∞

−∞

Ẽ(t,α,z)δ (z)dz
)

t dα dt =
1
2

∫
∞

0

∫ 2π

0
Ẽ(t,α,0) t dα dt, (7.2)

where P̃ and Ẽ are respectively the cylindrical coordinates representations of P and
E, and δ stands for Dirac’s delta distribution. The last term in eq. (7.2) is clearly
the integral of the attenuation signal in the ‘xy’ plane of the auxiliary system (note
the presence of the Jacobian of the transformation, t, due to the polar represen-
tation of the integral). Translated to real–world coordinates, this plane Π is the
plane orthogonal to r containing the origin. This same reasoning may be applied
to the weighted diffusion propagator, so that the following equalities hold:

Ψ(r) =
1
2

∫ ∫
Π⊥r

E(q)dΠ . (7.3)

Φ(r) =
−1
8π2

∫ ∫
Π⊥r

∆E(q)dΠ . (7.4)

In the previous equations, the notation Π⊥r has been used to make it explicit that
the plane Π is orthogonal to r. Comparing eq. (7.2) with the FRT approximation in
eq. (6.10), the former represents the exact calculation of the radial integral, while
the latter is only an approximation. With the FRT, the integral in the whole plane
Π is substituted by the integral in a circumference contained on it. Obviously, this
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Figure 7.1: Auxiliary spherical coordinates system for the computation of the integrals inside Ω ⊂Π .
The equator Γ = ∂Ω is orthogonal to the direction of interest, r. The dual R–space with respect to the
Fourier transform is represented by the triplet (R,ζ ,υ).

is a very rough approximation which introduces large errors in the estimation, as
shown in Chapter 6. On the contrary, eq. (7.4) may be used to compute the exact
ODF, without any error. In particular, the main problem of the OPDT, i.e. its
negativity under some circumstances, is avoided.

Unfortunately, conventional HARDI techniques do not allow the characteri-
zation of E(q) (or other related functions) in the whole plane Π , but only in its
intersection with the sphere S . The work–around with the FRT is to integrate the
corresponding function only along the equator Γ in Fig. 7.1. Instead, an alternative
approach is derived in what follows.

7.2.2 Approximation of line integrals as integrals in a disk

The integrals in eqs. (7.3) and (7.4) cannot be explicitly computed only from values
sampled at S over the corresponding equator. Instead, the integral inside the disk
Ω ⊂Π , whose boundary Γ = ∂Ω is the intersection of S with Π , may be considered.
A new auxiliary coordinates system has to be introduced at this point, which
has been depicted in Fig. 7.1. In this case, the problem better fits a spherical
system. Like in Fig. 6.2, the coordinates system is rotated so that the direction
of interest, r, corresponds to the colatitude angle ξ = 0. Therefore, the disk Ω is
easily represented as: Ω = {(q,ξ ,ν)|0≤ q≤ q0,ξ = π/2,0≤ ν < 2π}, and:

Ψ(r) ' 1
2

∫ ∫
Ω

E(q)dΩ =
1
2

∫ q0

0

∫ 2π

0
Ẽ(q,

π

2
,ν)qdνdq. (7.5)

Φ(r) ' −1
8π2

∫ ∫
Ω

∆E(q)dΩ =
−1
8π2

∫ q0

0

∫ 2π

0
∆̃E(q,

π

2
,ν)qdνdq. (7.6)

In general, the decay of the attenuation signal follows an exponential law, so
the most of the energy of E(q) (or ∆E(q)) is concentrated inside Ω . For this as-
sumption to hold, it is not necessary to assume a mono–exponential decay of E(q):
it has been shown that the attenuation signal is accurately described by a multi–
exponential model [Nie96,Öza06,Shi09]. Moreover, the physics of diffusion impose
a fast decay of E(q) as q0 increases (see Chapter 2), so it may be assumed that the
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error committed neglecting the integral outside Ω is small enough compared to
the integral inside this subset.

Of course, the error in the computation decreases as q0 (or, alternatively, the
b–value) increases, since the subset of Π for which the integral is neglected is
smaller, comprising more attenuated tails of E(q). Compared to the computation
based on the FRT, note that the problem of negative estimations is noticeable
especially for higher b–values, so the approach proposed in this Chapter is espe-
cially attractive for OPDT–like estimators. Nevertheless, there is a side problem
in using the integral inside Ω : an exponential model (multi–exponential, in fact)
ensures that only a small fraction of the actual value of the integral is neglected;
but the exponential law, and consequently the error, is different for each direction
g. In case this error is not negligible (for example, if those directions of minimum
diffusion are considered), it may introduce a certain distortion in the estimated
orientation function.

Apart from these considerations, it remains to compute the integrals inside Ω ,
and for this task only sampled values along Γ (those available in the HARDI data
set) may be used. The next Section is centered on this topic.

7.2.3 Flux integrals in the Fourier domain and Stokes’ theorem

Stokes’ theorem naturally arises when relating the integral inside a bounded sur-
face Ω to the integral along its boundary Γ . It states that the circulation of a vector
field, F, along a closed curve Γ in R3 equals the flux integral of its curl, H, across
the surface Ω enclosed by Γ . For the particular situation depicted in Fig. 7.1,
Stokes’ theorem reads:∫

Γ

F · t dΓ =
∫ ∫

Ω

(∇×F) ·n dΩ =
∫ ∫

Ω

H ·n dΩ , (7.7)

where t is a unit vector tangent to Γ at each point and n is a unit vector normal to
Ω ; the orientations of t and n are related through the right hand rule. ∇×F is the
conventional notation for the curl of a vector field. Using the auxiliary spherical
coordinates system in Fig. 7.1, the domains of integration, the tangent and normal
unit vectors, and the Jacobian determinants for the integration may be explicitly
computed:∫

Γ

F · t dΓ =
∫ 2π

0
F̃(q0,

π

2
,ν) · eν q0dν =

∫ 2π

0
F̃ν(q0,

π

2
,ν)q0dν ; (7.8)∫ ∫

Ω

H ·n dΩ =
∫ q0

0

∫ 2π

0
H̃(q,

π

2
,ν) ·

(
−eξ

)
qdνdq =−

∫ q0

0

∫ 2π

0
H̃ξ (q,

π

2
,ν)qdνdq, (7.9)

where eν and eξ are the unit vectors orthogonal to the isosurfaces of ν and ξ ,
respectively; F̃ and H̃ are the representations of F and H in this system, and Fν

and Hξ their corresponding projections on eν and eξ . The normal vector n is aligned
with −eξ obeying the right hand rule.

Identifying corresponding terms in eqs. (7.5) (respectively, eq. (7.6)), and (7.9),
it is clear that the attenuation signal E (or respectively, its Laplacian) has to be
identified with the component of H in the direction of eξ . Since the other com-
ponents of H (Hq and Hν ) are orthogonal to eξ , they do not contribute to the flux
integral in eq. (7.7); hence, the estimators in eqs. (7.5) and (7.6) may be written as
the flux across Ω of the following vector fields:

H̃Ψ = H̃Ψ

ξ
eξ =−1

2
Ẽ(q,ξ ,ν) eξ . (7.10)

H̃Φ = H̃Φ

ξ
eξ =

1
8π2 ∆̃E(q,ξ ,ν) eξ . (7.11)
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For each direction of interest r, the auxiliary system, and thus eξ , changes. As a
consequence, H is different for each r. Fortunately, this problem can be overcome
in a very simple way, as stated in Section 7.6. For a particular direction r, H has
to be expressed in terms of the curl of a given field F, to be computed using the ex-
pression of this differential operator in spherical coordinates. Since H follows the
direction of eξ at each point, only this component has to be considered, yielding:

∇× F̃ = H̃⇒ 1
qsin(ξ )

(
∂ F̃q

∂ν
− sinξ

∂qF̃ν

∂q

)
= H̃ξ . (7.12)

The previous expression is only the particularization of the curl operator to the
component in eξ . Besides, the boundary Γ of Ω is tangent at each point to the
unit vector eν (see Fig. 7.1). From eq. (7.8), it is evident that the components of F
orthogonal to eν (i.e., Fq and Fξ ) are perpendicular to the trajectory of integration,
and thus they do not contribute to the circulation along Γ . Consequently, the term
Fq in eq. (7.12) may be dropped down. Under a different point of view, note that Fq
should be periodic in ν to ensure the differentiability of F (otherwise, a singularity
in the X ′Z′) plane of Fig. 7.1 would appear). As a result, its derivative would be
periodic in ν as well, and the corresponding integral in a whole period would be
0. Then, from eq. (7.9) it becomes evident that the contribution of this term to the
flux across Ω would simply be 0. Thinking of any of these interpretations, it is
clear that eq. (7.12) is equivalent to:

H̃ξ (q,ξ ,ν) =−1
q

∂qF̃ν(q,ξ ,ν)
∂q

. (7.13)

For each Hξ in eqs. (7.10) or (7.11), eq. (7.13) has to be solved for Fν . The estima-
tors of the corresponding orientation information functions are computed using
eq. (7.8):

Ψ(r)' 1
2

∫ ∫
Ω

E(q)dΩ =
∫

Γ

FΨ · t dΓ =
∫ 2π

0
F̃Ψ

ν (q0,
π

2
,ν)q0dν , (7.14)

where F̃Ψ
ν is the result of solving eq. (7.13) for F̃ν , with H̃ξ corresponding to H̃Ψ in

eq. (7.10). Accordingly, for Φ(r):

Φ(r)'
∫ 2π

0
F̃Φ

ν (q0,
π

2
,ν)q0dν . (7.15)

Both estimators can now be written in terms of integrals along Γ , where Π may
be characterized from the HARDI data set. To this point, the only source of error
in the estimators is the part of the integral over Π which is neglected (the subset
outside the disk Ω ), since the line integrals in eqs. (7.14) and (7.15) are identical to
their bi–dimensional counterparts in eqs. (7.5) and (7.6). It only remains to solve
eq. (7.13) for Fν to explicitly evaluate the estimators. The following Sections give
particular solutions to this problem for known estimators.

7.3 Circulation–based Q–Balls

Q–Balls is an estimator of the ODF Ψ(r), i.e the integral of the diffusion propaga-
tor along r. It may be generalized with the technique presented in this Chapter
particularizing eq. (7.13) for H̃Ψ in eq. (7.10):

− 1
2

Ẽ(q,ξ ,ν) =−1
q

∂qF̃Ψ
ν (q,ξ ,ν)

∂q
⇒ q

2
Ẽ(q,ξ ,ν) =

∂qF̃Ψ
ν (q,ξ ,ν)

∂q
. (7.16)
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Like for the OPDT presented in Chapter 6, a radial derivative appears in the state-
ment of this problem. The solution given in Section 6.5.3 was to assume that the
ADC was nearly constant for q0 in a local sense. The experiments carried out in
Section 6.6.5 suggested that in fact this is a reasonable assumption. With this
premise, the previous equation may be explicitly solved:

F̃Ψ
ν (q,ξ ,ν) =

1
q

∫ q

0

u
2

Ẽ(u,ξ ,ν)du =
1
q

∫ q

0

u
2

exp
(
−4π

2
τu2D̃(u,ξ ,ν)

)
du

' 1
q

∫ q

0

u
2

exp
(
−4π

2
τu2D̃(q0,ξ ,ν)

)
du =

1
2q

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−8π2τD̃(q0,ξ ,ν)

q

0

=
1− exp

(
−4π2τq2D̃(q0,ξ ,ν)

)
16π2τqD̃(q0,ξ ,ν)

. (7.17)

The integration of the partial derivatives equation has been performed between 0
and q because Stokes’ theorem needs certain regularity conditions on F to hold. In
particular, a singularity at q = 0 is not allowed. Since q appears in the denominator,
it is necessary to ensure that the numerator tends to 0 for q = 0 to avoid a pole
in the function. In other words, the integration between 0 and q is equivalent to
choose an integration constant such that for any value of ξ and ν the numerator
of eq. (7.17) tends to 0.

It is important to stress that this is not equivalent to assume that the ADC is
constant between 0 and q0. Eq. (7.17) represents an approximation to the primitive
of the function to integrate only for q = q0. Amongst the infinite number of primi-
tives of such a function, the one whose value at q = 0 is 0 is chosen. Although the
final result is numerically equivalent to suppose that the ADC is constant (and
equal to the actual ADC for q = q0) between 0 and any given q, there is a deep
conceptual difference: if the ADC is assumed constant for all q, the final result
in eq. (7.17) holds for every q (not only q0). On the contrary, if the ADC is only
assumed to vary slowly near q0, eq. (7.17) is only valid for q0. Since the integration
of Fν to compute the estimator requires to know its value only for q0, the latter
assumption is enough. This is a main conceptual difference with other HARDI
estimators like the DOT or higher order tensors.

With this result, eq. (7.14) can now be evaluated to compute the final estimator:

Ψ(r) '
∫ 2π

0

1− exp
(
−4π2τq0

2D̃(q0,
π

2 ,ν)
)

16π2τq0D̃(q0,
π

2 ,ν)
q0dν

=
q2

0
4

∫ 2π

0

1− Ẽ(q0,
π

2 ,ν)

− log
(

Ẽ(q0,
π

2 ,ν)
)dν , (7.18)

which is an alternative to Q–Balls partially avoiding the blurring due to the FRT.
This source of error is palliated at the expense of introducing a weak assumption
on the behavior of the attenuation signal outside the sampled sphere (as stated in
Chapter 6, one of the main advantages of Q–Balls is the riddance of any assump-
tion). Besides, the computation of the circulation along Γ is only an approximation
of the actual ODF, since it is equivalent to the integral inside the disk Ω ⊂Π . How-
ever, this approximation is better than simply integrating E along Γ , which is the
FRT approach.
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7.4 Circulation–based OPDT

The OPDT is based on the integration of the Laplacian of the attenuation sig-
nal. Integrating ∆E in the plane Π orthogonal to the direction of interest r, the
true marginal probability of diffusion along this direction (the OPDF) is computed.
In spherical coordinates, the Laplacian may be represented as described in Sec-
tion 6.5.1:

∆E(q) =
1
q2 ∆qE(q)+

1
q2 ∆bE(q) =

1
q2

∂

∂q

(
q2 ∂E(q)

∂q

)
+

1
q2 ∆bE(q). (7.19)

The first term in eq. (7.19) is the radial part, whose representation in the auxiliary
system of Fig. 7.1 is exactly the same, since the radial coordinate q is the same
in both systems. Besides, the integral of the radial term over the plane Π may be
explicitly computed integrating by parts:∫ ∫

Π

1
q2 ∆̃qE(q,ξ ,ν)dΠ =

∫ 2π

0

∫
∞

0

1
q2

∂

∂q

(
q2 ∂ Ẽ(q, π

2 ,ν)
∂q

)
qdqdν

=
∫ 2π

0

([
q

∂ Ẽ(q, π

2 ,ν)
∂q

]∞

0

+
∫

∞

0

∂ Ẽ(q, π

2 ,ν)
∂q

dq

)
dν

=
∫ 2π

0

(
lim
q→∞

q
∂ Ẽ(q, π

2 ,ν)
∂q

+ lim
q→∞

Ẽ(q,
π

2
,ν)− Ẽ(0,

π

2
,ν)

)
dν

=
∫ 2π

0
(0+0−1)dν =−2π, (7.20)

where the limits for q→ ∞ and q = 0 are computed taking into account only the
physics of diffusion; for q = 0, no diffusion gradient is applied, and therefore there
is no attenuation. For q→ ∞, the same discussion of Section 7.2.2 regarding the
exponential behavior of E(q) holds, so eq. (7.20) has general validity without any
simplification.

The integral related to the Laplace–Beltrami operator cannot be computed in a
closed form, so the same methodology as in Section 7.3 has to be used. In this
case, eq. (7.13) particularizes to the following expression:

1
8π2q2 ∆̃bE(q,ξ ,ν) =−1

q
∂qF̃Φ

ν (q,ξ ,ν)
∂q

⇒ −1
8π2q

∆̃bE(q,ξ ,ν) =
∂qF̃Φ

ν (q,ξ ,ν)
∂q

. (7.21)

To solve the previous equation for F̃Φ
ν , it is necessary to assume once again a slow

variation of the ADC, due to the existence of radial derivatives. Compared to the
OPDT presented in Chapter 6, now it is the term depending on the angular part
of the Laplacian (the Laplace–Beltrami operator) which requires to make extra as-
sumptions on the attenuation signal. On the other hand, the term depending on
the radial Laplacian may be exactly computed without any error (yet, it is not nec-
essary to restrict the integral to the disk Ω , so absolutely no error is committed),
as opposed to the case of the OPDT. Nonetheless, the assumption required for
this approach is exactly the same as for the OPDT, so the new technique does not
introduce new sources of error per se.

The same methodology used to solve eq. (7.16) may be reproduced with eq. (7.21):

F̃Φ
ν (q,ξ ,ν) =

−1
8π2q

∫ q

0

1
u

∆̃bE(u,ξ ,ν)du =
−1

8π2q

∫ q

0

∆b exp
(
−4π2τu2D̃(u,ξ ,ν)

)
u

du

' −1
8π2q

∫ q

0

∆b exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
u

du, (7.22)
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where the same discussion about the integration between 0 and q of the previous
Section holds now. However, the computation of this integral is not trivial, since
the division by u introduces a pole which is not integrable for u = 0. It is shown
in Appendix F that in fact the integral in eq. (7.22) is always convergent due to
the computation of the Laplace–Beltrami operator, which assures that a zero of a
greater order than the pole is present. Indeed, it is shown that eq. (7.22) may be
written in the form:

F̃Φ
ν (q,ξ ,ν) ' −1

8π2q

∫ q

0

∆b exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
u

du

=
−1

8π2q

∫ q

0

∆b

(
exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1
)

u
du

=
−1

8π2q
∆b

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du, (7.23)

where the order of the Laplace–Beltrami operator and the radial integral can be
exchanged since the new integral is convergent. Although the integral in eq. (7.23)
is not trivial, it may be written in terms of the exponential integral Ei [Abr72],
whose main properties are reviewed in Appendix F:

F̃Φ
ν (q,ξ ,ν) ' −1

8π2q
∆b

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du

=
−1

8π2q
∆b

[
1
2

Ei

(
−4π

2
τu2D̃(q0,ξ ,ν)− log(u)

)]q

0

=
−1

16π2q
∆bEin(4π

2
τq2D̃(q0,ξ ,ν)), (7.24)

where Ein is the non–singular exponential integral, whose definition, together with
some asymptotic properties, are given in Appendix F. Finally, eq. (7.24) may be
casted into eq. (7.15) to compute the estimate of the integral of the angular Lapla-
cian. This result, together with eq. (7.20), allows to compute the final estimator of
the OPDF:

Φ(r) '
∫ 2π

0

−1
16π2q0

∆bEin

(
4π

2
τq2

0D̃(q0,
π

2
,ν)
)

q0dν +
−1
8π2 (−2π)

=
−1

16π2

∫ 2π

0
∆bEin

(
4π

2
τq2

0D̃(q0,
π

2
,ν)
)

dν +
1

4π

=
−1

16π2

∫ 2π

0
∆bEin

(
− log

(
Ẽ(q0,

π

2
,ν)
))

dν +
1

4π
. (7.25)

This estimator is an alternative to the OPDT intended to reduce the blurring due
to the computation of the FRT. It has two main sources of error: first, the angular
part of the Laplacian is not integrated in the whole plane Π , but only over the
subset Ω ⊂Π . This distortion may be reduced increasing the b–value (i.e. increas-
ing the radius q0 of the sampling sphere). Compared to the OPDT, this is a clear
advantage, since the problems of the OPDT are especially noticeable for larger b–
values. Second, the ADC has to be supposed constant, in a local sense, in an
environment of q0. Since this is the same assumption required to compute the
OPDT, the new approach does not introduce a new source of error in this sense.
Besides, eq. (7.25) is a true estimator for the OPDF without any kind of normal-
ization: suppose that E(q) is constant for all q; in this case the computation of the
Laplace–Beltrami operator yields simply 0, so the estimator reduces to a constant
value of 1/4π, i.e. to a uniform variable in the extent of the sphere of radius 1.
Therefore, the scaling of the OPDT by a factor q2

0 is avoided.
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7.5 Alternative estimators of orientation information

The representation of line integrals as flux integrals, together with the applica-
tion of Stokes’ theorem, have an additional advantage. When solving eqs. (7.16)
and (7.21), it was stated that the weak assumption of a slow varying ADC ensures
the validity of the obtained functions only for q = q0; but if the ADC is assumed
to be constant for all q, the solutions given by eqs. (7.17) and (7.24) remain valid
for all q. These results may thus be used to compute the limit of the flux integrals
when q approaches infinity, which has to yield the integral in the whole plain
Π . This way, the error due to the reduction of the integration domain is com-
pletely removed at the expense of imposing a stronger condition on the behavior
of E(q). In other words, the main weakness of the FRT (the blurring in the radial
integral) is completely avoided, but at the same time its main advantage (the ab-
sence of any restriction on E(q)) is lost. This premise has been successfully applied
in other related estimators such as the DOT or higher order tensors, so it should
render estimations which are at least adequate.

For the estimator proposed in Section 7.3, and from eq. (7.17), the circulation
C(F̃Ψ

ν ,Γ ) for a given value of q may be calculated as:

C(F̃Ψ
ν ,Γ ) '

∫ 2π

0

1− exp
(
−4π2τq2D̃(q0,

π

2 ,ν)
)

16π2τqD̃(q0,
π

2 ,ν)
qdν

=
∫ 2π

0

1− exp
(
−4π2τq2D̃(q0,

π

2 ,ν)
)

16π2τD̃(q0,
π

2 ,ν)
dν . (7.26)

This expression holds approximately for all q if the ADC is assumed approximately
constant for all q. Therefore, it make sense to take its limit when q tends to infinity
to compute the integral in the whole plain Π1:

Ψ(r) = lim
q→∞

C(F̃Ψ
ν ,Γ )'

∫ 2π

0

dν

16π2τD̃(q0,
π

2 ,ν)
=

q2
0

4

∫ 2π

0

−dν

log
(

Ẽ(q0,
π

2 ,ν)
) . (7.27)

The same reasoning may be done for the circulation–based OPDT, and from the
second equality in eq. (7.25):

Φ(r) = lim
q→∞

C(F̃Φ
ν ,Γ )' lim

q→∞

(
−1

16π2

∫ 2π

0
∆bEin

(
4π

2
τq2D̃(q0,

π

2
,ν)
)

dν +
1

4π

)
=

−1
16π2

∫ 2π

0
lim
q→∞

∆b

(
Ein

(
4π

2
τq2D̃(q0,

π

2
,ν)
))

dν +
1

4π

=
−1

16π2

∫ 2π

0
lim
q→∞

∆b

(
− log

(
4π

2
τD̃(q0,

π

2
,ν)
)
− log(q2)− γ

)
dν +

1
4π

=
1

16π2

∫ 2π

0
∆b log

(
− log

(
Ẽ(q0,

π

2
,ν)
))

dν +
1

4π
, (7.28)

where γ is the Euler–Mascheroni constant. The asymptotic behavior of Ein for large
q is studied in Appendix F. The estimator in eq. (7.28) is very similar to the DOT
proposed in [Öza06], since both of them need to assume a constant ADC for all q.
However, the one here introduced is an estimator of actual marginal probabilities,
while the DOT is not. Besides, the numeric implementation of this estimator,
described in Appendix D, is simpler than that of the DOT.

1A similar result to that in eq. (7.27) has been developed in [CR09], in parallel with the work here
presented.
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Name Implementation Function Constant
ADC

Radial inte-
gral error

Q–Balls G {E(q)}(r) Ψ(r) No High (FRT)

DOT — ϒ (r) Global No

OPDT
−1
4π2 G {∆E(q)}(r) Φ(r) Local High (FRT)

cQ–Balls
−q2

0
4

G

{
1−E(q)
logE(q)

}
(r) Ψ(r) Local Low (disk)

cOPDT
−1

16π2 G {∆bEin (− logE(q))}(r)+
1

4π
Φ(r) Local Low (disk)

pQ–Balls
−q2

0
4

G
{
(logE(q))−1

}
(r) Ψ(r) Global No

pOPDT
1

16π2 G {∆b log(− logE(q))}(r)+
1

4π
Φ(r) Global No

Table 7.1: Summary of the estimators presented in Chapters 6 and 7 (bold), together with some other
related estimators of interest. The implementation of the DOT in [Öza06] is not given since it does not
admit a simple, closed–form expression. The optimal estimator would be that estimating Φ(r) (true
probabilistic information), without making any assumption on the ADC, and without committing any
error in the radial integral.

7.6 Relation with the FRT. Practical implementation

Four novel estimators have been introduced in this Chapter. They are described in
eqs. (7.18), (7.25), (7.27) and (7.28). The first two are based on the circulation of
a vector field along the boundary Γ of the domain Ω , so they will be referred to as
cQ–Balls and cOPDT, where ‘c’ stands for ‘circulation’. The other two estimators
are based on the integration of a given function on the whole orthogonal plane
Π to the direction of interest r, and will be referred to as pQ–Balls and pOPDT,
where now ‘p’ stands for ‘plane’. Comparing the final expressions in the afore-
mentioned equations, all the estimators are computed as the integral along Γ of a
function which is related to the attenuation signal E(q) in a relatively simple way.
Consequently, once this related function is computed, the final estimator may be
easily computed by means of the FRT as described in Section 6.3. Additionally,
if the function is expressed in terms of SH expansions, the efficient numeric im-
plementation proposed in [Des07] may be used (see Appendix D for details). The
precise expressions for each estimator, together with a comparative analysis of
the assumptions they require, and the orientation information they estimate, are
given in Table 7.1.

All the estimators developed in this Chapter can be written as the FRT of a
function of E(q) (or the angular Laplacian of E(q), for the estimators of Φ(r)) that
changes its angular contrast; for example, pQ–Balls may be seen as the conven-
tional Q–Balls approach applied to a preconditioned signal computed from E(q) as
−1/ logE(q). The corresponding contrast–enhancing functions for the remaining
estimators are depicted in Fig. 7.2. Obviously, the domain of these functions is the
interval [0,1], since E(q) is an attenuation of the baseline image. Note the different
behavior of the functions for the estimators of Ψ(r), monotonically increasing, and
the estimators of Φ(r), monotonically decreasing. Besides, the functions for the
estimators based on circulations are bounded, which ensures a certain stability in
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computed, for the estimators presented in this Chapter. Left: estimators of Ψ(r). Right: estimators of
Φ(r). In the latter case, the Laplace–Beltrami operator of the resulting signal has to be calculated prior
to the computation of the FRT.

the computation of the orientation information. This is not the case for the func-
tions corresponding to the estimators based on a constant ADC (or alternatively,
based on the integration over the whole plane Π ), which are unbounded.

7.7 Numerical simulations

The methodology for numerical validation to be carried out is the same as in Chap-
ter 6. For a detailed review about the simulation parameters, variables of interest
and possible scenarios, the reader is addressed to Section 6.6.1. Concerning the
new estimation techniques introduced in this Chapter, they do not require any
additional parameter apart from those inherited from their counterparts (regular
Q–Balls or the OPDT). Therefore, the tuning of parameters is exactly the same as
in the previous Chapter.

In the subsequent study, not only the four novel estimators presented are going
to be tested. For comparison purposes, all the estimators reviewed in Table 7.1
are included in the analysis. To better organize such large amount of information,
the results presented have been split in two groups: on one hand, those related
with the estimation of the radial projection Ψ(r); on the other, the ones related to
the estimation of the true probability density (OPDF) Φ(r). Regarding the DOT, it
is intended to estimate the probability profile at a given distance R0, so–called ϒ (r)
in the previous Chapter. Since the performance of the DOT in terms of detection
capability and resolution accuracy is closer to that of the OPDT than it is to Q–
Balls, the results for ϒ (r) are grouped in the second category.

7.7.1 Capability of resolving two crossing fibers

ODF estimators

To begin with, Fig. 7.3 illustrates the angular error in the detected fibers com-
pared to the ground–truth directions, as a function of the initial angle between
them. As it can be seen, all the estimators yield a very similar performance, as
previously reported in [TV09b]. Nevertheless, pQ–Balls shows a greater error for
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Figure 7.3: Angular errors in the estimation of two crossing fibers, as a function of the initial angle
between the ground–truth directions, for the estimators of the ODF, Ψ(r). Together with Q–Balls, the
results for two novel estimators, cQ–Balls and pQ–Balls, are presented.

low b–values, and yet its resolution capability is poorer than that of the other two
estimators: it fails to correctly recover the two crossing fibers for larger angles than
Q–Balls or cQ–Balls do. For higher b–values, the resolution capability is practi-
cally the same for all the estimators, although the error committed by pQ–Balls is
still slightly higher. Comparing cQ–Balls with Q–Balls, the former performs bet-
ter practically in all situations. Although its advantage is only slightly noticeable,
cQ–Balls shows a better resolution capability and lower detection errors. Fig. 7.4
shows glyph representations of the three estimators for scenario S–4. The differ-

Figure 7.4: Glyph representations of the estimators of Ψ(r) in a noise–free environment (S–4), for two
fibers crossing in an angle of: 90o (left), 80o (center) and 70o (right).
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Figure 7.5: Angular errors in the estimation of two crossing fibers, as a function of the initial angle
between the ground–truth directions, for the estimators of the OPDF Φ(r). Together with the OPDT,
two novel estimators, the cOPDT and the pOPDT are tested. Additionally, the DOT is included for
comparison purposes, though it is an estimator of ϒ (r) and not Φ(r).

ences in the shapes of the estimations are completely negligible, corresponding to
the behavior observed in Fig. 7.3. This first experiment allows to conclude that
the error introduced by the computation of the FRT is in fact not so important:
the reduction in the burring of the radial error achieved by cQ–Balls with the inte-
gration inside the disk Ω is almost compensated by the need to assume a locally
constant ADC, so that the overall advantage is only marginal. On the other hand,
pQ–Balls allows to completely remove the radial blurring, but at the expense of
imposing a much more restrictive model, i.e. a constant ADC for all q; the per-
formance of pQ–Balls is noticeably worsened for this reason, especially for lower
b–values. Therefore, at least for the estimation of Ψ(r), it follows that the error due
to the FRT blurring is comparable to the error in the assumption of a slowly vary-
ing ADC (see Section 6.6.5), but much lower than the error due to the assumption
of an absolutely constant ADC.

OPDF estimators

The counterpart of Fig. 7.3 for the estimators of the OPDF is shown in Fig. 7.5. In
this case, the results are more difficult to interpret. For low b–values, the advan-
tage of the cOPDT is clear. The resolution capability is drastically improved, and
the detection errors, especially with few gradient directions, are as well reduced.
For scenario S–2, however, the OPDT and the pOPDT may be preferable to resolve
fiber crossings in larger angles; now, the pOPDT based on the assumption of a
constant ADC yields a very similar behavior to the OPDT (contrary to Q–Balls, the
OPDT needs a weak assumption on the ADC, so the pOPDT introduces a minor
change in the model with respect to the OPDT than pQ–Balls does with respect to
Q–Balls). Anyway, the advantage of any of the OPDF estimators over the DOT for
low b–values remains clear. The pOPDT and the DOT share the same model for the
attenuation signal and almost the same numerical implementation, so once again
it becomes evident that the different behavior comes from the different orientation
functions estimated. In particular, the importance of estimating true probabilistic
information is demonstrated by this comparison. For larger b–values, the situation
is different. First, both the pOPDT and the cOPDT show a very well differentiated
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Figure 7.6: Glyph representations of the estimators of Φ(r) (and ϒ (r), in the last row) in a noise–free
environment (S–4), for two fibers crossing in an angle of, from left to right: 90o, 70o, 55o and 47o.

local minimum for certain input crossing angles. This behavior was observed with
the OPDT in the previous Chapter, and explained in terms of the error in the esti-
mation of the radial Laplacian: for low b–values, the inability to distinguish both
fibers hinders this effect, so the local minimum is not appreciated. For high b–
values, the resolution capability increases, and the effect of the estimation of the
Laplacian conditions the behavior of the error. With the new estimators, the effect
for high b–values is even more obtrusive. Yet, the peak for the cOPDT is more
noticeable, appearing even for low b–values, contrary to the other estimators com-
pared. As shown in Section 7.7.3, the possible origin of this artifact is the error
committed when approximating the integral in the plane Π by the integral in the
disk Ω ; it will be shown that the error (and, what is more important, the variability
of this error among all possible orientations) is reduced when the orientations of
both fibers get closer. This effect, together with the increase of the accuracy of
the locally constant ADC model, could explain the fast decay of the angular error
before the estimator is finally unable to resolve the fiber crossing. Comparing the
performance of the estimators, the cOPDT is still the one resolving lower crossing
angles, followed by the pOPDT. However, for larger crossing angles, the OPDT is
preferable due to its higher accuracy. Even the DOT can yield better results for
nearly orthogonal fiber crossings. Nevertheless, neither the cOPDT nor the pOPDT
show the theoretical limitation of the OPDT for arbitrarily high b–values, so they
are still an interesting choice. In particular, the pOPDT may be a good trade–off
between the resolution capability of the cOPDT and the accuracy of the OPDT.
To finish this discussion, Fig. 7.6 shows glyph representations of the estimators
compared in this Section. The most remarkable fact is that the cOPDT yields well
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Figure 7.7: Angular errors in the estimation of two crossing fibers, as a function of the initial angle
between the ground–truth directions, for the estimators of the ODF, Ψ(r). Top: PSNR=13.33. Bottom:
PSNR=5.

defined lobes even for fibers crossing in very small angles.

7.7.2 Behavior in the presence of noise

ODF estimators

Fig. 7.7 shows the angular errors in a noisy environment. Like in the previous
Chapter, the PSNR has been fixed to PSNR=13.33 for scenarios S–1 and S–2 and
PSNR=5 for S–4 and S–5. The first conclusion is that Q–Balls and cQ–Balls be-
have practically the same. Although cQ–Balls is slightly more accurate for low
b–values, Q–Balls seems to perform better for higher b–values (although for S–5
cQ–Balls seems to have a better resolution capability). But concerning pQ–Balls,
it is clearly less robust to noise, with much higher angular errors and, in general,
a worse capability to resolve crossing fibers (except for scenario S–4; however, this
result seems not very conclusive). To give a deeper insight into the effect of noise
for the estimators of the ODF, Fig. 7.8 shows glyph representations for S–2, for
an angle of 90o and PSNR=13.3. While the shapes of the ODF recovered by both
Q–Balls and cQ–Balls are very similar, pQ–Balls clearly fails to recover the ori-
entation information, yielding an inadequate estimation. The conclusion is that
pQ–Balls is far more sensitive to noise than the other estimators; even in a noise–
free environment (see Fig. 7.3) it yields worse estimates than Q–Balls or cQ–Balls,

Figure 7.8: Glyph representations of the estimators of the ODF in a noisy scenario: S–2 with
PSNR=13.3. Ground–truth angle between the fibers is 90o.
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Figure 7.9: Angular errors in the estimation of two crossing fibers, as a function of the initial angle
between the ground–truth directions, for the estimators of the OPDF, Φ(r). Top: PSNR=13.33. Bottom:
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so this other estimator is not adequate.

OPDF estimators

As always, Fig. 7.9 is the counterpart for the corresponding estimators of the ODF
in Fig. 7.7. The obvious conclusion is that the OPDT is more robust to noise than
both the cOPDT and the pOPDT. But for low b–values (and for scenario S–5), the
cOPDT has still an important advantage recovering small crossing angles. For
high b–values, the cOPDT and the pOPDT have a similar behavior (the pOPDT
yields more accurate estimates but the cOPDT has a better resolution capability):
the estimation accuracy is worsened so that it gets close to that of the DOT, losing
in part the advantage of the OPDT over this estimator. Note, however, that the
DOT fails to recover the fiber crossing before the cOPDT and the pOPDT do, so
they are still preferable. In these cases, the OPDT shows a very similar resolution
capability, but it is notably more accurate. Generally speaking, FRT–based esti-
mators are more robust to noise than their ‘circulation’ and ‘plain’ counterparts.
This observation may be explained by the averaging inherent to the FRT: the inte-
gration inside the Bessel–shaped tubes blurs the orientation information yielding
poorer estimates, but at the same time averages the radial information, partially
palliating the effect of noise. Under a different point of view, this phenomenon may
be clarified considering the curves in Fig. 7.2: the enhancement of the contrast of
E(q) carried out with the ‘circulation’ and ‘plane’ approaches may somehow am-
plify the noise in the attenuation signal, aggravating its effect. Finally, Fig. 7.10
shows glyph representations for scenario S–2 and PSNR=13.33. Although not so
evident as it is for pQ–Balls, the higher sensitivity to noise of the pOPDT is highly
noticeable. This estimator yields unnatural shapes for the OPDF, with flattened
surfaces and a large blurring (and thus a great uncertainty) in the direction of lo-
cal maxima. Comparing the OPDT and the cOPDT, the former is almost unaltered
by the presence of such large amount of noise, while the latter shows a certain
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Figure 7.10: Glyph representations of the estimators of the OPDF in a noisy scenario: S–2 with
PSNR=13.3. Ground–truth angles between the fibers are, from left to right: 90o, 80o, 70o and 60o.

distortion in the recovered OPDF. This is consistent with the higher angular errors
measured for the cOPDT in Fig. 7.9. As a final remark, all these estimators are
able to give better approximations than the DOT.

7.7.3 Accuracy of the integrals inside the disk Ω

As a final experiment, the accuracy in the computation of the radial integrals in
terms of integrals inside Ω is now tested. To that end, the same tensor configura-
tion as in the previous experiments has been used. For each input angle between
the crossing fibers, 51 gradient directions uniformly distributed in the surface of
the sphere have been chosen. For each of them, the integral of the Laplacian of
the attenuation signal, computed with eq. (E.3) in Appendix E, has been computed
in the whole plain Π (this integral is denoted Ip) and inside the disk Ω (denoted Ic)
for a range of values of q0. The relative error is defined as:

ε =
Ip− Ic

Ip
> 0, (7.29)

where Ip is obviously negative since its (normalized by 1/4π2) opposite is a proba-
bility density. The most representative results are depicted in Fig. 7.11. The first
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Figure 7.11: Relative errors in the estimation of the integral in the plane Π as the integral in the disk
Ω , as a function of the b–value, for crossing angles of 90o (left), 65o (center) and 50o right. To keep the
interpretation of the figure as clear as possible, only the errors for representative directions are shown.
Of course, these directions include those yielding maximum and minimum errors.

comment is that the relative errors are quite large. Even so, the disk approximation
is far more accurate than the approximation as the integral along the boundary of
Ω , and it avoids the problem with the negativity of the orientation functions. It is
worth noticing that the relative error in the integration decreases as the directions
of the fiber bundles get closer (compare the scale range of the three figures). It
is even more important to note that the relative errors for different directions be-
come similar for higher b–values and closer fiber directions. If the relative errors
are similar for all directions, it means that the integrals for all possible orienta-
tions are underestimated in the same extent. On the contrary, if the variability of
this error is larger, the integrals for certain directions will be underestimated more
than for others, which introduces an additional distortion in the computation of
the OPDF. As mentioned above, this is an additional possible explanation for the
anomalous decay of the angular error of the cOPDT in Fig. 7.5.

However, the main reason for this behavior has to rely on the accuracy of the
model for the attenuation signal. This same artifact can be observed in the curves
corresponding to the pOPDT, even when the integration for this estimator is exact,
and thus this source of error is completely removed. The local decay of the error
is not so noticeable as with the cOPDT, but it is still far more important than
with the OPDT. For the pOPDT, it is necessary to assume a global model for the
attenuation signal, as opposed to the local assumption made with the OPDT: the
smaller the angle between the fiber bundles, the closer the model to a pure tensor
configuration, and hence the more accurate the fitting of the mono–exponential
decay. This reasoning explains why the error due to the supposition of a constant
ADC decreases for small input angles. Besides, the premise is far more restrictive
with the pOPDT than it is with the OPDT, and this artifact is more noticeable. For
the cOPDT, the error in the approximation of the plane integral has to be added to
the error originated by the model, so the anomalous behavior is even stressed.

7.8 Conclusion

The FRT has been proved an extremely valuable mathematical tool for HARDI es-
timators, beyond its direct use as an estimator of orientation information. This
kind of information is computed as (weighted) line integrals of the diffusion prop-
agator along the directions of interest, whose calculation has to be carried out
in the dual Fourier domain (the q–space). It has been demonstrated that a line
integral in the R–space is equivalent to an integral in the orthogonal plane of the
q–space. Due to the symmetry of the problem, this plane has to be parametrized
using polar coordinates: the FRT represents the integration on the angular coor-
dinate of such system, which explains the ubiquitousness of this operator in the
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estimators presented in this Chapter.

With Q–Balls and the OPDT, the FRT is used directly as an estimator, so the
radial integral in the aforementioned polar coordinates system is ignored. Obvi-
ously, this is an important source of error, but at the same time it allows to get
rid of any assumption on the behavior of the attenuation signal (for Q–Balls) or at
least of strong assumptions (for the OPDT). A number of techniques to minimize
the effect of this source of error have been proposed in this Chapter, varying the
modeling assumptions of E(q). For the estimators of Ψ(r) (based on Q–Balls), it
has been shown that the error introduced by unrealistic models may be more im-
portant than the blurring due to the FRT: cQBalls is only marginally better than
Q–Balls, and pQ–Balls performs worse and is more sensitive to noise. For the es-
timators of Φ(r), on the contrary, the advantage of reducing the FRT blurring has
been evidenced. The novel cOPDT shows a better resolution capability and higher
accuracy than the OPDT for low b–values; for high b–values, its accuracy is worse
than that of the OPDT, but its resolution capability is still better. The cOPDT does
not require additional assumptions with respect to the OPDT, so alleviating one
of its sources of error may drive to better results. Yet, the pOPDT may perform
similar to the OPDT for low b–values (for high b–values, it shows a better resolu-
tion capability, although its accuracy is poorer), even when the modeling of the
attenuation signal for the pODPT is far more restrictive.

Generally speaking, there are two fundamental sources of error in the estima-
tion: the error in the estimation of radial integrals (which is reduced with the
cOPDT and completely removed with the pOPDT), and the error due to the in-
correct modeling of the attenuation signal (which is more severe for the pOPDT;
although the OPDT and the cOPDT share the same model, at the sight of Fig. 7.5 it
seems that the integration of such model to apply Stokes’ theorem is more sensi-
tive to the error than its derivation to compute the radial Laplacian). The reduction
of one of these errors has to be done at the expense of increasing the other, and
therefore a trade–off has to be reached for each particular situation.

The new estimation techniques yield results which are less robust to noise than
those obtained by the direct application of the FRT. This fact may be explained by
the elimination of the FRT averaging or by the contrast–enhancement described in
Fig. 7.2. Nonetheless, the noisy scenarios tested in the numerical simulations are
extreme cases, with a very poor SNR. Moreover, the filtering techniques described
in Chapter 5 may be used to drastically improve the quality of the HARDi data
sets, so the new estimators proposed, mainly the cOPDT and the pOPDT, may
indeed result advantageous in many situations.

In particular, the results in Fig. 7.5 suggest very useful guidelines to choose
the appropriate estimator for a particular situation, assuming that the denoising
step allows to consider a high enough SNR. These guidelines may be seen as an
heuristic to determine the aforementioned trade–off between the contributions of
each source of error. For low b–values, it seems clear that the cOPDT is the best
choice. For high b–values, the OPDT should be used unless very small crossing
angles need to be detected (this could be the case for particular regions of the brain
like the cerebellar peduncle). In this case, the pOPDT may be more appropriate,
but if a high enough SNR cannot be assumed, the cOPDT is preferable (see for
example Fig. 7.10). Additionally, it is important to stress that neither the cOPDT
nor the pOPDT show the theoretical limitation of the OPDT for arbitrarily high
b–values, so they can be used regardless of the scanning parameters. Finally, Q-
Balls-related estimators, and above all cQ-Balls, can be very interesting in case
only large angles have to be detected, due to their higher robustness to noise.
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As a final remark, the usefulness of the estimation of true probabilistic infor-
mation, firstly discussed in Chapter 6, remains evident from the results in this
Chapter. In general terms, the pOPDT shows an overall worse accuracy than the
OPDT and the cOPDT, but yet it is more accurate and has a better resolution capa-
bility than the DOT. Except for very wide crossing angles, its robustness to noise
is also higher. The modeling of the attenuation signal, based on a constant ADC
for all q, is exactly the same for the pOPDT and the DOT. Their numerical imple-
mentations, based on SH expansions and analytical integration, are very similar
as well. Consequently, the reason for their different performances has to rely on
the different orientation information estimated by each of them: only the pOPDT
estimates a true marginal probability density.





8
Illustrative examples on fiber populations

estimates

This Chapter shows qualitative results of fiber orientations estimators over real data
sets. The aim is to compare the estimators presented in the previous Chapters (and some
of the previously introduced in the related literature), in different scenarios. Besides, the
advantages of filtering DWI volumes prior to the estimation of fiber populations are ev-
idenced. To that end, relevant Regions of Interest (ROI) have been selected where fiber
crossings and complex micro–architectures are especially noticeable. At each voxel of the
corresponding ROI, a glyph standing for the estimated orientation information given by
the corresponding technique is represented. The criteria to decide whether or not an esti-
mation is appropriate is the agreement of the visual results with known neural architec-
tures, as described in [Mor05]. Analogous representations to those in that work, including
labels for the principal tracts present at each ROI, are given for guidance.

8.1 Introduction

Each technique on the Diffusion Imaging framework presented has been quanti-
tatively evaluated throughout this dissertation. However, the numerical validation
compels to use synthetic data which is not always representative of real scenar-
ios. With respect to the DWI filtering techniques, it was justified in Chapter 5
that the phantom data used had a certain level of realism which allowed to in-
fer general enough conclusions. Moreover, extensive experiments with real data
were carried out over very different data sets. The same can be said about the
statistical characterization proposed in Chapter 3, for which the assumptions on
the models used were tested against real–world examples of scanned data. In
Chapter 4, the study was purely theoretical: the results of interest were statisti-
cal parameters (the bias and the variance) which could be analytically computed
given the SNR, the number of coils, and the configuration of gradient directions
in the scanner. The validation in this case is intrinsically different; compared to
filtering techniques, in which the behavior for phantom data in given scenarios
had to be generalized to a realistic situation, the analysis carried out in Chapter 4
yields a closed form, ground truth solution for each SNR, tensor configuration,
and number of gradients, so no generalization is required.

Thus, only the results in Chapters 6 and 7 lack an intensive validation with
real data. For these techniques, the way to intend acceptably realistic phantoms
is not evident, so a study with merely synthetic data had to be accomplished.
Besides, each part of the framework has been validated separately, but the impact
of DWI filtering on the estimation of fiber populations, for example, has been only
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superficially explored.

The aim of the present Chapter is to overcome these two illnesses. To that end,
the estimation techniques reviewed in Table 7.1 are compared over the real data
sets presented in Section 1.4. As mentioned in Chapter 6, the parameters used for
the experimental part (number of SH coefficients, value of λ , R0 for the DOT, and
so on) were fitted to a realistic situation, so they are going to be used for all the
experiments presented. To represent the enormous amount of information pro-
vided by the estimation of fiber populations at each voxel, a glyph representation
has been chosen (see Section 2.6.1). At each voxel, a three–dimensional surface
is plotted in spherical coordinates. The distance of the surface to the origin (the
center of the voxel) at each particular orientation represents the probability den-
sity (or any other corresponding orientation information) for such orientation. To
facilitate the interpretation of this information, the surface is colored following
color–coding conventions (see Section 2.6.1), and the glyph is represented over
a background whose gray level stands for the Generalized Anisotropy (GA, see
eq. (2.42)) of the corresponding voxel.

As well as testing the capability of the estimators to resolve complex archi-
tectures, it is interesting to test the impact of noise removal algorithms in the
final result. Among the techniques described in Chapter 5, LMMSE–N seemed to
outperform the others in many cases, being especially well suited for HARDI sce-
narios. Consequently, this is the technique used in this Chapter. A value of N = 15
has shown an adequate behavior for all volumes, so this is the number used. For
the estimation windows, a neighborhood of 5× 5× 3 voxels has been used in all
cases. All volumes have been pre–processed with this algorithm except otherwise
noted.

8.2 Volume CSIRO1

As stated in Section 1.4, this is a typical DWI volume for HARDI estimation, which
has both a great number of gradient directions (60), and a large b–value (3000
mm/s2), which results in a high angular contrast. As a consequence, all the esti-
mators are expected to provide accurate descriptions of the underlying anatomies.
As a major drawback, the large b–value induces a poor SNR compared to other
DWI data sets dealt with in this dissertation. Besides, its spatial resolution is
lower than that of other available volumes. To begin with, Fig. 8.1 shows an ax-
ial slice in the middle brain, where a number of tracts of interest cross inside
the corresponding Region of Interest (ROI). Although the resolution of the image
does not allow a very intuitive representation, the color coding allows to properly
interpret each fiber tract: red structures (like the center of the corpus callosum)
follow the direction of the ‘x’ axis (horizontal in the image); green structures (the
forceps major) follow the ‘y’ axis (vertical in the image); blue structures (the su-
perior longitudinal fasciculus) follow the ‘z’ axis (transverse to the plane of the
image). Those structures following oblique orientations, such as the part of the
corpus callosum inside the ROI, are represented as non–primary colors, such as
yellow for the aforementioned structure. This same conventions are kept in the
remainder of the present Chapter.

The ROI in Fig. 8.1 is analyzed in detail in Fig. 8.2 with Q–Balls, the DOT and
the cOPDT. No additional OPDT–based estimators are tested, since their qual-
itative behavior is very similar and such comparison would not contribute any
substantial information. As a first comment, note that all estimators are able to
correctly account for the anatomies suggested in Fig. 8.1. Glyphs are oriented
following the directions indicated by the color coding, and their orientations have
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cc: corpus callosum

cg: cingulum

fmajor: forceps major

slf: superior longitudinal fasciculus

Figure 8.1: CSIRO1: axial slice in the middle brain (slice 27). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).

an appropriate spatial coherence which allows to interpret the information they
provide. Moreover, HARDI estimation reveals fiber structures which remain hin-
dered with the conventional DTI analysis. In particular, red structures entering
the ROI on its left–hand side are almost hampered in Fig. 8.1 by the superior lon-
gitudinal fasciculus; in Fig. 8.2, it becomes evident that these structures cross the
ROI and join the forceps major and the corpus callosum. All estimators are able
to correcly resolve these crossings, which manifest on the left–hand side of the
pictures in Fig. 8.2 with well defined cross–shaped glyphs. Moreover, the posterior
corona radiata, which is not visible in Fig. 8.1, is also revealed by HARDI estima-
tors. It corresponds to the longitudinal green structures following the ‘y’ axis in
the top of the image. Although its presence is quite subtle, crossings with the blue
structures corresponding to the superior longitudinal fasciculus are still visible.

Another important conclusion is that all the estimators compared show a very
similar behavior, none of them yielding an overall better performance. This result
should not be surprising, since the experiments over synthetic data sets carried
out in previous Chapters have evidenced that, for large b–values, all HARDI esti-
mators are able to resolve crossings even for rather small angles. In the top–right,
the angle formed by the termination of the corpus callosum and the posterior
corona radiata/superior longitudinal fasciculus is large enough, so the three ap-
proaches are able to distinguish between them. For very small crossing angles,
however, it is expected that the cOPDT shows better resolution capabilities. For
the sake of comparison, a new ROI has been selected in Fig. 8.2. Inside this win-
dow, the forceps major splits in two branches forming a small angle. As can be
seen, the cOPDT resolves these crossings for most of the voxels inside this ROI;
although the glyphs are not cross–shaped, and therefore the fiber directions are
not so evident, two maxima can be identified in most of the voxels in the third and
fourth columns of the window. This behavior is thoroughly analyzed in Fig. 8.3;
the subtle maxima found in some glyphs obtained with the cOPDT, which in turn
have not been detected by the other estimators, have been highlighted. According
to the results presented with synthetic data, the cOPDT shows a better capabil-



142 VOLUME CSIRO1

(a) (b)

(c)

Figure 8.2: CSIRO1: detail of the slected ROI in axial slice 27, for (a) Q–Balls, (b) the DOT, and (c)
the cOPDT. The third picture has been enlarged for illustration purposes. Glyphs are colored following
color–coding conventions for each axis, and the LMMSE–15 has been used to pre–process the DWI.

ity to resolve fibers crossing in very small angles, which are otherwise completely
blurred with Q–Balls and the DOT. Nevertheless, the cOPDT presents more spuri-
ous lobes, which is an undesired characteristic.
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Figure 8.3: CSIRO1: Comparison of estimators in a small ROI inside axial slice 27. From left to right:
Q–Balls, the DOT, and the cOPDT.

In the next experiment, the convenience of DWI filtering prior to the estimation
of fiber populations is assessed. To that end, Fig. 8.4 presents analogous results to
those in Fig. 8.2 computed over the original data set, without processing it with the
LMMSE–15 technique. The first comment is obvious: the overall spatial coherence
is drastically reduced in the absence of unbiased filtering for all estimators. The
structures are still recognizable, mainly due to the use of color–coding, but the
orientation of the glyphs is not always coherent with the predictable directions.
Yet, the appearance of spurious lobes becomes more evident for the DOT and the
cOPDT, while Q–Balls shows a more stable behavior with this respect, consistently
with the results obtained in previous Chapters over synthetic data.

One interesting issue is that the red (transverse) structure coming from the left–
hand side of the ROI is hindered at some places, if the image is not filtered, with
the DOT and the cOPDT. Consider the region marked with a yellow arrow in the
first picture of Fig. 8.4, where such structure crosses the superior longitudinal
fasciculus. This crossing confuses with the spurious lobes created by the DOT
and the cOPDT, so its interpretation is very difficult. Once the filter is applied, see
Fig. 8.2, the structural information is correctly accounted, the spurious lobes are
mostly eliminated, and the enhancement of the overall spatial coherence allows a
very intuitive representation of the underlying neural architecture. A similar result
was presented in Chapter 5 (see Fig. 5.12), as a first example of the potential of
the filtering techniques presented.

It is also worth noticing that, when using Q–Balls, this crossing is still visible
without LMMSE filtering. This reinforces the previous argument that this estima-
tor is in general more robust to noise. Nevertheless, once the filter is applied, as
shown in Fig 8.3, both the DOT and the cOPDT render this structure more visible
than Q–Balls does, which is clearly an argument in favor of their use.

As a final discussion, analogous results to those in Fig. 8.3 are presented in
Fig. 8.5 when no previous processing of the DWI is performed. All the previous
comments apply to this new figure: first, undesired lobes not corresponding to
any particular fiber architecture appear with the DOT and the cOPDT. Yet, this
problem persists also for Q–Balls (see the first two columns of the corresponding
picture), although once again this estimator is more robust to noise. Now, the
splitting fibers inside the ROI are completely precluded with all the estimators,
and the information provided by the glyphs is harder to interpret.
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(a) (b)

(c)

Figure 8.4: CSIRO1: detail of the slected ROI in axial slice 27, without LMMSE filtering, for (a) Q–Balls,
(b) the DOT, and (c) the cOPDT. Glyphs are colored following color–coding conventions.

From the previous discussion, some conclusions should remain evident. Most
of them are supported by the quantitative analysis carried out in Chapters 6
and 7. First, all the estimators tested (and, hopefully, any other reported in the
related literature) are able to yield accurate estimates of fiber populations with
DWI data sets specifically designed for this task; in particular, the b–value of data
set CSIRO1 is large enough to provide an adequate angular contrast. As shown
later on in this Chapter, this property is critical for some estimators. The sec-
ond conclusion is related to the prior processing of DWI. It has been shown that
the LMMSE–N technique not only improves the spatial coherence and produces
smoother results, but it is also able to reveal structures whose visibility is dra-
matically reduced otherwise. This property is especially interesting in the case of
OPDT–like estimators (and also the DOT), for which the appearance of spurious
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Figure 8.5: CSIRO1: Comparison of estimators in a small ROI inside axial slice 27, without LMMSE
filtering. From left to right: Q–Balls, the DOT, and the cOPDT.

lobes can hinder the interpretation of the orientation information under some cir-
cumstances. Finally, the advantage of the cOPDT (and also the OPDT and the
pOPDT, though the corresponding results have not been explicitly shown) for the
discrimination of certain structures, such as fibers crossing in small angles, has
been shown as well. The counterpart for this property is the presence of spurious
lobes with the cOPDT, which can be more problematic than with the DOT in some
situations.

To continue the discussion, Fig. 8.6 shows ans axial slice of CSIRO1 in the up-
per brain. The ROI selected is of special interest due to the great number of tracts
of interest present inside it, following very different directions. Once again, the

cc: corpus callosum

cg: cingulum

cpt: corticopontine tract

cst: corticospinal tract

slf: superior longitudinal fasciculus

str: superior thalamic radiation

Figure 8.6: CSIRO1: axial slice in the upper brain (slice 32). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).
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(a) (b)

(c)

Figure 8.7: CSIRO1: detail of the slected ROI in axial slice 32, for (a) Q–Balls, (b) the DOT, and (c)
the cOPDT. The third picture has been enlarged for illustration purposes. Glyphs are colored following
color–coding conventions for each axis, and the LMMSE–15 has been used to pre–process the DWI.

color–coding allows a very intuitive representation of the structures being imaged,
regardless on the poor resolution (at least, compared to BWH1 or BWH2) of this
volume. Fig. 8.7 shows glyphs for the selected ROI. Only Q–Balls, the DOT, and
the cOPDT are analyzed, since the OPDT and the pOPDT show virtually identical



ILLUSTRATIVE EXAMPLES ON FIBER POPULATIONS ESTIMATES 147

Figure 8.8: CSIRO1: Comparison of estimators in a small ROI inside axial slice 32. From left to right:
Q–Balls, the DOT, and the cOPDT.

results to the cOPDT in this case. As can be seen, all the estimators are able to
correctly resolve the structures coexisting in each region in all cases. Consider
the third picture: on the left–hand side, the cingulum and the corpus callosum
are distinguished, even when the corpus callosum precludes this other structure
in the color–coding in Fig. 8.6. In the center of the ROI, the corticopontine tract
(blue) is correctly discriminated from the corpus callosum (red). In the right–hand
side, the superior longitudinal fasciculus is also separated from the transverse
fibers (red) entering the ROI from its right border.

Fig. 8.8 shows a zoom of the region highlighted in the third picture of Fig. 8.7.
The crossing between the cingulum and the corpus callosum is perfectly visible in
all voxels of the picture corresponding to the cOPDT. For the DOT, such crossing
is only resolved for some voxels, but not for all of them. Yet, when the crossing is
detected, the direction corresponding to the cingulum (green) is difficult to appre-
ciate when compared to the corpus callosum (red). For Q–Balls, the cingulum is
resolved only for isolated voxels, mainly at the top of the corresponding picture.
This result stresses the advantages of OPDT–related estimators when compared to

Figure 8.9: CSIRO1: Comparison of estimators in a small ROI inside axial slice 32, without LMMSE
filtering. From left to right: Q–Balls, the DOT, and the cOPDT.
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cpt: corticopontine tract

cst: corticospinal tract

mcp: middle cerebellar peduncle

ml: medial lemnicus

pct: pontine crossing tract

Figure 8.10: BWH1: axial slice in the bottom brain (slice 15). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).

the DOT or Q–Balls, even for large b–values. As an additional experiment, Fig. 8.9
shows complementary results to those of Fig. 8.8 when the LMMSE pre–processing
is suppressed. Once again, the results are much less smooth and difficult to inter-
pret without the denoising process. However, Q–Balls is still able to yield a smooth
probability field, and only isolated voxels suffer from the effect of noise. With the
DOT, now very few voxels account for both the cingulum and the corpus callosum,
and the crossings have mostly disappeared. With the cOPDT, these crossings are
well preserved in a high percentage of voxels inside the window: despite the dis-
tortion in the lobes of the orientation functions, the underlying information on
the neural architecture is still intelligible. Two conclusions may be inferred: first,
the cOPDT is able to discern complex architectures even in the presence of large
amounts of noise (this is consistent with the results reported in previous Chap-
ters). Even so, the second conclusion is the great advantage of filtering the DWI
before estimating fiber populations. The LMMSE–N technique not only preserves
the structural information, but it indeed enhances it, revealing information which
remains occult in the original data sets.

8.3 Volume BWH1

The next set of experiments is carried out over data set BWH1. It may be consid-
ered also a HARDI volume, since it was acquired with a large number of sensitizing
gradient directions (51). However, its b–value (700 s/mm2) is quite smaller than
the numbers typically used in HARDI estimation, which translates in a very poor
angular contrast compared to CSIRO1. An axial slice of this volume, correspond-
ing to the bottom of the brain, is represented in Fig. 8.10. The spatial resolution
of this DWI data set is higher than that of CSIRO1, yielding smoother representa-
tions of the fiber bundles of interest by means of both color coding an FA maps.
The main drawback of this volume, together with its reduced b–value, is the pres-
ence of a number of outliers in its whole extent. They can be recognized as isolated
voxels with non–uniform values in the previous figure, and most of them persist
even after the volume has been filtered. The ROI indicated in Fig. 8.10 has been
analyzed in Fig. 8.11 with Q–Balls, the DOT, and the cOPDT (at first instance).
Compared to the results previously reported in this Chapter, now it is the DOT
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(a)

(b)

(c)

Figure 8.11: BWH1: detail of the slected ROI in axial slice 15, for (a) Q–Balls, (b) the DOT, and (c) the
cOPDT. The slice has been decimated by a factor 2 for the sake of clarity. Glyphs are colored following
color–coding conventions, and the LMMSE–15 has been used to pre–process the DWI.

which presents a great number of spurious lobes. Moreover, the representation
it provides is very difficult to interpret, and yet it does not seem to correspond in
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Figure 8.12: BWH1: Comparison of estimators in a small ROI inside axial slice 15. Q–Balls (left), and
the cOPDT (right) are compared.

a trivial way to the anatomies described in Fig. 8.10. In particular, the cortico-
pontine tract/corticospinal tract and the medial lemnicus are highly distorted, so
that it is very difficult to identify the blue structures (transverse to the plain of
the image) representing them. Yet, at the bottom of the image (see the voxels in-
dicated by arrows), the orientation information is completely unintelligible, due to
the existence of outlying lobes. Regarding Q–Balls, it is able to yield the smoothest
representation, with regular glyphs matching the expected orientations. Notwith-
standing, this estimator is not able to correctly account for the great number
of fiber crossings present in this ROI due to the complex anatomy in this region.
These results are consistent with the discussions on previous Chapters over again:
for low b–values, neither the DOT nor Q–Balls show an optimum behavior, and it
is precisely in these scenarios where OPDT–based techniques are more advanta-
geous. Consider the region marked in the third picture of Fig. 8.11, a detail of
which is represented in Fig. 8.12. Only Q–Balls and the cOPDT are compared,
since the DOT does not seem adequate in this scenario. As it can be seen, Q–Balls
is not able to account for the crossings the cOPDT evidences. Moreover, Q–Balls
yield estimates suggesting that the fiber bundles run vertically from the top of the
image to its bottom part. This way, the pattern formed by the middle cerebel-
lar peduncle and the pontine crossing tract is mostly lost with Q–Balls, while the
cOPDT is able to correctly resolve these structures for practically all voxels.

At this point, it is useful to compare the OPDT–based estimators, since their
behavior is no longer the same for BWH1. Fig. 8.13 shows that the performance
of both the OPDT and the cPDT is virtually the same. Comparing the glyphs at
each voxel, it is impossible to distinguish between the results provided by these
two estimators. For the pOPDT, noticeable differences may be appreciated. The
orientation information for this estimator is more distorted, so that the positions

Figure 8.13: BWH1: Comparison of estimators in a small ROI inside axial slice 15. The OPDT (left),
the pOPDT (center), and the cOPDT (right) are compared.
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Figure 8.14: BWH1: Comparison of estimators in a small ROI inside axial slice 15, without LMMSE
filtering. The OPDT (left), the pOPDT (center), and the cOPDT (right) are compared.

of the maxima (wherever two maxima can be identified) result more ambiguous.
Besides, the spatial coherence of the glyphs in this case is not so obvious. The pre-
vious results correlate well with the experiments performed in Chapters 6 and 7
with synthetic data: for low b–values (1000 s/mm2 or less), the performance of
Q–Balls and the DOT is very poor, and only OPDT–based estimators are able to
resolve complex architectures even for small crossing angles. Comparing between
them, the cOPDT does not show any particular advantage over the OPDT itself, al-
though the pOPDT shows a slightly worse behavior. From the previous Chapters,
a factor which can differentiate the performance of these techniques is the amount
of noise. Hence, the experiment in Fig. 8.13 is repeated without the LMMSE–15
pre–processing so that the SNR is drastically reduced, and the results presented in
Fig. 8.14. Most of the voxels present unintelligible orientations, and the structural
information is mostly lost. Nevertheless, for some isolated voxels, like those high-
lighted in the right–most picture, the lobes corresponding to directions of interest
are better defined than in the filtered volume (see Fig. 8.13). As opposed to the
previous discussion, this is the first adverse effect observed in the LMMSE tech-
nique: on the average, LMMSE–N is still able to improve the estimation and reveal
hidden anatomies, but for some voxels it may as well blur the orientation infor-
mation. Yet, comparing Figs. 8.13 and 8.14, it remains evident that the denoising
stage is essential to achieve accurate estimates of fiber populations. Therefore, in

cp: cerebellar peduncle

cpt: corticopontine tract

cst: corticospinal tract

scp: superior cerebellar peduncle

Figure 8.15: BWH1: axial slice in the bottom brain (slice 23). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).
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(a)

(b)

Figure 8.16: BWH1: detail of the slected ROI in axial slice 23, for Q–Balls (a), and the cOPDT (b).
Glyphs are colored following color–coding conventions, and the LMMSE–15 has been used to pre–
process the DWI.

what follows only results from filtered data are presented, except where noticed.

In the next experiment, the axial slice represented in Fig. 8.15 is analyzed.
The aforementioned outliers and artifacts are especially noticeable in this slice,
although the region studied is not very damaged (at least in the voxels com-
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Figure 8.17: BWH1: Comparison of estimators in a small ROI inside axial slice 23. Q–Balls (left), the
DOT (center), and the cOPDT (right) are compared.

prising tracts of interest). The corresponding glyph representation is given in
Fig. 8.16 for Q–Balls and the cOPDT (for the DOT, the results are similar to those
in Fig. 8.11 (b), and so they are omitted). The first comment is that, over again, the
cOPDT (or, in general, HARDI analysis) reveals neural architectures which are not
adequately described by DTI techniques: in Fig. 8.15 , the color–coded image sug-
gests that the tracts of interest are mainly aligned wit the ‘z’ axis, in the transverse
direction to the plane of the image. On the contrary, Fig. 8.16 shows that in fact
the underlying architecture is more complex, especially in the bottom half. The de-
cussation of the superior cerebellar peduncle, which is hardly visible in Fig. 8.15
as a small red spot, is perfectly visible in Fig. 8.16, and the crossings with the
transverse (blue) structures are well resolved. Additionally, Fig. 8.17 shows a de-
tailed view of the small ROI marked in Fig. 8.16 (b). The DOT is included now
for comparison purposes. However, this estimator is again inadequate: in many
voxels, important lobes appear in the orientation information function that pre-
vent its correct interpretation. Only the glyphs on the top–right corner have been

cc: corpus callosum

cg: cingulum

cpt: corticopontine tract

cst: corticospinal tract

slf: superior longitudinal fasciculus

scr: superior corona radiata

str: superior thalamic radiation

Figure 8.18: BWH1: axial slice in the upper brain (slice 52). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).
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(a) (b)

(c)

Figure 8.19: BWH1: detail of the slected ROI in axial slice 52, for the OPDT (a), the pOPDT (b), and
the cOPDT (c). The slice has been decimated by a factor 2 for the sake of clarity. Glyphs are colored
following color–coding conventions, and the LMMSE–15 has been used to pre–process the DWI.

correctly estimated. With regard to Q–Balls, the glyphs are highly blurred, so that
the fiber crossings are not properly described. The cOPDT, in turn, is able to dis-
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Figure 8.20: BWH1: Comparison of estimators in a small ROI inside axial slice 52. The OPDT (left),
the pOPDT (center), and the cOPDT (right) are compared.

tinguish two maxima in the orientation function for most of the voxels analyzed,
corresponding to the pattern formed by the superior cerebellar peduncle and its
decussation. This experiment, together with those performed for slice 15, evi-
dences the higher performance of OPDT–related techniques to describe complex
architectures for low b–values. In what follows, the discussion is mostly centered
on the comparison of these techniques, i.e. the OPDT, the cOPDT, and the pOPDT.

To begin with, the axial slice depicted in Fig. 8.18 is considered. This slice is
analogous to that in Fig. 8.6 for volume CSIRO1, and represents the imbricated
anatomies in the upper brain, where the corpus callosum and the cingulum cross
in transverse directions. Besides, the superior corona radiata, the superior longi-
tudinal fasciculus, and other important tracts overlap in the ROI studied. Com-
pared to Fig. 8.6, now the axial resolution of the volume is much higher, so both
the color–coding and the FA map provide rich information on these structures.
As always, a glyph representation of the selected ROI is given in Fig. 8.19, where
results obtained with the OPDT, the pOPDT, and the cOPDT are represented. As
it can be seen, the three estimators yield very similar outcomes. Although not so
evident as in Fig. 8.7, the crossings between the cingulum and the corpus cal-
losum are still visible, as well as the intersections of the superior longitudinal
fasciculus with the transverse (red) structures entering the ROI on its left–hand
side. The glyphs are able to account as well for the crossings between the corona
radiata and the corpus callosum (on the top–right corner) or the corticopontine
tract (on the top–center). In any case, this representation allows a more intuitive
interpretation of the anatomies than DTI does.

The window highlighted in Fig. 8.19 (c) is expanded in Fig. 8.20 to allow a better
comparison of the estimations. The results are very similar to those presented in
Fig. 8.13, which in turn are consistent with the experiments performed over syn-
thetic data sets: The OPDT and the cOPDT behave quite similar, while the pOPDT
seems to produce a higher blurring of the orientation information. It translates in
that the crossing between the cingulum and the corpus callosum, which is per-
fectly visible with the OPDT and the cOPDT, is missing with this other estimator.
Moreover, this lost information reduces the spatial coherence of the results with
the pOPDT, yielding visually less adequate results. Comparing now the OPDT and
the cOPDT, their behavior is completely comparable. Only very subtle differences
can be detected in some glyphs, which are marked in the third picture with yel-
low arrows. The cOPDT seems to better resolve the structures for these voxels,
although the improvement is not very significant.

For the next experiment, a sagittal slice is chosen instead of the axial view
selected for all the previous experiments. It is represented in Fig. 8.21. The color–
coding in this figure shows that a number of tracts are present inside the ROI,
crossing in all possible directions. The corresponding glyphs are shown in Fig. 8.22
for the cOPDT. As can be seen, the glyphs corresponding to the corpus callosum
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cc: corpus callosum

scr: superior corona radiata

Figure 8.21: BWH1: sagittal slice in the mid brain (slice 147). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).

are not completely transverse to the plain of the image, but their direction is
oblique. This behavior accurately fits the color–coding in Fig. 8.21, where the
corpus callosum is not represented in pure red but in magenta instead. Besides,
the analysis by means of the cOPDT reveals the presence of the cingulum, which
crosses the image from left to right (and therefore is represented in green) over
the corpus callosum. Moreover, the crossings of this structure with the superior
corona radiata are accounted for in the majority of voxels represented. This fea-
ture is especially relevant at the sight of Fig. 8.21, for which the cingulum is not
visible at all. The corresponding detailed view for the window depicted in Fig. 8.22
is presented in Fig. 8.23 for the three estimators. In this case, the differences be-

Figure 8.22: BWH1: detail of the slected ROI in sagittal slice 147, for the cOPDT. The slice has been
decimated by a factor 2 for the sake of clarity. Glyphs are colored following color–coding conventions,
and the LMMSE–15 has been used to pre–process the DWI.
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Figure 8.23: BWH1: Comparison of estimators in a small ROI inside sagittal slice 147. The OPDT
(left), the pOPDT (center), and the cOPDT (right) are compared.

tween the OPDT, the pOPDT, and the cOPDT are negligible. All of them are able to
resolve the crossings between the corona radiata and the cingulum, although the
lobes of the orientation information functions are quite blurred in the top of the
image. In this case, fiber bundles cross in large angles (nearly 90o), so it was ex-
pected a priori that their behaviors have to be approximately the same. Despite of
the blurring in the OPDF, the HARDI analysis enables to distinguish the cigulum,
which was completely hindered in the DTI study.

In the final example with data set BWH1, the coronal slice in Fig. 8.24 is ana-
lyzed. This ROI comprises a number of tracts of interest rendering a very complex
architecture. The corpus callosum is represented in yellow since it is crossing the
plane of the image in an oblique angle. The cingulum, which follows a completely
transverse direction along the ‘y’ axis, appears as a well differentiated green spot

cc: corpus callosum

cg: cingulum

cpt: corticopontine tract

ifo: inferior fronto-occipital fasciculus

ilf: inferior longitudinal fasciculus

ptr: posterior thalamic radiation

slf: superior longitudinal fasciculus

tap: tapetum

Figure 8.24: BWH1: coronal slice in the mid brain (slice 88). Color–coding representation plus FA
map. The ROI is marked in red together with some tracts of interest (yellow).
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Figure 8.25: BWH1: detail of the slected ROI in coronal slice 88, for the cOPDT. Glyphs are colored
following color–coding conventions, and the LMMSE–15 has been used to pre–process the DWI.

next to the corpus callosum. The other tracts in the image, such as the tapetum,
the superior longitudinal fasciculus, or the corticopontine tract, have very diverse
configurations.

The glyphs obtained with the cOPDT for the corresponding ROI are presented in
Fig. 8.25. The corpus callosum is accurately resolved, with glyphs pointing in an
oblique direction as expected. The cingulum is also well accounted, including its
intersection with the corpus callosum, which is represented by the cross–shaped
glyphs highlighted in the image. Although their visibility is reduced because the
corticopontine tract (and the other associated tracts) is transverse to the plane of
the image, the intersections of this structure with the longitudinal fasciculus is
also visible in the majority of the voxels. Voxels corresponding to the intersection
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Figure 8.26: BWH1: Comparison of estimators in a small ROI inside coronal slice 88. The OPDT (left),
the pOPDT (center), and the cOPDT (right) are compared.

of the tapetum with the corpus callosum have been detailed inside the ROI de-
picted. Fig. 8.26 shows a zoom of this region. As suggested by the color–coding
image, the direction of the tapetum is not completely vertical, but instead it has
a component in the ‘x’ (red) direction. Such direction is represented in Fig. 8.26
by the maxima marked with a blue arrow. The crossings of this anatomy with the
corpus callosum (whose direction is marked with green arrows) is resolved by all
the estimators. In fact, the behavior of all of them is quite similar. Much like in the
previous experiment, the angle formed by the corpus callosum and the tapetum
is large enough to be detected by all the OPDT–like techniques.

8.4 Volume BWH3

The last experiment in this Chapter is to be carried out over data set BWH3. As
stated in Chapter 1, this volume brings on an additional difficulty, since the raw
data is available only as a MatLab .mat file. Moreover, only the attenuation sig-
nal was provided, so no information regarding the T2 baseline image can be used.
Although theoretically this should not be a problem for the estimation of fiber
populations (which is based only on the attenuation signal), there is an important
side effect related to this issue: the LMMSE–N technique described in Chapter 5
requires to use the baseline to account for the diffusion model, so it does not apply
in the current scenario. Yet, when the gradient images are divided by the baseline,
the statistics of noise are obviously modified. It was argued in Chapter 6 that the
SNR in the baseline is far larger than in the gradient images, so the noise can still
be considered as Rician. Even so, the baseline shows very different values at each
image location, and as a consequence the noise power in the attenuation signal is
highly variable (it is divided by the squared baseline at each voxel), so the filtering
techniques presented are not adequate. As a consequence, raw (noisy) data has
to be managed with BWH3. An axial slice in the bottom brain, corresponding to
the same anatomy as that analyzed in Fig. 8.10, is studied in Fig.8.27 for data set
BWH3, with the cOPDT. The results are much less smooth than those reported
for BWH1, since no filtering can be performed. Although the directions of tracts
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Figure 8.27: BWH3: detail of a ROI in axial slice 19, corresponding to the same anatomy depicted
in Fig. 8.10, for the cOPDT. Glyphs are colored following color–coding conventions. The LMMSE–15
technique cannot be applied in this case.

of interest are in general terms well resolved, the interpretation of the results is
more difficult than it was for BWH1 (see Fig. 8.11), even when the b–value of
BWH3 is larger (1000 s/mm2). Fig. 8.28 shows a zoom of the window represented
in Fig. 8.27. In this case, it is interesting to include Q–Balls and the DOT in the
comparison. As can be seen, Q–Balls is not able to resolve the fiber crossings in
practically any voxel (unless for those in the left column, which are especially easy
to detect). On the contrary, the DOT seems to be useful in this particular situa-
tion. It is able to represent all the fiber crossings the other estimators distinguish,
with very few outlying lobes. Nonetheless, the directions estimated for the crossing
fibers are not always completely coherent with those estimated by the other tech-
niques. As an example, consider the direction marked on one of the glyphs with a
red arrow. By simple visual inspection, it seems clear that the detected fiber is not
following the same orientation provided by the other approaches. From the exper-
iments with synthetic data, it is expected that the error committed by the DOT is
larger than that of OPDT–based estimators; besides, in the window chosen for this
analysis, the behavior of the DOT is especially accurate, but this is not the case
for the rest of the ROI. Comparing now the OPDT, the cOPDT, and the pOPDT,
their behavior is over again quite similar, although some differences can now be
identified. The most remarkable one is in the glyph pointed out with a green ar-
row. For this specific position, both the DOT and the OPDT show outlying lobes
which preclude the directions of fibers. With regard to the pOPDT, it is unable
to identify the crossings, so that it reveals one unique fiber bundle much like as
Q–Balls. On the contrary, the cOPDT reveals three crossing fibers, whose orienta-
tions are completely coherent with their surroundings. Hence, it seems reasonable
to assume that these orientations correspond to actual anatomies. Moreover, the
glyphs neighboring that marked with the green arrow unveil this same structure,
which is only visible with the OPDT and the cOPDT, but not with the pOPDT (or
with Q–Balls or the DOT either).
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Figure 8.28: BWH3: Comparison of estimators in a small ROI inside axial slice 19. Q–Balls (top–left),
the DOT (top–right), the OPDT (bottom–left), the pOPDT (bottom–center), and the cOPDT (bottom–right)
are compared.

8.5 Discussion

This Chapter has allowed to validate over real data most of the premises which mo-
tivated the present research work. Perhaps, the most important conclusion from
the experiments carried out is that in fact HARDI techniques provide highly valu-
able information beyond DTI, revealing neural architectures which remain occult
with this other approach. This comment holds for practically all the results pre-
sented. At the same time, it has been shown that the brain regions for which the
description of complex architectures is useful are numerous. The fiber bundles in-
volved in the study, such as the corpus callosum, the cingulum, the superior lon-
gitudinal fasciculus, the cerebellar peduncle, and others, are very relevant tracts
with important functions. It has been evidenced that the study of these structures
can benefit from HARDI estimation in a number of areas of interest, including the
middle and the peripheral brain, axial views and sagittal/coronal slices.

The quantitative evaluation of the techniques presented has been carried out
in previous Chapters, based on synthetic data on standard simplified scenarios.
However, this analysis was centered on the accuracy for isolated voxels. In the
present Chapter, the evaluation is merely qualitative due to the lack of a golden
standard. On the other hand, the use of real data sets has allowed to test other
important features such as the spatial coherence of the orientation information
estimated and its anatomical correctness. Interestingly enough, the results ob-
tained over real data are consistent with the conclusions derived from the study
with synthetic data, which in part justifies the methodology for quantitative eval-
uation.

In particular, the advantage of using large b–values has become evident. Al-
though it introduces a high attenuation, noticeably worsening the SNR, the im-
provement in the angular contrast compensate this drawback: in this case, all
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HARDI estimators are able to yield appropriate results, providing very rich in-
formation which conventional DTI techniques cannot account for. The qualitative
performance of all of them is quite similar, so from this analysis it would be dif-
ficult to assess the possible pros and cons of each one. Still, the quantitative
validation carried out formerly advices the use of OPDT–based estimators, unless
the architectures to resolve are well differentiated (i.e. fibers crossing or bending
in large angles). Some illustrative experiments have been shown which suggest
that in fact OPDT–like approaches may be advantageous even for large b–values,
see Figs. 8.3 and 8.8. Of course, this assertion relates to the qualitative represen-
tation of estimations; for quantitative analyses, the advantage is even clearer.

For smaller b–values, the comparison clearly favors the techniques proposed in
this dissertation. Although the orientation information is not so easy to interpret,
due to the widening of the lobes of the OPDF, it is still intelligible. On the contrary,
the DOT tends to render a large number of spurious lobes not always following
true fiber bundles. As a consequence, the orientation information it provides is
completely distorted. With Q–Balls, the shape of the ODF is still rather smooth, but
it is not able to distinguish fiber crossings even for quite large angles. Besides, and
what is more important, this approach may drive to ambiguities in the orientations
of fibers under some circumstances (see Fig. 8.12). This result is consistent with
the discussions following the numerical validation in previous Chapters.

With regard to the novel estimators presented in Chapter 7 (those estimating
true probabilistic information, i.e. the OPDF), the OPDT and the cOPDT show a
very similar behavior (once again, the quantitative comparison has to be used to
argue which of them is better fitted for each particular situation). The pOPDT can
yield poorer results in some cases (see Figs. 8.13 and 8.20), when fiber crossings
in very small angles are present. However, in case the directions to resolve are
well differentiated, their qualitative behavior is virtually the same.

Finally, it is worth stressing the adequacy or even the need for filtering DWI
data sets prior to the estimation of fiber populations. It remains evident that this
stage allows to obtain smoother results, and to improve their spatial coherence
in all cases. Moreover, it may become essential to achieve interpretable estimates
in most of cases. The exception for this rule is in Q–Balls, which is especially
robust to noise. The denoising process may indeed carry out certain disadvan-
tages, distorting the angular resolution at some isolated voxels (compare Figs. 8.13
and 8.14). Nonetheless, it has been shown that it is fundamental to attain appro-
priate results, especially for small b–values. Yet, the experiments performed widely
report that the LMMSE–N technique is able to disclose neural architectures pre-
cluded by the effect of noise, so it is clearly advantageous in all situations.



9
Conclusions and future lines

A complete framework for the analysis, processing, and interpretation of diffusion
MR images has been presented. It comprises the steps from the characterization
of diffusion data in the MRI scanner to high level processing in order to infer fiber
populations in the white matter. Chapter 2 was devoted to the study of the foun-
dations of MRI and diffusion imaging. The review of the physical principles behind
these techniques, mostly based on quantum mechanics, is far beyond the scope
of the work presented. Instead, a comprehensive analysis focused on the math-
ematical and statistical characterization of this kind of data was performed. This
study was centered not only in conventional acquisition techniques, but also on
the analysis of the most recent approaches. Concretely, pMRI in diffusion imag-
ing and HARDI have centered a major part of this dissertation. Although the use
of these techniques is not widespread nowadays, their great potential and nice
properties suggest that more attention will be paid to them in the near future.

Chapter 3 was focused on the statistical characterization of noise in diffusion
(and conventional) MRI data sets. From the study carried out, the most impor-
tant conclusion is the general division of MRI protocols into Rician–distributed
and non–central Chi–distributed. In conventional MRI and most of the current
pMRI protocols (SENSE, SMASH, g–SMASH), noise statistics are Rician, as it has
been widely reported and exploited previously. On the other hand, the analysis in
Chapter 3 was centered on non–central Chi statistics, which are much less famil-
iar to the diffusion imaging community, and have not been explored thoroughly.
This distribution may be used to describe noise in multiple coil arrays without
k–space subsampling if SoS is used. Although it is not exact when subsampling
is performed, it has been shown that, in fact, the non–central Chi model is an
accurate representation of noise, at least for the GRAPPA algorithm for pMRI. The
popularity this algorithm is gaining justifies the importance of this distribution.
The study in Chapter 3 was mainly focused on GRAPPA. However, all existing
pMRI algorithms share a number of features that make them similar. Moreover,
the reconstructions performed in one of the signal spaces studied (the k–space
or the x–space) can be often mapped to other space, so any possible pMRI tech-
nique to be introduced will also show very similar characteristics to GRAPPA or
SENSE. This allows to conclude that the Rician/non–central Chi model is general
enough to represent most of the MRI scenarios.

Chapter 4 was centered on the analysis of the propagation of noise from the
diffusion data sets to the estimated architectures in the white matter. This study
was necessarily limited to a single case study, so that DTI based on non–linear
estimation, and non–Gaussian diffusion schemes (i.e. HARDI estimation) were ob-
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viated. Despite this limitation, the technique studied (DTI with linear estimation)
is the most common approach in current studies based on diffusion imaging. The
significance of the bias introduced by Rician noise in diffusion related parameters
has been previously reported in a number of empirical studies. The conclusion of
the work here presented is that, for non–central Chi signals, the impact is even
greater than in the common Rician scenario. In many cases, the bias in the esti-
mation of tensor components may be critical; yet, in these situations, increasing
the number of gradient directions is not advisable, since the bias is not reduced. In
fact, the results in Figs. 4.2 and 4.3 provide valuable guidelines to decide whether
increasing the number of gradient directions or the number of repetitions (NEX) is
more convenient. It is worth to stress that this study was analytical, so the conclu-
sions inferred show general validity withstanding any dependency on a particular
kind of data.

There exists a wide variety in the properties of diffusion data sets, and also
in the techniques for the description of neural architectures. As a consequence,
including the modeling of noise in the estimation of fiber populations would not
allow a flexible design able to account for all possible scenarios. The solution given
in this work, as proposed in Chapter 5, was to decouple both problems by means
of image denoising techniques: diffusion data sets were filtered accounting for
their statistical properties, and the resulting noise–free data could be studied re-
gardless of the scanning protocol. The estimation of neural fibers usually includes
a regularization of diffusion signals (by means of LS), which imposes the condition
that the input diffusion volume has to be contaminated with additive, symmetri-
cally distributed noise. Therefore, all filtering techniques described were designed
to remove the bias in the images due to the Rician (or non–central Chi) nature of
noise. The other important conclusion from Chapter 5 is the convenience of de-
veloping filtering strategies specific for DWI data. Diffusion volumes are not only
multichannel signals, but instead the correlation between different gradient di-
rections, inherent to the diffusion model, provides very rich a priori information
which should be exploited. A number of novel techniques in this sense were pre-
sented, showing the benefits of this approach compared to state of the art filtering
techniques.

The main contribution of this dissertation was developed in Chapters 6 and 7.
The aim was to find probabilistic estimators of fiber populations in the white mat-
ter of the brain. The importance of probabilistic information in image processing
in general, and for this task in particular, is indubitable: probability densities
provide information not only on the orientation of fiber bundles, but also on the
uncertainty of the estimation performed. Together with this important issue, two
additional problems inherent to any HARDI estimator were detected: first, HARDI
data sets provide incomplete information on the diffusion of water molecules, so
it is often necessary to make certain assumptions on the attenuation signal to
complete this information. Second, the need for parametric models (like mixtures
of Gaussians, continuous mixtures of Gaussians, and others) in some estimation
techniques may reduce the generality of these approaches. Yet, in many cases,
these models bind to estimate some modeling information, such as deconvolution
kernels, which in turn has to be considered constant for all the extent of the white
matter. These three issues are not independent, but they are closely related: in
Q–Ball imaging, neither any assumption on the diffusion signal nor a prior model
is required, but this estimator inherently compels to relinquish the estimation of
probabilistic information. With spherical deconvolution, any kind of orientation
information may be inferred without the assumption of any particular behavior
of the attenuation signal, at the expense of considering a prior model for fiber
populations.

The previous discussion is a remarkable conclusion derived from the analy-
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sis carried out in Chapters 6 and 7. This same discourse allowed to derive vari-
ous novel estimators of neural architectures: the OPDT introduced in Chapter 6
avoided the main limitation of Q–Balls by including the Jacobian term in the radial
integral. It was done at the expense of including an assumption on the diffusion
signal. Withal, this assumption was weak enough to prevent the appearance of
important modeling errors. Although the OPDT was shown to be more accurate
than a number of state of the art approaches, gathering all the advantages of
non–parametric models, it still showed a number of limitations due to the use of
the FRT. The most critical was the theoretical limit it imposed to the use of high
b–values. In Chapter 7, these limitations of the FRT, together with some possible
solutions, were explored by varying the assumptions and modeling of the attenu-
ation signal. The most meaningful result in this sense was the introduction of the
cOPDT, which allowed to overcome the main limitations of the OPDT without any
additional assumption. What is more important, this new estimator outperforms
the OPDT in many situations. Together with the OPDT and the cOPDT, some addi-
tional estimators have been proposed which may me useful in different situations
depending on the anatomies being imaged, the quality of the diffusion data sets
(noise power), and the imaging parameters (b–value). A general conclusion inferred
from Chapter 7 is the convenience of probabilistic estimation: besides its inher-
ent benefits (characterization of uncertainty), it was shown that in many cases
this kind of estimators drive to more accurate estimates. The main limitation in
this study was in the numerical validation of the accuracy of the estimation of
fiber populations. The great complexity of neural architectures, together with the
complicated physical processes driving diffusion, makes it unfeasible to construct
realistic phantoms mimicking true structures in the white matter. As a conse-
quence, the validation had to be made over simplified scenarios with mixtures of
Gaussians.

As a complementary study to that carried out in Chapter 4, the propagation of
noise for the estimators presented in Chapters 6 and 7 was empirically studied. It
was shown that, in most of cases, the estimators are robust enough to noise, at
least for the most common Rician case. However, as shown in Chapter 8, all the
estimators proposed (and any other previously reported) highly benefit from the
filtering techniques discussed in Chapter 5. Chapter 8 showed extensive qualita-
tive results on true diffusion data sets with different characteristics, proving the
usefulness of the techniques described throughout this dissertation. In particu-
lar, the ability to distinguish complex neural architectures beyond the information
provided by DTI was evidenced. The estimation techniques described, together
with the denoisng based on unbiased filtering, were able to notably improve the
results achieved with DTI even for data sets with moderate b–values, which in
principle are not specifically intended for this kind of processing.

9.1 Contributions

Although all the contributions presented in this dissertation have been highlighted
at the beginning of the corresponding Chapter, it is useful to include here a brief
summary of them:

• In Chapter 3, the derivation of the spatial model for the variance of noise in
each receiving coil following GRAPPA reconstruction. The analysis of the con-
ditions under which a non–central Chi distribution may be assumed for this
algorithm, and the study of its stationary behavior. The formalization of the
general quasi–stationary non–central Chi framework for the most common
single coil, multiple coil, and pMRI protocols.
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• In Chapter 4, the derivation of closed–form expressions for the mean and
variance of the log–Rician and log–non–central Chi models, together with
their operative linear approximations. The analytical study of the propaga-
tion of noise from DWI components to components of the diffusion tensor.
The study of the relation between the bias and the variance in the estimation
of these components, and the analysis of the impact of the number of gradi-
ents and the number of expositions in these parameters, as a function of the
SNR and the number of receiving coils.

• In Chapter 5, the filtering methodology based on the exploitation of joint
information. The filters developed following such methodology: joint LMMSE,
LMMSE–N and UNLM–N. The design of phantom data for the quantitative
evaluation of filtering performance.

• In Chapter 6, the study on the relations between different orientation infor-
mation, assumptions on the attenuation signal, and prior models for diffu-
sion. The computation of true probability densities based on the estimation
of the Laplacian operator and the computation of the FRT. The development
and validation of the OPDT.

• In Chapter 7, the new insights into the relations between the scanned sig-
nals in the q–space and the diffusion propagators (and the corresponding
orientation information) in the R–space. The use of Stoke’s theorem as an
alternative to the raw FRT, avoiding at the same time the need for more
restrictive assumptions. The development and testing of a number of new
estimators: cQ–Balls, pQ–Balls, the cOPDT, and the pOPDT1.

9.2 Future lines

The techniques and algorithms presented in this thesis do not comprise closed–
form solutions to all the current trends in diffusion imaging. On the contrary,
these developments offer a collection of new techniques to tackle a number of
challenging problems. Besides, the new methods themselves drive to the state-
ment of new problems of interest. As a consequence, the work here presented may
be the origin of several lines for future research. Among these directions, the most
evident are the following ones:

• In the GRAPPA reconstruction algorithm (and other pMRI protocols related
to this one), it was shown that the variance of noise for each coil is different,
so a non–central Chi model cannot be strictly assumed. This condition may
be relaxed if the variances of noise in all coils are similar. In the same way,
the non–central Chi model requires that the noisy processes at each coil are
independent. However, two sources of correlation may be found in real data
sets: first, the signals acquired by each coil are not completely independent,
and correlations may appear. This correlation is usually negligible for hu-
man and animal subjects, so it is rarely an issue. On the other hand, the
interpolation of the k–space for each coil takes into account all the remaining
coils, which clearly introduces a certain correlation. Although it is expected
to be low, it would be interesting to quantify this correlation and its effect on
the non–central Chi modeling.

1Two of these estimators, the pOPDT and pQ–Balls, have also been proposed in two recent papers,
[Aga09] and [CR09], respectively. However, the development presented in this dissertation was carried
out in parallel, and yet the derivations are different.
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• The study of the propagation of noise in Chapter 4 is based on the study
of the properties of the transition matrix driving from the q–space to the
R–space. For some HARDI estimators, like Q–Balls (and its variants), the
cOPDT or the pOPDT, the estimation is performed in terms of a correspond-
ing transition matrix, possibly operating on a contrast–corrected attenuation
signal. Therefore, two tasks can be identified which could allow a similar
analytical study: first, the characterization of noise in the contrast–corrected
signal (a linear approximation will be necessary), and second, the study of
the properties of the corresponding transition matrices.

• The validation of the filtering techniques for Rician noise has been quite ex-
tensive due to its importance in current protocols. All the derivations for the
non–central Chi case have been provided as well, but they have not been
properly validated. This is related to the lack of real data of this kind (see
Section 1.4). The extensive validation of the proposed methods for multiple
coil and pMRI scenarios (including the possible non stationary behavior of
the noise power) is another interesting topic.

• The most attractive directions offered by the framework in this thesis are
those related to the potential applications of the methods derived. In partic-
ular, the glyph representations in Chapter 8 provide valuable information on
the architecture and connectivity of the white matter. Notwithstanding, they
present an intrinsic limitation of diffusion data sets, which is the restriction
to radially symmetric density functions which often do not match a realis-
tic scenario. The posterior regularization of the field of probability densities
(i.e. the regularization of the R–space) allows to get rid of this restriction,
yielding richer representations of water diffusion known as super–resolution
diffusion imaging. This line has begun to be explored recently with promis-
ing results [Bar08, NG08]. Besides, it is evident that the resolution of fiber
crossings, bending, or other complex architectures may highly benefit fiber
tracking algorithms, which may get lost in this kind of voxels with conven-
tional DTI. These new approaches to tractography, which are gaining an in-
creasing interest as well [Des09], could be even combined with the previous
regularization/super–resolution approaches to achieve even more accurate
results. Finally, the nice property of the OPDT, the cOPDT, and the pODPT of
being estimators of true probability densities could be of high interest to trace
connectivity maps of the white matter, including uncertainty management.

• The advantages of the filtering techniques described over conventional meth-
ods have been evidenced in many cases (above all, in HARDI scenarios). It
is therefore interesting to test the impact of this improved processing in well
established methodologies for DTI and HARDI. Moreover, the use of joint in-
formation can be extended to other filtering approaches previously reported.

• As a final remark, the adequate software integration of the methods pre-
sented in this thesis, above all those related to the estimation of fiber popu-
lations, is of capital importance for their dissemination and improvement.
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Statistical parameters of log–Rician and

log–non–central Chi distributions

In this appendix, the mean and variance of logarithmic signals obtained from the
CMS are computed. Although Rician statistics are a particular case of non–central
Chi when only one degree of freedom (L = 1) is considered, it is useful to derive the
corresponding expressions separately, since the particularization of the results for
the non–central Chi model, when L = 1 is taken, is not trivial.

A.1 Log–Rician distribution

Log–Rician statistics are obtained when the logarithm of a Rician–distributed ran-
dom variable is computed:

D = log(M) = log
(√
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)
, (A.1)

where nc and ns are the independent, Gaussian distributed, real and imaginary
parts of a complex Gaussian random variable, each of them with zero mean and
standard deviation σ2

n . The real and imaginary parts of the signal of interest, Ac
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s is the modulus of the signal of interest. I0
is the modified Bessel function of the first kind and index 0. The mean of this
distribution is computed directly using its definition:
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This integral does not admit a simple, closed–form primitive. Instead, the power
series expansions of IL is used [Abr72]:
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where Γ (z) stands for Euler’s gamma function. Casting the previous expression
(for L = 0) in eq. (A.3), it follows:
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The integral in the previous equation may be expressed in terms of the polygamma
function of order 0, ψ(z), defined as the first derivative of the logarithm of Euler’s
Gamma function [Abr72]. Hence, eq. (A.5) becomes:
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The summation in the previous equation can be evaluated with the help of a soft-
ware for symbolic calculus. The following equalities can be obtained this way:
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2σ2
n

)
+ log(A), (A.7)

with Γ (l) (a,b) the (lower) incomplete Gamma function. The resulting expression is
relatively simple, and has been previously reported in [Sal05].

It remains to compute the variance of the log–Rician random variable. To that
end, the second order moment is calculated first, and the variance will be obtained
by subtracting the squared mean from this value. For the second order moment,
the definition is used over again:

E{D2} =
∫
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∑
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where now ψ1)(z) is the first derivative of ψ(z) (or the second derivative of logΓ (z)),
and ÑL(z) stands for the summation:

ÑL(z) = e−z
∞

∑
k=0

zk

k!

(
ψ(k +L)2 +ψ

1)(k +L)
)

, (A.9)
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Figure A.1: Behavior of the function ÑL(z) for different values of L and positive z.

which cannot be otherwise expressed in terms of elemental functions. This func-
tion is sketched in Fig. A.1 for different values of L. Finally, the variance of the
log–Rician variable can be computed subtracting eq. (A.7) squared from eq. (A.8):

Var{D}= E{D2}−E2{D}=
1
4

(
Ñ1

(
A2

2σ2
n

)
+
(

Γ
(l)
(

0,
A2

2σ2
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+ log

(
A2

2σ2
n

))2
)

. (A.10)

A.2 Log–non–central Chi distribution

Log–non–central Chi statistics are obtained when the logarithm of a non–central
Chi distributed variable is computed:

DL = log(ML) = log

(√
L

∑
l=1

(Alc +nlc)2 +(Als +nls)2)

)
, (A.11)

where an additional subindex, l, has to be used to denote each of the L complex
signals of interest, Alc + jAls , which are combined. In this case, all the complex,
Gaussian distributed noisy processes nlc + jnls are assumed to be independent,
and independent from the signal of interest. In this case, the PDF has the form:

fDL(t) =
A1−L

L
σ2

n
e(L+1)t exp

(
−e2t +A2

L
2σ2

n

)
IL−1

(
ALet

σ2
n

)
, (A.12)

with t ∈ (−∞,+∞). IL−1 is the modified Bessel function of the first kind and order
L− 1, and AL is defined as the combination of all the signals of interest when no
noise is present:

A2
L =

L

∑
l=1

(
A2

lc +A2
ls

)
. (A.13)
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The mean of the new random variable can be computed using its definition, and
substituting the Bessel function by its power series expansion:
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The previous integral can also be expressed in terms of the polygamma function:
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where 2F2 is the confluent hypergeomteric function of the first kind. The latter
expression can be obtained using software tools for symbolic calculus.

For the second order moment:
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Finally, the variance can be computed as:
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B
On the computation and inversion of

covariance matrices

In the LMMSE approach, each noise–free channel A2
i is modeled as the realization

of a random variable, whose mean and variance have to be estimated (only first
and second order moments are required since the estimator is linear) [Kay93]. The
idea behind Bayesian estimation (and therefore behind LMMSE) is to include the
prior knowledge on the behavior of A2

i to improve the estimation. In the case of
DWI data sets, the general relation given by eq. (2.39) represents a highly valuable
a priori information: once the neural fiber structure described by D(b,g) is known,
the value of any A2

i may be inferred without any uncertainty from the value of any
baseline A2

β
. With this consideration, only the uncertainty in the knowledge of A2

β

has to be modeled, since all other channels are fully correlated with the baseline
through D(b,gi). The computation of CA2M2 may be done as follows:

{CA2M2}i j = E
{(

A2
i −〈A2

i 〉
)(

M2
j −〈M2

j 〉
)}
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i 〉
)(

A2
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A2
j −〈A2

j〉
)}

= E
{

A2
i A2

j
}
−〈A2

i 〉〈A2
j〉

=
(

E
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exp(−bD(b,gi))exp(−bD(b,g j))
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〉2

〈A2
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〉2 exp(−bD(b,gi))exp(−bD(b,g j))

=
〈A4

β
〉−〈A2

β
〉2

〈A2
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〉2

〈A2
i 〉〈A2

j〉= ς〈A2
i 〉〈A2

j〉, (B.1)

which does not depend on D(b,gi), so the filtering does not depend on the par-
ticular diffusion anatomy. The computation of the components of CM2M2 is more
tedious, but straightforward as well. The expressions in eq. (5.15) are immediately
obtained identifying corresponding terms. Note that ς is computed on the baseline
β , but might be computed as well from any other gradient image of the DWI data
set. However, baselines show a higher SNR and therefore are more adequate. In
practice, the averaged value of ς for all baselines is used in order to reduce the
variability due to the computation of the 4–th order moment. To invert CM2M2 , let
the SNR be high enough so that: σ2

n � 〈A2
i 〉. The following approximation might be

thought of:

CM2M2 ' C̃M2M2 = ς〈A2〉〈A2〉T +4σ
2
n diag

(
〈A2〉

)
, (B.2)
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with the advantage that the inverse of C̃M2M2 may be computed in a closed form
using Woodbury’s identity [Kay93]:

C̃−1
M2M2 = η11T +diag(e), (B.3)

where η is a scalar and 1 and e are Z×1 vectors defined as:

η = −

(
4σ

2
n

(
4σ2

n

ς
+
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〈A2

i 〉

))−1

;

1i = 1;

ei =
(
4σ

2
n 〈A2

i 〉
)−1

, (B.4)

for i = 0, . . . ,Z− 1. It is trivial to show that C̃M2M2 is positive definite. Indeed, the
following property holds:

If 〈A2
i 〉> σ

2
n ,∀i ⇒ λ

j > 4σ
4
n , (B.5)

for any eigenvalue λ j of C̃M2M2 . To prove this relation, suppose that v j = [v j
0, . . . ,v

j
L−1]

T

is an eigenvector associated to the eigenvalue λ j. Then:

C̃M2M2v j = ς〈A2〉〈A2〉T v j +4σ
2
n diag

(
〈A2〉

)
v j = λ

jv j

⇒ ς
(
〈A2〉T v j)〈A2

i 〉+4σ
2
n 〈A2

i 〉v
j
i = λ

jv j
i , ∀i. (B.6)

For each non–null component of v j, λ j may be put in the form:

λ
j = ς

〈A2〉T v j

v j
i

〈A2
i 〉+4σ

2
n 〈A2

i 〉. (B.7)

And therefore:

• If 〈A2〉T v j ≥ 0, it has to be at least one positive component of v j, v j
p > 0, since

〈A2
i 〉 > 0. Particularizing eq. (B.7) for v j

p, it is evident that λ j ≥ 4σ2
n 〈A2

i 〉. From
the premise in eq. (B.5), λ j > 4σ4

n .

• If 〈A2〉T v j ≤ 0, it has to be at least one negative component of v j, v j
n < 0. Par-

ticularizing eq. (B.7) for v j
n, it is evident that λ j ≥ 4σ2

n 〈A2
i 〉 ⇒ λ j > 4σ4

n .

The property in eq. (B.5) guarantees the convergence of the power series expansion
of C−1

M2M2 as a function of C̃−1
M2M2 :
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4
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)k
, (B.8)

since C̃−1
M2M2 commutes with any function that can be expressed as a power series of

C̃−1
M2M2 (such function will have the same eigenspace as C̃−1

M2M2 ). It is straightforward
to show that the term O in the recursive formula of eq. (5.17) represents the
product of the truncated series expansion in eq. (B.8), up to order O, by M2−〈M2〉.



C
Noise estimation in Rician and non–central

Chi signals

The estimation of the noise power σ2
n in an image is of paramount importance

not only for filtering tasks, but also in new techniques for tensor estimation
[Fil07, Lan07] or inference of fiber directions [Cla08]. Like most of the Rician–
based filtering algorithms, noise estimation is based on the computation of sample
moments of the CMS to estimate the actual moments of the underlying distribu-
tions. From them, the parameters of these distributions, and in particular σ , are
inferred. A detailed description of the techniques used to estimate σ is far beyond
the scope of this dissertation, so this Appendix is intended only as a brief overview
of the existing methods. The most of the related literature is focused on Rician
distributed signals; however, in the same way it was done in Section 5.5.1, all
of them may be easily extrapolated to the non–central Chi case. Noise estimation
techniques can be divided in the following categories:

• Estimators that need prior segmentation of the background. In the back-
ground A(x) = 0, so the statistics reduce to a Rayleigh distribution, whose
moments are easily computed averaging all the voxels in the detected back-
ground. This kind of techniques may fail if the background is not accurately
segmented,if a large enough background is not present (for brain images,
this problem is rarely an issue), or in the case strong inhomogeneities in the
background exist.

• Estimators based on the background that do not need its prior segmentation.
They are based as well on a Rayleigh distribution, but instead of averaging
all the available voxels to estimate the moments, they are based on the com-
putation of local moments, whose distribution is analyzed. Three approaches
may be distinguished:

– Using the mode of a given local parameter related to σn, computed as the
maximum of the histogram.

– Fitting a Rayleigh–related distribution to the histogram of the local fea-
ture.

– Using Maximum Likelihood estimators of σn.

In all these cases, it is assumed that the background is large enough so that
the mode of the histograms corresponds to the Rayleigh voxels. However,
techniques to reject the non–background voxels may benefit the estimation;
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M(x) (Global) Sample mean of image M(x)
M(x) = 1

|Ω | ∑
x∈Ω

M(x)

M(x)x Local sample local mean of image M(x)
M(x)x = 1

|Nx| ∑
c∈Nx

M(c)

(Nx is a neighborhood of size |Nx|= N centered in x)

Var{M(x)}x Sample local variance of M(x)
Var{M(x)}x = M2(x)x−M(x)

2
x

M(xB) Background area of image M(x)
xB = {x|A(x) = 0}

M(xR) M(x) in the arbitrary region R
xR ∈ R

hI(l) The value of the empirical histogram of I at bin l,
l0 ≤ l ≤ lc, computed over a total of S samples

mode{I(x)} Mode of the distribution of I(x)
mode{I(x)}= argmax

I
{hI(l)}

L The number of coils in multiple coils systems

Table C.1: Summary of the notation used for the estimators of the noise power reviewed in Tables C.2
and C.3.

in particular, a rough segmentation of the background is useful to minimize
the effects of Rician voxels in the estimation. In this case the segmentation
has to be not so accurate, so this kind of methods is the preferred whenever
a large background area is available.

• Estimators based on Rician data, which have to be used if no background is
present. In general they are more complicated, and yet prone to errors due
to the greater uncertainty in the computation of the moments of the Rician
distribution. Nevertheless, this is the only alternative when no background
is present.

• Estimators in the Gaussian distributed, complex image domain. The output
provided by the MRI scanner is almost always the CMS, so the complex data
is rarely available. Therefore, this category falls out of the discussion.

Of course, this classification holds for non–central Chi signals, with the only dif-
ference that in the background the distribution reduces to a central Chi instead
of a Rayleigh distribution. For DWI data sets, the background region is the same
for all baselines and gradient images; as a consequence, the estimation may be
performed in the baselines, in the gradient images, or in both of them simulta-
neously for the first two kinds of techniques. DWI is nowadays mainly intended
for the brain (a Rayleigh/central Chi background is always present), so the third
group of techniques is of less interest. In what follows, the notation in Table C.1
is used.

Table C.2 shows the expressions of some estimators for the Rician case, follow-
ing the classification outlined above. For the case of DWI images of the brain, the
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Table C.2: Survey of noise estimators for Rician distributed data. The theoretical justification for each
of them, together with some details on their implementation and performance, may be found in the
references provided and in [AF09].

most interesting techniques are those based on a Rayleigh distributed background
(since they are more robust to the uncertainty in the computation of sample mo-
ments than those based on a general Rician distribution). However, it is desirable
that the estimation does not need an accurate segmentation of the background.
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NL, lc N

2σ2

))
[AF09]

−
c
∑

i=1
hM2(li) log

(
Γ

(
NL, li−1

N
2σ2

)
−Γ

(
NL, li N

2σ2

))]

N
on

–c
en

tra
lC

hi
m

od
el

σ̂2
n = mode{Var{M(x)}x} [AF09]

Table C.3: Survey of noise estimators for non–central Chi distributed data. The theoretical justification
for each of them, together with some details on their implementation and performance may be found
in the references provided and in [AF09].

In this sense, the first two techniques are based on moments computed over the
whole set of background voxels, so they will be highly influenced by errors in the
segmentation: in particular, if Rician distributed voxels are included in the com-
putation, σn will be overestimated. For the remaining estimators, any of the three
groups of techniques might be used. The estimators in the first group, i.e. those
based on the mode of local distributions, are especially interesting due to their
simplicity. Among them, the estimator based on the mode of M(x)x [AF08a] shows
a nice behavior, and so it has been used in all the experiments presented in this
dissertation.

Finally, Table C.3 shows the analogous results for non–central Chi signals.
Practically all the estimators in Table C.2 have their corresponding counterpart in
Table C.3. In particular, there is an estimator based on the mode of M(x)x, whose
advantages have been mentioned above.



D
SH expansions and computation of some

HARDI estimators

The analysis and synthesis expressions of the SH expansion given in eq. (6.16),
as well as the integral defining the FRT in eq. (6.7) for this representation may be
written as matrix operations [Des07]. In this Appendix this work is briefly reviewed
and extended to the estimators presented in Chapters 6 and 7.

D.1 Notation

Like in [Des07], the indexation of the SH basis is changed to represent them with
one single index j. For each even order l, it is easy to note that there are Hl = 2l +1
basis functions Ỹ m

l , so the following indexation may be used:

{Ỹj, j =
l
2
(l−1) . . .

l
2
(l +3)}= {Ỹ−l

l . . .Ỹ l
l }, l even. (D.1)

Note that only even order SH are considered, according to eq. (6.16). Besides, the
notation l j is used for the SH order of the corresponding basis function:

l j = l :
l
2
(l−1)≤ j ≤ l

2
(l +3), l even. (D.2)

It is easy to note that the total number of SH basis functions for an expansion up
to order L = 2L̂ is H = ∑

L̂
l=0 H2l = (L/2 + 1)(L + 1). The set of N sampling directions

of E(q) is denoted as Θ = {(θ1,φ1),(θ2,φ2), . . . ,(θN ,φN)} ≡ {g1,g2, . . . ,gN}; the set of N′

sampling directions for which the OPDF (or any other orientation information) is
computed is Θ ′ = {(θ ′1,φ ′1),(θ ′2,φ ′2), . . . ,(θ ′N′ ,φ

′
N′)} ≡ {r1,r2, . . . ,rN′}. The N×1 vectors E

(attenuation signals) and D (log–signal), the H×1 vectors C (SH coefficients of E or
∆E) and C′ (the SH coefficients of the ODF or the OPDF), and the N′× 1 vector P
(the orientation function at each direction in Θ ′) are defined as:

{E}i = E(q0gi); {D}i = logE(q0gi); (N×1).
{C} j = C j; {C′} j = C′j; (H×1).

{P}i′ = Ψ(ri′) or Φ(ri′); (N′×1). (D.3)
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The matrix of eigenvalues of the SH basis, L, and the FRT matrix, F , are H×H
diagonal matrices of the form:

{L} j j =−l j(l j +1); {F} j j =

 1, j = 0

2π(−1)l j/2 (l j−1)!!
l j!!

, j > 0
, (D.4)

where the standard notation for the double factorial has been used:

n!! =
{

1 ·3 ·5 · . . . ·n, n odd
2 ·4 ·6 · . . . ·n, n even . (D.5)

Finally, B (resp. B′) is an N×H (resp. N′×H) matrix of evaluations of the H SH
basis functions in the set Θ (resp. Θ ′):

{B}i j = Ỹj(θi,φi); {B′}i′ j = Ỹj(θ ′i′ ,φ
′
i′); (D.6)

D.2 SH analysis and synthesis formulas

Given the noisy vector E of the evaluations of E over Θ , and the SH matrix B of the
evaluations of the SH basis functions in these same directions Θ , the computation
of the coefficients vector C may be seen as a LS problem, whose closed–form
solution is well known:

BC' E⇒ C =
(
BT B

)−1 BT E. (D.7)

In order to achieve an adequate representation capability beyond common para-
metric models, the maximum order L of the basis functions must be high enough.
However, using high SH orders translates in badly conditioned matrices (BT B),
so the LS fitting may highly amplify the noise. It is very convenient to include
a regularization penalty term in the problem, typically associated to the energy
of the second derivatives (Laplacian) of the function to interpolate. Due to the
orthogonality of the SH basis functions, this penalty has a very simple form:

C =
(
BT B+λL2)−1 BT E. (D.8)

Alternatively, once the vector of coefficients C is determined, it is very easy to
compute the interpolated values of the estimated functions for a different set of
directions Θ ′, E′:

E′ = B′C. (D.9)

Note the high simplicity of these approximations compared to the actual values in
eq. (6.16). Besides, the inclusion of the custom parameter λ allows the regular-
ization of the functions to interpolate to palliate the effect of noise.

D.3 Q–Balls computation

The diffusion signal sampled in the sphere S can be represented in terms of
its SH expansion up to order L using eq. (D.8). This means that the (regularized)
function could be recovered for any spatial direction r evaluating eq. (6.16). Taking
into account the property of SH of being eigenfunctions for this transform, the
FRT of each basis function is computed multiplying it by the corresponding FRT
eigenvalue. Due to its linearity, the FRT of E(q0g) may be expanded in the SH
basis with coefficients which are the same as those of E(q0g) multiplied by the
FRT eigenvalues, see eq. (6.17). The SH coefficients C′ of the FRT of E(q0g) are:

C′ = FC = F
(
BT B+λL2)−1 BT E. (D.10)
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It only remains to evaluate the SH expansion at the directions in Θ ′ to obtain:

P = B′C′ = B′F
(
BT B+λL2)−1 BT E. (D.11)

Note that the whole eq. (D.11) may be precomputed for all voxels except for the
product with E, so the estimation of Ψ(r) requires only a product of an N′ ×N
matrix by an N×1 vector.

D.4 OPDT computation

The OPDT may be lastly represented as the FRT of the estimated Laplacian of
E(q0g), so a similar analysis to that of the previous Section may be performed.
Since the Laplacian may be divided in two different parts, one corresponding to
the angular derivatives and one corresponding to the radial one, two analysis are
to be performed; the linearity of the FRT will be used to join both parts. For the
radial derivative, it follows from eq. (6.26) that the following approximation holds:

∆qE' 2
q2

0
[D · (3+2D) ·E] , (D.12)

where the brackets [·] denote element–wise operations. A reasoning similar to that
of Section D.3 yields:

C′q = F
(
BT B+λL2)−1 BT

[
2
q2

0
D · (3+2D) ·E

]
, (D.13)

where C′q are the terms of the SH expansion of the OPDT corresponding to the ra-
dial derivative. For the angular derivatives, the property of SH of being eigenfunc-
tions of the Laplace–Beltrami operator is exploited; the SH coefficients of ∆bE(q0g),
Cb, will be:

Cb =
1
q2

0
L
(
BT B+λL2)−1 BT E, (D.14)

and the SH coefficients of its FRT, C′b:

C′b =
1
q2

0
FL

(
BT B+λL2)−1 BT E. (D.15)

From eqs. (D.13) and (D.15) the SH coefficients of the OPDT are:

C′ = F
(
BT B+λL2)−1 BT

[
2
q2

0
D · (3+2D) ·E

]
+F

1
q2

0
L
(
BT B+λL2)−1 BT E

=
1
q2

0
F
((

BT B+λL2)−1 BT [2D · (3+2D) ·E]+L
(
BT B+λL2)−1 BT E

)
. (D.16)

Finally, the estimator for the OPDT is written:

P =
−1

4π2q2
0

B′F
((

BT B+λL2)−1 BT [2D · (3+2D) ·E]+L
(
BT B+λL2)−1 BT E

)
. (D.17)

Note that it is not necessary to know the exact value of q0 if Φ(r) is normalized, as
opposed to the case of the DOT, see [Öza06, Appendix A, eq. (28)].
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D.5 Other integral estimators based on the FRT

A number of novel estimators were developed in Chapter 7, whose implementa-
tions in terms of the FRT were summarized in Table 7.1. Generally speaking,
these estimators may be written in terms of the FRT of a contrast enhanced func-
tion computed from the attenuation signal E(q) (or its Laplacian). As a conse-
quence, they are easily related to the estimators reviewed above, and so their
implementations are. The corresponding expressions are given below without fur-
ther comments, since their deduction is trivial from Table 7.1 taking into account
the previous developments:

cQ–Balls: P =
−q2

0
4

B′F
(
BT B+λL2)−1 BT

[
1−E

log(E)

]
. (D.18)

pQ–Balls: P =
−q2

0
4

B′F
(
BT B+λL2)−1 BT

[
1

log(E)

]
. (D.19)

cOPDT: P =
−1

16π2 B′FL
(
BT B+λL2)−1 BT [Ein (E)]+

1
4π

. (D.20)

pOPDT: P =
1

16π2 B′FL
(
BT B+λL2)−1 BT [log(E)]+

1
4π

. (D.21)

Like in eq. (D.11), all matrix operations may be precomputed, so that at each
voxel it is only necessary to compute the operation in brackets and pre–multiply
the resulting vector by a fixed matrix. Besides, no additional normalization is
required with the cOPDT and the pOPDT, which already have integral 1. This is
an advantage over the OPDT described by eq. (D.17).



E
Expressions of the Laplacian for the tensor

model

E.1 Laplacian in Cartesian coordinates

With the notation in eqs. (2.29) and (6.20), the Stejskal–Tanner equation may be
written in the form:

E(q)≡ E(q1,q2,q3) = exp
(
−4π

2
τqT Dq

)
= exp

(
−4π

2
τ[q1,q2,q3]D [q1,q2,q3]T

)
, (E.1)

and so, due to the symmetry of the diffusion tensor:

∂

∂q1
E(q) = −4π

2
τ
(
[1,0,0]Dq+qT D [1,0,0]T

)
E(q)

= −8π
2
τ [1,0,0]Dq E(q).

∂ 2

∂q2
1

E(q) = −8π
2
τ

(
−8π

2
τ ([1,0,0]Dq)2 +[1,0,0]D [1,0,0]T

)
E(q). (E.2)

Computing the corresponding terms for q2 and q3, the Laplacian reads:

∆E =−8π
2
τ

(
−8π

2
τ ‖Dq‖2 + tr(D)

)
E(q). (E.3)

E.2 Radial projection of the Laplacian

From eq. (2.29), taking into account that q = qg, ∆q may be written as:

q2 ∂

∂q
E(q) = q2 (−8π

2
τqgT Dg

)
E(q);

∆qE(q) =
∂

∂q

(
q2 ∂E

∂q

)
=
(

q2 (−8π
2
τqgT Dg

)2−24π
2
τq2gT Dg

)
E(q)

= 8q2
π

2
τgT Dg

(
8π

2
τqT Dq−3

)
E(q). (E.4)

Note that this last equation is formally identical to the approximation in eq. (6.26).
Moreover, for the tensor model, q2D(q,g) = q2gT Dg⇒D(q,g) = D(q0g) = gT Dg (D does
not depend on q), and eq. (6.26) is the exact expression of ∆q.
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E.3 Laplace–Beltrami operator

From the relation given by eq. (6.22) between the actual expression of the Lapla-
cian and the two corresponding projections, it immediately follows:

∆bE(q) = q2
(

∆ − 1
q2 ∆q

)
E(q) =

(
q2

∆ −∆q
)

E(q)

= −8π
2
τq2
(
−8π

2
τ ‖Dq‖2 + tr(D)+gT Dg

(
8π

2
τqT Dq−3

))
E(q). (E.5)



F
Definition and properties of the non–singular

exponential integral

Consider the integral in eq. (7.22), which is reproduced here for convenience:

F̃Φ
ν (q,ξ ,ν)' −1

8π2q

∫ q

0

∆b exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
u

du. (F.1)

The ADC, D̃, is a positive, bounded function defined on the unit sphere for each
q0. Therefore, the exponential term in the numerator is simply 1 for u = 0. Without
the Laplace–Beltrami operator, the resulting function has a pole of the form u−1,
so it is not integrable at u = 0. To overcome this problem, the previous equation
may be re–written in the form:

F̃Φ
ν (q,ξ ,ν) ' −1

8π2q

∫ q

0

∆b

(
exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1+1

)
u

du

=
−1

8π2q

∫ q

0

∆b

(
exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1
)

+∆b1

u
du

=
−1

8π2q

∫ q

0

∆b

(
exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1
)

u
du; (F.2)

∆b is a linear differential operator, so applying it to a constant yields simply 0. Be-
sides, this operator does not depend on the radial coordinate u, since it represents
precisely the angular Laplacian. Consequently, in the previous equation the order
of the differential and the integral operators may be exchanged:

F̃Φ
ν (q,ξ ,ν)' −1

8π2q
∆b

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du. (F.3)

This step is possible because the resulting integral is now convergent. To show it,
consider the power series expansion of the numerator, which is trivially related to
the expansion of the exponential function:

exp
(
−4π

2
τu2D̃(q0,ξ ,ν)

)
−1 =

∞

∑
k=0

1
k!

(
−4π

2
τu2D̃(q0,ξ ,ν)

)k
−1

=
∞

∑
k=1

1
k!

(
−4π

2
τu2D̃(q0,ξ ,ν)

)k
. (F.4)
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Figure F.1: The real–valued exponential integral Ei(x). For negative arguments, the value of the func-
tion is not unique, so the principal (real) branch has been depicted.

This power series is absolutely convergent (i.e. it converges to a bounded limit
even if the modulus of each term is taken) for any particular value of D̃(q0,ξ ,ν).
From the previous expression, it is trivial to show that the numerator in eq. (F.3)
has a zero of order 2 at u = 0, so the u−1 pole is compensated and the integral is
always convergent. Although this result guarantees the consistency of eq. (F.3),
evaluating the corresponding integral is not trivial. Operating in eq. (F.3), it yields:

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du =

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
u

du−
∫ q

0

du
u

=
1
2

∫ 4π2τq2D̃(q0,ξ ,ν)

0

exp(−u)
u

du−
∫ q

0

du
u

, (F.5)

where the change of variable u′ = 4π2τu2D̃(q0,ξ ,ν) has been used in the first term.
Note that the equality in the previous equation cannot be stated strictly speaking,
since none of the resulting integrals is convergent. However, from the previous
discussion it follows that eq. (F.5) must hold as an equality between finite real
numbers when the limit for u→ 0 is taken. A primitive for the second integral is
obviously the logarithm function. The first one is related to the definition of the
exponential integral Ei(4π2τq2D̃(q0,ξ ,ν)) [Abr72]:

Ei(x)
∆=
∫

∞

x

exp(−u)
u

du⇒
∫ x

0

exp(−u)
u

du = lim
x→0+

Ei(x)−Ei(x). (F.6)

Although the exponential integral is defined for any complex number, only its
evaluation for real numbers is of interest in this dissertation; Fig. F.1 sketches the
behavior of the exponential integral for real–valued arguments. Moreover, since
D̃(q0,ξ ,ν) is always positive, the argument of Ei is always greater than 0, and the
interesting properties of this function are those corresponding to R+. In particular,
the following equivalence holds:

Ei(x) =−γ− log(x)−
∞

∑
k=1

(−x)k

k · k!
, if x > 0, (F.7)

where γ ' 0.5772 is the Euler–Mascheroni constant. The exponential integral shows
a logarithmic singularity for x = 0, according to the behavior shown in Fig. F.1.
Casting the expression in eq. (F.7) into eq. (F.5), the integral can be explicitly
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Figure F.2: The non–singular exponential integral Ein(x). For x a large enough, Ein rapidly converges to
minus the logarithm of x (minus the constant γ).

evaluated:

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du

= lim
q→0+

(
1
2

Ei(4π
2
τq2D̃(q0,ξ ,ν))+ log(q)

)
− 1

2
Ei(4π

2
τq2D̃(q0,ξ ,ν))− log(q)

= lim
q→0+

(
1
2

(
−γ− log(4π

2
τD̃(q0,ξ ,ν))−2log(q)

−
∞

∑
k=1

1
k · k!

(
−4π

2
τq2D̃(q0,ξ ,ν)

)k
)

+ log(q)

)

−1
2

(
−γ− log(4π

2
τD̃(q0,ξ ,ν))−2log(q)−

∞

∑
k=1

1
k · k!

(
−4π

2
τq2D̃(q0,ξ ,ν)

)k
)
− log(q)

=
1
2

∞

∑
k=1

1
k · k!

(
−4π

2
τq2D̃(q0,ξ ,ν)

)k
. (F.8)

The final series expansion in eq. (F.8) is, by definition, the non–singular exponen-
tial integral Ein(4π2τq2D̃(q0,ξ ,ν)):

Ein(x)
∆=

∞

∑
k=1

(−x)k

k · k!
. (F.9)

The non–singular exponential integral is depicted in Fig. F.2; Once again, positive
arguments are the space of interest due to the positivity of D̃(q0,ξ ,ν). However, it is
very easy to demonstrate that the power series expansion defining Ein is absolutely
convergent for any real value. It is enough to realize that the absolute value of
any term in the series is the corresponding term of the series expansion of the
exponential function divided by k ≥ 1. Each term in the series of Ein is minor than
the corresponding term in the series of the exponential; since the exponential is
absolutely convergent, so it is the non–singular exponential integral.

The final expression in eq. (F.8) could have been obtained directly from eq. (F.4),
simply by integrating each term of the power series (this calculation makes sense
because the power series normally converges for any u < ∞; this property is directly
inferred from the normal convergence of the exponential function). However, the
representation in terms of the exponential integral allows to derive the asymptotic
behavior of Ein(x) for large x in a very easy way. Identifying corresponding terms in
eqs. (F.7) and (F.9), the following relation remains evident:

Ein(x) =−γ−Ei(x)− log(x). (F.10)
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Since the exponential integral Ei(x) vanishes to 0 very fast as x increases (see
Fig. F.1), it is clear that Ein(x) shows a similar behavior to minus the logarithm for
relatively high x; in fact, Fig. F.1 suggests that the approximation:

Ein(x)'−γ− log(x) (F.11)

holds for values of x above 2.

As a concluding remark, the development carried out in this Appendix allows to
give a closed–form solution for the integral of eq. (F.1) in terms of the non–singular
exponential integral:

F̃Φ
ν (q,ξ ,ν) ' −1

8π2q

∫ q

0

∆b exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
u

du

=
−1

8π2q

∫ q

0
∆b

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du

=
−1

8π2q
∆b

∫ q

0

exp
(
−4π2τu2D̃(q0,ξ ,ν)

)
−1

u
du

=
−1

16π2q
∆bEin

(
−4π

2
τq2D̃(q0,ξ ,ν)

)
, (F.12)

which is the final result given in eq. (7.24).
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single and multiple coil MR data based on statistical models. Magentic Resonance
Imaging, 2009. To appear.

[Aga09] I. Aganj, C. Lenglet, and G. Sapiro. ODF reconstruction in Q–Ball imaging with
solid angle consideration. In Proceedings of the 6th International Symposium on
Biomedical Imaging: from Nano to Macro, pp. –. IEEE, Jan. 2009. To be published.

[And02] J. Andersson and S. Skare. A model-based method for retrospective correction of
geometric distorsions in diffusion-weighted EPI. NeuroImage, 16:177–199, 2002.

[And05] A. Anderson. Measurement of fiber orientation distributions using High Angu-
lar Resolution Diffusion Imaging. Magnetic Resonance in Medicine, 54(5):1194–
1206, 2005.

[Bar08] A. Barmpoutis, B. Vemuri, D. Howland, and J. Forder. Extracting tractosemas
from a displacement probability field for tractography in DW–MRI. In Medical
Image Computing and Computer-Assisted Intervention, vol. 5241 of Lecture Notes
in Computer Science, pp. 9–16. Springer–Verlag, Sep. 2008.

[Bas94a] P. Basser, J. Mattiello, and D. Lebihan. MR diffusion tensor spectroscopy and
imaging. Biophysial Journal, 66(1):259–267, Jan. 1994.

[Bas94b] P. J. Basser, J. Mattiello, and D. L. Bihan. Estimation of the effective self-
diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance,
103(3):247–254, 1994.



190 BIBLIOGRAPHY

[Bas96] P. Basser and C. Pierpaoli. Microstructural and physiological features of tis-
sues elucidated by Quantitative–Diffusion–Tensor MRI. Journal of Magnetic Res-
onance, 111(3):209–219, Jun. 1996.

[Bas00a] P. Basser and S. Pajevic. Statistical artifacts in diffusion tensor MRI (DT–MRI)
caused by background noise. Magnetic Resonance in Medicine, 44:41–50, 2000.

[Bas00b] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractog-
raphy using DT–MRI data. Magnetic Resonance in Medicine, 44(4):625–632, Oct.
2000.

[Bas06] S. Basu, T. Fletcher, and R. Whitaker. Rician noise removal in diffusion tensor
MRI. In Medical Image Computing and Computer-Assisted Intervention, vol. 1 of
Lecture Notes in Computer Science, pp. 117–125. Springer–Verlag, 2006.

[Ber07a] Ø. Bergmann, G. Kindlmann, A. Lundervold, and C.-F. Westin. Diffusion k-tensor
estimation from Q–ball imaging using discretized principal axes. In Medical Im-
age Computing and Computer-Assisted Intervention, vol. 4191 of Lecture Notes in
Computer Science, pp. 268–275. Springer–Verlag, Oct. 2007.

[Ber07b] Ø. Bergmann, G. Kindlmann, S. Peled, and C.-F. Westin. Two–tensor fiber trac-
tography. In Proceedings of the 4th International Symposium on Biomedical Imag-
ing: from Nano to Macro, pp. 796–799. IEEE, Apr. 2007.

[Ber08] J. Berman, S. chung, P. Mukherjee, C. Hess, E. Han, and R. Henry. Proba-
bilistic streamline q–ball tractography using the residual bootstrap. NeuroImage,
39:215–222, 2008.

[Bla04] M. Blaimer, F. Breuer, M. Mueller, R. Heidemann, M. Griswold, and P. Jakob.
SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Mag-
netic Resonance Imaging, 15(4):223–236, Aug. 2004.

[Blo46] F. Bloch. Nuclear induction. Physical Review, 70:460–474, 1946.

[Blo08] L. Bloy and R. Verma. On computing the underlying fiber directions from the
diffusion orientation distribution function. In Medical Image Computing and
Computer-Assisted Intervention, vol. 5241 of Lecture Notes in Computer Science,
pp. 1–8. Springer–Verlag, Sep. 2008.

[Bro04] R. Brown, Y. Wang, P. Spincemaille, and R. Lee. On the noise correlation matrix
for multiple radio frequency coils. Magnetic Resonance in Medicine, 58:218–224,
2004.

[Bru93] M. Brummer, R. Mersereau, R. Eisner, and R. Lewine. Automatic detection
of brain contours in MRI data sets. IEEE Transactions on Medical Imaging,
12(2):153–166, 1993.

[Bua05] A. Buades, B. Coll, and J. Morel. A review of image denoising algorithms, with a
new one. Multiscale Modeling and Simulation, 4(2):490–530, 2005.

[Buc98] M. Buchsbaum, C. Tang, S. Peled, H. Gudbjartsson, D. Lu, E. H. J. Downhill,
M. Haznedar, J. Fallon, and S. Atlas. MRI white matter diffusion anisotropy and
PET metabolic rate in schizophrenia. Neuroreport, 9(3):425–430, 1998.

[Byd02] M. Bydder, D. Larkman, and J. Hajnal. Generalized SMASH imaging. Magnetic
Resonance in Medicine, 47:160–170, 2002.

[CA08] J. Cohen-Adad, M. Descoteaux, S. Rossignol, R. Hoge, R. Deriche, and H. Be-
nali. Detection of multiple pathways in the spinal cord using q–ball imaging.
NeuroImage, 42:739–749, 2008.

[Cal91] P. Callahan. Principles of Nuclear Magnetic Resonance Microscopy. Clarendon
Press, Oxford, 1991.

[Che02] C. Chefd’hotel, D. Tschumperle, R. Deriche, and O. Faugueras. Constrained
flows of matrix–valued functions: application to diffusion tensor regularization.
In Proceedings of the 7th European Conference on Computer Vision (ECCV), vol.
2350 of Lecture Notes in Computer Science, pp. 251–265. Springer–Verlag, 2002.

[Che05] B. Chen and E. Hsu. Noise removal in magnetic resonance diffusion tensor
imaging. Magnetic Resonance in Medicine, 54:393–407, 2005.

[Cla08] R. Clarke, P. Scifo, G. Rizzo, F. Dell’Acqua, G. Scotti, and F. Fazio. Noise cor-
rection on Rician distributed data for fibre orientation estimators. IEEE Trans-
actions on Medical Imaging, 27(9):1242–1251, Sep. 2008.



BIBLIOGRAPHY 191

[CM07] C. Castaño-Moraga, C. Lenglet, R. Deriche, and J. Ruiz-Alzola. A Riemannian
approach to anisotropic filtering of tensor fields. Signal Processing, 87(2):263–
276, 2007.

[Col98] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani, C. Holmes, and
A. Evans. Design and construction of a realistic digital brain phantom. IEEE
Transactions on Medical Imaging, 17(3):463–468, 1998.

[Con97] C. Constantinides, E. Atalar, and E. McVeigh. Signal-to-noise measurements in
magnitude images from NMR phased arrays. Magnetic Resonance in Medicine,
38:852–857, 1997.

[Cou04] O. Coulon, D. Alexander, and S. Arridge. Diffusion tensor magnetic resonance
image regularization. Medical Image Analysis, 8(1):47–67, 2004.
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[Iba05] L. Ibañez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kit-
ware, Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, sec-
ond ed., 2005.

[Jan03] K. Jansons and D. Alexander. Persistent Angular Structures: new insights from
diffusion magnetic resonance imaging data. Inverse Problems, 19:1031–1046,
2003.

[Ji07] J. Ji, B. Son, and S. Rane. PULSAR: a MatLab toolbox for parallel magnetic
resonance imaging using array coils and multiple channel receivers. Concepts in
Magnetic Resonance Part B: Magnetic Resonance Engineering, 1:24–36, 2007.
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