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Abstract

This paper proposes a fuzzy methodology to translate the natural language descriptions of the TW3 method for bone age as-

sessment into an automatic classifier. The classifier is built upon a modified version of a fuzzy ID3 decision tree. No large data

records are needed to train the classifier, i.e., to find out the classification rules, since the classifier is built upon rules given by the

TW3 method. Only small data records are needed to fine-tune the fuzzy sets used to implement the rulebase.
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1. Introduction

Bone age assessment is a frequently employed pro-

cedure in pediatric radiology, as many diseases and

syndromes affecting growth result in a significant dis-
crepancy between bone age and chronological age. A

quantitative assessment of skeletal maturity is also use-

ful for predicting adult height.

Two major methods are used for bone age assessment

in children: the Greulich-Pyle (GP) method [1] and the

Tanner-Whitehouse (TW3) method [2]. The former is an

atlas-driven method and is based on visually comparing

a non-dominant hand-wrist radiograph with a number
of atlas patterns. Bone age is assessed on the basis of the

pattern which most accurately resembles the clinical

image according to the physician�s perception. The TW3

method uses a detailed shape analysis of several bones of

interest, leading to their individual classification into

one of several stages. Scores are derived from each bone

stage and summed to compute the assessment.
* Corresponding author. Fax: +34-983-423-667.

E-mail addresses: sanaja@tel.uva.es (S. Aja-Fern�andez), rlui-

gar@neptuno.lpi.tel.uva.es (R. de Luis-Garc�ıa), migmar@tel.uva.es

(M.A. Mart�ın-Fern�andez), caralb@tel.uva.es (C. Alberola-L�opez).

1532-0464/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jbi.2004.01.002
The subjective nature of the GP method and the

considerable complexity of TW3 method, makes the

automation of bone age assessment a highly desirable

goal, in order to assist the radiologist in performing a

more objective, fast and accurate analysis without the
intrinsic variability of human activities [3]. Some pro-

posals have been described in the literature.

1.1. State of art

The first attempts made to achieve an automatic

method to support the radiologists� work have been re-

ported in the early 1980s. Pathak, Pal, and King posed
the problem as a classification problem and they devel-

oped some radiograph analysis procedures [4–7] and

proposed a syntactic fuzzy classifier for bone age as-

sessment [8,9], based on fuzzy grammars. The input to

this classifier is a set of primitives (as points, line seg-

ments, and curves) which have been previously extracted

from the hand radiograph and the output is the maturity

state of each bone. Although the classification is done
using the stages of the TW3 method (actually, the au-

thors use the former TW2 version), this proposal is not a

direct implementation of the method itself; the use of a

set of primitives based on boundaries—far away from

the language descriptions of the method—makes it a
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‘‘new skeletal assessment method’’. A high amount of
examples seems to be needed to train the method

properly. In addition, the use of primitives such as

‘‘point’’ or ‘‘segment’’ makes the method hard to un-

derstand by a radiologist, so it does not seem straight-

forward how to use the experience of the experts to

improve the accuracy of the classifier. Finally, the fixed

structure of the 3-stage hierarchical system proposed by

the authors seems a bit rigid. In particular, it is not clear
how the authors may deal with the existing overlap be-

tween features and output stages. Anyway, the philos-

ophy used to design the classifier is, from our point of

view, extremely interesting, but surprisingly, it has not

been taken into account—to our knowledge–by any

other author since then.

Pietka et al. [10] described a method based on an

independent analysis of the phalangeal [11] and the
carpal [12] regions of a radiograph. A fuzzy classifier is

then developed [10]; since both regions are analyzed

independently, two bone age assessments are obtained,

one for the carpal region and one for the phalangeal

one. The final decision must be made by a radiologist.

This fuzzy classifier is built using a great deal of heu-

ristics. In addition, some fuzzy operations are method-

ologically incorrect. In particular, a t-norm—a ‘‘min’’
operator [13]—is replaced by a summation which, as it is

well known [14–16], plays the role of a t-conorm in

standard additive fuzzy systems. We understand this

replacement obeys some heuristic rule, but it should not

be acceptable from an scholarly point of view. In [17] a

real implementation of this system is presented, with a

correct classification ratio of 75% for the phalangeal

region and 63% for the carpal one. However, when
compared with the TW3 method, this approach discards

a great amount of useful information, negatively af-

fecting the final result.

Recently, Pietka et al. [18–21] proposed a more re-

fined approach to perform skeletal age assessment, fo-

cusing on the phalanges. In a first stage, an epiphyseal/

metaphyseal region of interest is found for each bone

[18,19] making use of a priori knowledge about the
general structure of the hand. Next, for each region of

interest, two different cases are distinguished [20]: if the

epiphyses are separated from the metaphyses,the bone is

decided to be at an early stage of development; if the gap

between epiphysis and metaphysis has started to disap-

pear, the bone is assigned to a later stage of develop-

ment. In the first case, epiphysis and metaphysis are

segmented separately, and several distance-related fea-
tures are extracted. In the latter case, a wavelet de-

composition analysis is performed to evaluate the state

of epiphyseal fusion [21], also yielding several features.

To complete the bone age assessment, a fuzzy classifier

has been employed using the referred features [20]. This

new classifier now uses a methodologically correct max-

min operative, as opposed to their previous work. The
classifier seems to give skeletal ages associated with a
membership grade out of every bone, and then decisions

are aggregated to end up with a final unique solution in

a discrete age space. Although the authors use a classi-

fier for each bone, an idea to which we adhere, the

procedure to obtain the classifiers rules is not clearly

described, so we understand it is inferred from examples.

The overall system has been finally integrated into a

clinical PACS.
Efford proposed a direct automation of the former

TW2 method [22] by performing a shape analysis of

certain bones of interest. Most of the work is dedicated

to the design of a model-based segmentation of the

bones from radiographs, but a skeletal maturity assess-

ment method built upon this segmentation was never

actually implemented. So, this work cannot be consid-

ered as a complete bone age assessment method.
Other contributions in this field have used neural

networks with a backpropagation algorithm in the

training phase [23], and a neural architecture called

Generalized Softmax Perceptron which estimates pos-

terior probabilities at the output of the network [24] to

give a measure of confidence in the final decision.

1.2. A new approach

Technical solutions described so far have in common

that they first extract a set of features from the bones

and then a classifier is created according to these fea-

tures, following a classical learning scheme (Fig. 1). So,

the implementation of these classifiers is constrained by

the selected features.

To achieve a correct learning a great amount of data
are needed; however, in a real clinical setting, this

amount of data may not always be available for each of

the bone ages. In addition, a high accuracy is needed in

the age estimation process, a fact which may lead to too

high a number of outputs in the classifier, provided that

outputs are a set of discrete bone ages [24]. An alter-

native procedure is to have maturity stages for each

bone, as opposed to overall ages, as outputs of micro-

classifiers (Fig. 2). But to proceed this way is to im-

plicitly follow the same philosophy as the TW3 method,

but discarding the rules given by the method.

The TW3 method is a commonly accepted procedure

in which the guidelines to analyze each bone are de-

scribed using words (natural language descriptions),

sometimes in a vague way. In addition, one particular

bone may show features belonging to different stages or
a particular bone shape could be classifiable into two

possible predefined labels of the same feature. A flexible

classification method is needed to manage these sources

of ambiguity.

Fuzzy logic is known to be a very flexible tool in

classification problems where imprecise knowledge or

not-well-defined features have to be used. Some of the



Fig. 1. Bone age assessment automatic process.

1 Babies are seldom radiographically inspected, unless a bone

injury is suspected; however, parents of kids are frequently interested

in knowing the prediction of their children�s adult height, so they may

be willing to get a radiograph of their children to that end. This is the

common behavior we have found in our region.
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authors we have mentioned before [9,10] have been

aware of this. But, in addition, fuzzy logic is also a

natural selection when information has to be retrieved

from linguistic statements; such a methodology, as we

will show in the paper, is able to bring the TW3 method

‘‘as is’’ into a computer, using a Computing with words

(CWW) [25] paradigm. In addition, using the TW3

statements directly to build the computational classifier
allows us to benefit from the expertise of the authors of

the method. Hence, the lack of lots of training data is no

longer a problem since rules are known beforehand, so

only a few labeled radiographs are needed to fine tune

the rules and to test the classifier. To be specific, in our

case 57 radiographs from boys have been used to fine

tune the rulebase and 85 from girls to test it. This divi-

sion between boys for training and girls for testing is
arbitrary since there is no morphological difference in

bones in terms of gender in children, and the distinction

is only of importance for the prediction of adult height

(which is the final part of the method, located after the

classifier, as indicated in Fig. 2).

Two final remarks to conclude this section are man-

datory: first, this paper does not describe an end-to-end

system for bone age assessment, since the feature ex-
tractor needed to feed the classifier we will propose is

still under construction. What we describe is, as stated in

the previous paragraph, a CWW methodology to bring
human knowledge, expressed in natural language, into a

computational scheme. We have used as testbed the

TW3 method, under the premise that features used by

the method are available. Second, one might argue that

if both enough radiographs and the feature extractor

were available, an expert system properly trained with

these data should be able to perform better than a

classifier that directly implements the TW3 method. This
statement would probably be true. However, we depart

from a different starting point: enough radiographs are

hardly available for the whole range of possible ages,1 so

if a classification methodology has been designed (aimed

at experts in the field) using many radiographs, it is

sensible to bring it into a computer. This method is the

TW3, which even though it might not be entirely satis-

factory for the whole medical community (for instance,
for supporters of the GP method) it is however very

frequently used in pediatric radiology; consequently, we

have taken it as ground truth for our research, and we

have filled in gaps of the method with the help of experts

in the field.



Fig. 2. Global classifier done by one micro-classifier for each bone.
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2. Definition of computational features for TW3

The TW3 methodology for bone age assessment

consists of a set of rules, expressed in natural language,

to describe the prototypical characteristics of the bones

of a hand radiograph as they evolve in time. In order for

the explanation to be clearer, a graphical sketch (similar

to that shown in Fig. 3) with several maturity

patterns accompanies the explanation in the original

method [2].
Due to the vagueness of the explanations, classical

approaches have resorted—as stated in Section 1—to

learning paradigms in which rules are inferred from

data. However, our understanding is that the natural

solution is to use the method itself, i.e., to build one

classifier for each bone, with 9 outputs (the possible

classification stages for each bone—A,B,. . .,I—), except

for the ulna, which only has 8 stages. Each classifier will
be fed with a computational approximation to the input

features requested by the method, which, as previously

stated, are expressed in natural language.

Two possible analysis schemes are defined for the

TW3 method. The first one, named RUS, uses 13 bones

(the phalanges, radius, and ulna). The other one, uses 20

bones (the 13 bones previously defined and the 7 bones

of the carpal region). We have chosen to build a method
based on the 13 RUS bones, because the carpal region is

not valid after a certain age.

In what follows we will propose a CWW approach to

the problem described. We will only describe the process

for the radius, since the process for the rest of the bones

is quite similar.
Fig. 3. TW3 stages f
2.1. Feature definition for the radius

Maturity stage for each bone in TW3 is calculated

from linguistic statements. For the case of the radius the

following two example statements (literally extracted

from [2]) give an idea about the sentences given by the

method (Fig. 3).

Stage D. The maximum diameter is half or more

the width of the metaphysis. The epiphysis has
broadened chiefly at its lateral side, so that this por-

tion is thicker and more rounded, the medial portion

more tapering. The center third of the proximal sur-

face is flat and slightly thickened and the gap between

it and the radial metaphysis has narrowed to about a

millimeter.

Stage G. The dorsal surface now has distinct lunate

and scaphoid articular edges joined at a small hump.
The medial border of the epiphysis has developed pal-

mar and dorsal surfaces for articulation with the ulnar

epiphysis; either the palmar or the dorsal surface may be

the one that projects medially, depending on the posi-

tion of the wrist. The proximal border of the epiphysis is

now slightly concave.

Overall, six features can be defined that capture all

the text information, so they are sufficient to define each
possible state.

Presence. Epiphysis is absent or present. If it is

absent, the output stage is A. If it is present but is

small and hardly visible, the output stage is B. If it is

present and well-visible, the output stages are from

C to I.

Separation. Relative position of epiphysis and me-

taphysis: separated (stages B, C, D, E, F, and G), cap-
ping (stage H), or fusion has begun (stage I).

Shape of epiphysis I. Oval (stage C) or sharp (stages

D–I).

Diameters. Ratio between diameters of metaphysis

and epiphysis.

Shape II. A ‘‘sharp’’ epiphysis can have a regular

outline (stages D and E), can be adapted to the me-

taphysis shape (stage F), or can have the articulations
form (stages G, H, and I).

Surfaces. Representation of inner surfaces. They can

be absent (stages B, C, and D) or present as a white line

(stage E), two white lines (stage F) or a c-shaped surface

(stages G, H, and I).
or the radius.
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The feature values for each stage are shown in the
next table:
Stage
Stag

A

B

C

D

E

F

G

H

I

Presence
e Epiphy

Absent

Small

Separat

Separat

Separat

Separat

Separat

Cappin

Fusion
Separ.
sis Dia

1
� 2

ed > 2

ed 6 2

ed < 2

ed < 2

ed � 1

g � 1

� 1
Shape I D
meters
iam. S
Shape

(oval)

(oval)

oval

regular

regular

adapted

articula

articula

articula
hape II
sharp

sharp

sharp

tion-sharp

tion-sharp

tion-sharp
Surf.
A
 No
B
 Small
 (Yes)
 (oval) >
 2
 (no)
C
 Yes
 Yes
 oval >
 2
 no
D
 Yes
 Yes
 sharp
 6 2 r
egular
 no
E
 Yes
 Yes
 sharp
 6 2 r
egular
 1 line
F
 Yes
 Yes
 sharp
 6 2 a
dapted
 2 lines
G
 Yes
 Yes
 sharp
 6 2 a
rticulation
 c-shape
H
 Yes
 capping
 sharp
 6 2 a
rticulation
 c-shape
I
 Yes f
usion
 sharp
 6 2 a
rticulation
 c-shape
However, these features are not independent. As a

matter of fact, some of the features are self-excluding:

Shape II only takes on values when Shape I is sharp

and Separation is only defined for a present epiphysis.

Consequently, these features can be merged, a fact

which contributes to simplify the classifier. After the

fusion process, the resulting feature set is:
Epiphysis. Absent or small and, otherwise, what

matters is its relative position with respect to the me-

taphysis (separated, capping, fusion).

Shape. Outline shape of the epiphysis (oval, regular-

sharp, adapted-sharp, articulated-sharp).

Diameters. Ratio between metaphysis and epiphysis

diameters.

Surfaces. Inner surfaces (absent, 1-line, 2-lines, c-
shape).

The new features values for each stage are now:
Surfaces

(absent)

(absent)

absent

absent

1 line

2 lines

c-shape

c-shape

c-shape

2 A fuzzy set must be defined on a numerical base variable, and

each value of the variable receives a membership degree; for instance,

the words young and old have a clear association to a natural number,

the meaning of which is age. However, cases can be found in which

such an association is very artificial, and it is done only for operative,

not conceptual, reasons. This would be the case, for instance, for

vehicle distinction, say, for a car and a van [15]. Fuzzy granules [26],

however, avoid this cumbersome need.
The same feature definition process has been done for

the other bones (see appendix A).

2.2. Feature Fuzzy modeling

In order to build an automatic classifier, the previous

features must be modeled more formally to make them

suitable for computer processing.

Some studies show that a discrepancy may exist be-

tween the results of different radiologists classifications,

or even between the results of the classifications done by

the same radiologist in different moments [3]. The reason
for it is that some stages are easily mistaken with the

nearby stages, and sometimes there are bones that show

features belonging to different stages. So, features are
not strictly well-defined. Instead, they have a certain
degree of overlap between them. In practice, there is not

a clear bound between a sharp epiphysis and an oval one;

as it evolves in time the transition between shapes is not

a step, but a gradual process.

The intrinsic nature of the process and the features

themselves have led us to model them by means of lin-

guistic variables [13] (the values ofwhich arewords instead

of numbers). They are characterized by several linguistic
terms that can be modeled by fuzzy sets. In a traditional

way, these sets are defined over a base variable [13] but

they can also be described using the degree of overlap

between the different terms [26]. In our approach there are

features for which a base variable is clearly associated.

This is the case for the diameters ratio. But, on the other

hand, for features such asEpiphysisorSurfaces a uniquely

defined physical meaning does not exist so as to associate
it a base variable;2 consequently they will be modeled

using fuzzy granules [26].

Four linguistic variables are created, one for each of

the features described in Section 2.1.

Epiphysis. Linguistic variable defined by 5 fuzzy

granules named Absent, Small, Separated, Capping, and

Fusion. The degree of overlap between them has been

estimated studying some discrepancies between obser-
vation of different radiologists over the same radio-

graphs and the discrepancies between the observations

of one radiologist over the same set of radiographs in

different instants of time. The variable is shown in

Fig. 4A.

Shape. Linguistic variable defined by 4 fuzzy granules

named Oval, Sharp I, Sharp II, and Sharp III (Fig. 4B).

Surfaces. Linguistic variable defined by 4 fuzzy gran-
ules named Absent, 1-line, 2-lines. and c-shape (Fig. 4C).

Diameters. The ratio between the diameters of

the metaphysis (D) and the epiphysis (d), i.e., R ¼
ðDmetaphysis=depiphysisÞ. Though the input is crisp the

classification process will be fuzzy, so 4 fuzzy sets are

defined: ‘‘Greater than 2,’’ ‘‘about 2,’’ ‘‘about 1,’’ and

‘‘less than 1,’’ as shown in Fig. 4D.
3. TW3 classifier

We have observed that the previously defined features

may be mutually exclusive: if the epiphysis is absent, the

other features cannot take on any value; if the epiphysis

is capping the metaphysis it will be very rare for the



Fig. 4. Linguistic Variables: (A) Epiphysis, (B) shape, (C) surface, (D) diameters.
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shape to be oval. This fact has led us to choose a tree-

classifier, specifically, a fuzzy decision tree, in order to

manage the linguistic variables defined.

As we will be working with discrete domains for the

features, an ID3 algorithm is chosen [27]. Following

the TW3 method, a different tree will be built for each of
the 13 bones defined for the RUSmethod. Each bone will

be finally classified into one stage (A,B,. . .,I). This

scheme will make the classifier suitable for boys and girls.

3.1. Fuzzy decision trees. Fuzzy ID3

ID3 is a classification method based on trees which

assumes low-cardinality discrete domains. It requires an
a priori partition of the different domains. Umano et al.

[27] introduced the fuzzy version of this algorithm.

Fuzzy ID3 is an extension of ID3 to be applied over an

input fuzzy data set and generates a fuzzy decision tree

using the fuzzy sets defined a priori by the user for every

attribute. The ID3 algorithm generates a minimum-size

decision tree out of a number of classification parame-

ters by choosing the optimum ordering—in terms of
maximum information gain—of these parameters along

the tree.

A fuzzy decision tree consists of nodes for testing

attributes, edges for branching by values of symbols and

leaves for deciding class names. To generate the tree, a

training data set is needed. The output of the tree will

not just be one class, but the membership grade asso-

ciated to every class. This algorithm will be slightly
modified to accept fuzzy granules as input data.

3.2. Training sets

The number of labeled radiographs needed to train a

decision tree or any other classifier is very high, and

these radiographs must cover all the possible states of
each bone. This is equivalent to implementing a new

bone age assessment method from scratch. As it has

been mentioned in Section 1, an alternative way is to

make use of the experience accumulated in the TW3

method (which was created upon 3000 boy and 3000 girl

hand radiographs); ignoring the rules derived from the
radiologists that had all that information is not advis-

able, as common sense dictates.

The training set will consist of all the information

that will be used to give actual values to the fuzzy sets

involved in the fuzzy decision tree. This information is

the following:

1. First, 9 prototypes are directly extracted from the

method; they constitute the ‘‘canonical’’ cases since
they reflect the expected feature layout for the 9 pos-

sible stages for each bone. These data produced rule

consequents (i.e., stages) with membership values

equal to 1.

2. Afterwards, several ‘‘non-canonical’’ cases are stud-

ied. A template was constructed with all the combina-

tions of all the features involved (all the words in the

linguistic variables shown in Fig. 4). Then, the tem-
plates were given to expert radiologists, and they were

kindly asked to assign a stage and a membership

grade (between 0 and 1) to each of these combina-

tions, according to their degree of confidence on the

stage given to that particular combination of features.

Table 1 shows the radiologists assessments for the ra-

dius (membership values are the average of the values

given by different experts).
3. The labeled data available are used a posteriori to

fine tune the classification tree. Specifically, 57 radio-

graphs were used to modify the membership values of

some possible output classes in the nodes of the tree

[27] to maximize classification performance.

Notice that no rule is inferred from data nor cases are

generated from rules. Rules are known beforehand and



Table 1

Training data set for the radius

Stage Membership Epiphysis Shape Surface Diameters

A 1 1 1 1 10

B 1 2 1 1 5

B 1 2 1 1 3

C 1 3 1 1 2.5

C 0.8 3 1 1 2

D 0.2 3 1 2 2.5

C 0.2 3 1 2 1.9

C 0.5 3 2 1 2.5

C 0.5 3 2 1 2.2

D 0.9 3 2 1 2

D 1 3 2 1 1.9

E 0.9 3 2 2 2
..
. ..

. ..
. ..

. ..
. ..

.

I 1 5 4 4 0.8
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we assume they are widely accepted; cases not explicitly

addressed by the method have been found by creating an

exhaustive table with all the feature combinations. These

cases have been rated by experts. Consequently, data

here are only used to fine tune these rules.

3.3. Fuzzy trees for TW3: construction and test

The fuzzy decision tree for each bone can be easily

built using as training set the templates provided by the

experts. Fig. 5 shows the decision tree generated for the

radius. For simplicity, only the stage with maximum

membership grade has been shown in each leaf (but
Fig. 5. Decision tre
actually the 9 possible output stages are there, each one
with a different membership value).

Following the scheme of Fig. 1, the inputs to each

tree will be the features of its corresponding bone, and

the output will be its skeletal stage. The stages will be

numerically weighed following the TW3 method (a dif-

ferent weight is applied for boys and girls, see Fig. 2).

The weighed summation is mapped onto the bone age,

as described by the method. Our classification procedure
therefore has the same age resolution as the original

method.

After the decision trees have been built and fine-tuned

then 85 diagnosed radiographs from girls have been used

to test them. The ulna results, for example, showed that

83 out of 85 radiographs were correctly classified (97.6%).

For the proximal phalange I, 81 out of 85 were correctly

classified (95.3%). In every case, the classification error
was to assign a consecutive stage to the right one.
4. Conclusions and future work

In this paper we have proposed a CWW approach to

get a computerized version of the commonly accepted

TW3 method for bone age assessment. One of the ad-
vantages of the method is the small amount of data

needed to fine tune the rulebase used by the classifier.

Results have shown that the method�s performance is

fairly high; in any case, this performance is expected to

increase when a systematic rule fine-tune method is
e for radius.
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implemented—the one used in the paper is based on
manual adjustment to maximize performance. In addi-

tion, the fuzzy sets used as input features could also be

fined-tuned; fuzzy granules are particularly appropriate

to that end, since only one parameter, namely, the

overlap degree between fuzzy sets, has to be modified.

The paper has focused on the classifier itself, taking

for granted that actual features can be extracted from

the radiographs; therefore the methodology described in
the paper does not constitute an end–to–end classifica-

tion system. As for the feature extractor, it should not be

an issue as soon as a complete and precise bone seg-

mentation is achieved; we have preliminary results of

this [24,28,29]. Alternatively, a classical learning scheme

may be defined to get linguistic labels out of the image

data. If this were carried out it is undoubtable that a

smaller number of examples would be needed to learn
features than those needed to infer rules from examples.
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Appendix A. Features of each bone for the RUS skeletal

maturity method

We present the different selected features used to

classify every bone.

(1) Radius
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5).
• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).

• Shape. Oval shape (1), regular sharp (2), regular

sharp with proximal border adapted to metaphy-

sis (3), sharp adapted to articulation with concave

proximal border (4).

• Surfaces. Absent (1), 1 white line (2), 2 white lines

(3), c-shape surface (4).

(2) Ulna
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5).

• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).
• Shape. Oval shape (1), elongated (2), styloid pro-
cess visible (3), head of the ulna defined (4).
(3) First metacarpal
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5), fusion is completed (6).

• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).

• Shape. Oval shape (1), concavity in the proximal
border (2), saddle shape (3).

• Surfaces. Absent (1), proximal surface (2).
(4) Metacarpals III and V
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5), fusion is completed (6).

• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).
• Shape. Oval shape (1), fingernail shape (2).

• Surfaces. Absent (1), palmar and dorsal surfaces

(2).
(5) Proximal phalanx of the thumb
• Epiphysis: Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5), fusion is completed (6).

• Diameters: Ratio between metaphysis diameter
(D) and epiphysis diameter (d).

• Shape: Oval shape (1), concave proximal border

(2), epiphysis follows metaphysis shape (3).
(6) Proximal phalanges III and V
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5), fusion is completed (6).

• Diameters. Ratio between metaphysis diameter
(D) and epiphysis diameter (d).

• Shape. Oval shape (1), concave proximal border

(2), epiphysis follows metaphysis shape (3).
(7) Middle phalanges III and V
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis

(4), fusion has begun (5), fusion is completed (6).

• Diameters. Ratio between metaphysis diameter
(D) and epiphysis diameter (d).

• Shape. Oval shape (1), triangular shape (2).

• Surfaces. Absent (1), proximal surface (2).
(8) Distal phalanx of the thumb
• Epiphysis. Absent (1), present and small (2),

present and separated (3), epiphysis caps me-

taphysis (4), fusion has begun (5), fusion is

completed (6).
• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).

• Shape. Oval shape (1), triangular shape (2), sad-

dle shape (3).
(9) Distal phalanges III and V
• Epiphysis. Absent (1), present and small (2), pres-

ent and separated (3), epiphysis caps metaphysis
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(4), fusion has begun (5), fusion is completed (6).
• Diameters. Ratio between metaphysis diameter

(D) and epiphysis diameter (d).

• Shape. Oval shape (1), triangular shape (2).

• Surfaces. Absent (1), palmar and dorsal surfaces

(2).
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