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Abstract

Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR)
data. Not only visual inspection but also processing techniques such as segmentation, registration or
tensor estimation in diffusion tensor MRI (DT-MRI) will be affected or biased due to the presence of
noise. In High Angular Resolution Diffusion Imaging (HARDI) for instance, to achieve a speedup in the
acquisition time the temporal averaging is reduced; as a consequence, the strength of the noise is increased
proportionally to the square root of the speedup. Noise in the k-space in MR data is usually assumed
to be a zero-mean uncorrelated complex Gaussian process in each scanner coil, with equal variance in
both the real and imaginary parts. As a result, sometimes it is easy to derive the distributiuon of the
magnitude data (as in single coil systems) and other not-so easy, as in multiple coil parallel reconstruction.

Many filtering methods have been proposed either to remove the noise or to estimate the signal out of
the noise. Different approaches may be found in the literature: (1) general filtering methods (anisotropic
diffusion filtering, total variation methods) and (2) methods based on the statistical properties of the
signal and noise (LMMSE, ML...). The talk will concentrate on discussing the nature of noise and means
to address the challenges associated with it.

1 MRI Noise models

Noise in the k-space in Magnetic Resonance (MR) data from each coil is assumed to be a zero-mean uncor-
related Gaussian process with equal variance in both the real and imaginary parts. As a result, in single coil
systems magnitude data in the spatial domain is modeled using a Rician distribution Drumheller (1993);
Gudbjartsson and Patz (1995). In the same way, the composite signal in coils systems with multiple channels
may be modeled as non–central Chi distributed Constantinides et al. (1997) if no subsampling of the k-space
is assumed. The acquisition rate can be increased with parallel MRI (pMRI) techniques via subsampled
acquisitions of the k-space data. In these cases, reconstruction methods have to be used in order to sup-
press the aliasing and underlying artifacts created by the subsampling. Dominant among these are SENSE
Pruessmann et al. (1999) and GRAPPA Griswold et al. (2002), reviews of which can be found in Hoge et al.
(2005); Larkman and Nunes (2007). From a statistical point of view, such a reconstruction will affect the
stationarity of the noise in the reconstructed data, i.e. the spatial distribution of the noise across the image
Thünberg and Zetterberg (2007). As a result, the variance of noise may vary for different image locations.
Moreover it may also vary from one coil to another. However, under the assumption of a nearly homogeneous
variance Dietrich et al. (2008), the data may be considered to follow a general non–central Chi distribution
Aja-Fernández et al. (2010); Aja-Fernández et al. (2010a). This distribution reduces to a Rician if SENSE
is used.
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Main references

• Rician distribution: Drumheller (1993), Gudbjartsson and Patz (1995), Macovski (1996)

• Multiple-coil imaging models: Harpen (1992), Constantinides et al. (1997)

• Parallel imaging: Thünberg and Zetterberg (2007), Dietrich et al. (2008) (SENSE and GRAPPA,
simulated), Aja-Fernández et al. (2010), Aja-Fernández et al. (2010a)

• Other studies: Aja-Fernández et al. (2010b).

2 Noise estimation

Noise in MR data, either from multiple or single coil acquisitions, is known to affect the visual quality of
the MR images and different processing techniques, such as segmentation, registration or tensor estimation
in Diffusion Tensor MRI (DT-MRI) Aja-Fernández et al. (2008b). Accordingly, the estimated noise power
gives a measure of the quality of the data. This estimation can be used to measure the Signal-to-Noise
Ratio (SNR) and as an input parameter in MR processing algorithms. Many filtering methods to improve
SNR in MRI need an estimated value for σ2

n: as the conventional approach McGibney and Smith (1993),
maximum likelihood based methods Jiang and Yang (2003); Sijbers et al. (1998a,c), expectation maximization
formulations with Rician noise assumptions DeVore et al. (2000), Linear Minimum Mean Square Error
(LMMSE) based schemes Aja-Fernández et al. (2007, 2008a,b); Tristán-Vega and Aja-Fernández (2008) and
unbiased non-local mean schemes Aja-Fernández and Krissian (2008); Coupé et al. (2008); Wiest-Daesslé
et al. (2008). New techniques for DTI tensor estimation Fillard et al. (2007); Landman et al. (2007),
segmentation methods based on the Rician distribution and fiber orientation estimators Clarke et al. (2008)
also depend upon an estimated σ2

n value.
Noise estimation in MR is usually done over the (composite) magnitude image, since it is the usual output

of the scanning process. However, if data in the complex spatial domain are available, the estimation may
be easier done in that domain. Noise estimation is carried out assuming that the noise is uncorrelated and
with identical variance in each pixel and it will be reduced to the estimation of the variance in a well-known
Gaussian problem over one of the components.

If no complex data are available, noise estimation is carried out over the composite magnitude image,
assuming again that the noise is uncorrelated and with identical variance in each pixel. Methods performing
such estimation from magnitude data may roughly be divided into two groups: (i) approaches estimating the
noise variance using a single magnitude image and (ii) approaches using multiple images. In this paper we
will focus on the former. Noise estimation using a single image is usually based on background intensities,
where the true signal amplitude should vanish and the Rayleigh or central Chi assumptions hold. Some of
these techniques require a previous background segmentation. See overview in Table 2. Notation in Table 1.

Main references

• Gaussian noise estimation: Aja-Fernández et al. (2009b), Salmeri et al. (2001), Donoho and Johnstone
(1994), Starck and Murtagh (1998)

• Rician noise estimation: Nowak (1999); Sijbers et al. (1998a,b,c) (background based) Aja-Fernández
et al. (2009a); Brummer et al. (1993); Chang et al. (2005); Sijbers et al. (2006, 2007) (maximization
of argument), Aja-Fernández et al. (2008a, 2009a); Sijbers et al. (2006) (mode based).

• Non-central χ: Aja-Fernández et al. (2009a); Constantinides et al. (1997); Dietrich et al. (2008); Koay
and Basser (2006)
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E{X} Expectation of random variable X
σ2
X Variance of random variable X
〈M(x)〉 (Global) Sample mean of image M(x)

〈M(x)〉 = 1
|Ω|

∑
x∈Ω

M(x)

〈M(x)〉x Local sample local mean of image M(x)
〈M(x)〉x = 1

|η(x)|
∑

p∈η(x)

M(p)

(η(x) a neighborhood centered in x)
Var(M(x))x Sample local variance of M(x)

Var(M(x))x = 〈M2(x)〉x − 〈M(x)〉2x
M(xB) Background area of image M(x)

xB = x|A(x) = 0
M(xR) M(x) in the region R

xR ∈ R
mode{I(x)} Mode of the distribution of I(x)

mode{I(x)} = arg maxx{pI(x)}
â Estimator of parameter a

Table 1: Notation

3 Filtering and signal estimation

Since the amount of data to acquire in DTI studies is usually large, there is a tradeoff between acquisition time
and quality that leads to a poorer Signal to Noise Ratio (SNR) associated to the Diffusion Weighted Images
(DWI) used to infer fiber orientations when compared to conventional Magnetic Resonance Imaging (MRI).
This is especially the case with modern High Angular Resolution Diffusion Imaging (HARDI) techniques,
where very strong gradients have to be applied in order to improve the angular contrast. This produces a
strong attenuation which worsens the SNR. Moreover, the Rician nature of the noise in DWI prevents the
use of conventional Gaussian-based filtering techniques.

Main references

• Anisotropic Diffusion Schemes: Gerig et al. (1992); Krissian and Aja-Fernández (2009); Perona and
Malik (1990); Weickert et al. (1998)

• Rician Based: McGibney and Smith (1993) (Conventional approach), Basu et al. (2006); Koay and
Basser (2006),

• Bayesian Framework: Marzetta (1995) (Expectation Maximization, EM, estimation of Rician sig-
nal)Sijbers et al. (1998a); Sijbers and den Dekker (2004); Sijbers et al. (1998c) (maximum likelihood,
ML, signal estimation), Aja-Fernández et al. (2007, 2008a,b); Martin-Fernandez et al. (2007); Tristán-
Vega and Aja-Fernández (2008) (Linear Minimum Mean Squared Error, LMMSE, signal estimation),
Tristán-Vega and Aja-Fernández (2008, 2010) (LMMSE and NLM taking into account information of
all DWIs).

• Nonlocal statistics: Buades et al. (2005); Coupé et al. (2008) (Nonlocal mean), Descotaux et al. (2008);
Xu et al. (2008) (bias in NLM) Aja-Fernández and Krissian (2008); Manjón et al. (2008); Wiest-Daesslé
et al. (2008) (NLM with Rician correction).

• Other methods: Awate and Whitaker (2005) (Nonparametric Neighborhood Statistics), Jiang and
Yang (2003), Nowak (1999); Pižurica et al. (2003) (Wavelets), Ahn et al. (1999); McGraw et al. (2004)
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Assump. Method Refs.

1 Rayleigh σ̂2
n = 1

2
〈M2(xB)〉 Sijbers et al. (1998b)

Rayleigh σ̂n =
√

2
π
〈M(xB)〉 Sijbers et al. (1998b)

2-a Rayleigh σ̂n = mode{M(x)} Brummer et al. (1993); Sijbers
et al. (2006)

Rayleigh σ̂2
n = 1

2
mode{〈M2(x)〉x} Aja-Fernández et al. (2008a)

Rayleigh σ̂n =
√

N
2N−1

mode
{√
〈M2(x)〉x

}
Aja-Fernández et al. (2009a)

Rayleigh σ̂n =
√

2
π

mode{〈M(x)〉x} Aja-Fernández et al. (2008a)

Rayleigh σ̂2
n = 2

4−πmode{Var(M(x))x} Aja-Fernández et al. (2008a)

2-b Rayleigh σ̂n = arg min
σ,K

lc∑
l=l0

(
hM (l)−K l

σ2 e
− l2

2σ2

)2

Brummer et al. (1993)

Rayleigh σ̂n = arg max
σ

1
nh

n∑
i=0

1√
2π
e
− 1

2

(
σ−xi
h

)2

Chang et al. (2005)

Rayleigh σ̂n = arg min
σ,K

lc∑
l=l0

(
h<M2>(l)−K lN−1NN

(2σ2)NΓ(N)
e
− lN

2σ2

)2

Aja-Fernández et al. (2009a)

Rayleigh σ̂n = arg min
σ,K

lc∑
l=l0

(
h<M>(l)−K l2N−1NN

2N−1bNΓ(N)
e−

l2N
2b

)2

Aja-Fernández et al. (2009a)

Rayleigh σ̂n = arg min
σ,K

lc∑
l=l0

(
h√

<M2>
(l)−K l2N−1NN

2N−1σ2NΓ(N)
e
− l

2N
2σ2

)2

Aja-Fernández et al. (2009a)

2-c Rayleigh σ̂n = arg min
σ

[
Nk log

(
e
−

l20
2σ2 − e−

l2k
2σ2

)
Sijbers et al. (2007)

−
k∑
i=1

ni log

(
e
−
l2i−1

2σ2 − e−
l2i

2σ2

)]
Rayleigh σ̂n = arg min

σ

[
Nk log

(
Γ
(
N + 1, l0

N
2σ2

)
− Γ

(
N + 1, lk

N
2σ2

))
Aja-Fernández et al. (2009a)

−
k∑
i=1

ni log
(
Γ
(
N + 1, li−1

N
2σ2

)
− Γ

(
N + 1, li

N
2σ2

))]
Rayleigh σ̂n = arg min

σ

[
Nk log

(
Γ
(
N,

l20N

2σ2

)
− Γ

(
N,

l2kN

2σ2

))
Aja-Fernández et al. (2009a)

−
k∑
i=1

ni log

(
Γ

(
N,

l2i−1N

2σ2

)
− Γ

(
N,

l2iN

2σ2

))]
3 Rician σ̂2

n = mode{Var(M(x))x} Aja-Fernández et al. (2008a)

4 central χ σ̂2
nL = 1

2
〈M2

L(xB)〉 Constantinides et al. (1997)

central χ σ̂nL = 1√
2
〈ML(xB)〉

√
LΓ(L)

Γ(L+ 1
2 )

Dietrich et al. (2008)

5-a central χ σ̂n = 1√
2L−1

mode{ML(x)} Aja-Fernández et al. (2009a)

central χ σ̂2
nL = 1

2
mode{〈M2

L(x)〉x} Aja-Fernández et al. (2009a)

central χ σ̂nL = 1√
2
mode{〈ML(x)〉x}

√
LΓ(L)

Γ(L+ 1
2 )

Aja-Fernández et al. (2009a)

central χ σ̂2
n =

(
2L− 2Γ2(L+ 1

2 )
Γ2(L)

)−1

mode{Var(ML(x))x} Aja-Fernández et al. (2009a)

5-b central χ σ̂n = arg min
σ,K

mc∑
m=m0

(
hM (m)−K 21−L

Γ(L)
m2L−1

σ2L e
− m2

2σ2

)2

Aja-Fernández et al. (2009a)

central χ σ̂n = arg min
σ,K

mc∑
m=m0

(
h<M2

L
>(l)−K mNL−1NNL

(2σ2)NLΓ(NL)
e
−mN

2σ2

)2

Aja-Fernández et al. (2009a)

5-c central χ σ̂n = arg min
σ

[
Nk log

(
Γ
(
L,

m2
0

2σ2

)
− Γ

(
L,

m2
c

2σ2

))
Aja-Fernández et al. (2009a)

−
K∑
i=1

ni log

(
Γ

(
L,

m2
i−1

2σ2

)
− Γ

(
L,

m2
i

2σ2

))]
central χ σ̂n = arg min

σ

[
Nk log

(
Γ
(
NL,m0

N
2σ2

)
− Γ

(
NL,mk

N
2σ2

))
Aja-Fernández et al. (2009a)

−
K∑
i=1

ni log
(
Γ
(
NL,mi−1

N
2σ2

)
− Γ

(
NL,mi

N
2σ2

))]
6 non-central χ σ̂2

n = mode{Var(Ml(x))x} Aja-Fernández et al. (2009a)

7 Gaussian σ̂2
n = mode{Var(Clj (x))x} Aja-Fernández et al. (2009b)

Table 2: Survey of noise estimators for single and multiple coil MR data. Note that estimators in boxes 1
and 4 require background segmentation. From Aja-Fernández et al. (2009a)
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• Phantom for DWI filtering: Tristán-Vega and Aja-Fernández (2009, 2010)

4 Noise and tensor estimation

Despite the known weakness of the single tensor approach in certain cases, as fiber crossing or kissing, Diffu-
sion Tensor Imaging (DTI) is still widely used, mainly due to its simplicity and straight visual interpretation.
Least Squares (LS) techniques have become the de facto standard to estimate the Diffusion Tensor (DT) in
DTI Salvador et al. (2005); Tristán-Vega et al. (2009). Although other approaches are possible, LS are fast
and robust, and they show optimal properties when Weighted Least Squares (WLS) is used. Recent studies
show that when single coil acquisition is considered, the estimation is nearly unbiased, so WLS is in this
case the Best Linear Unbiased Estimator (BLUE) Salvador et al. (2005). When multiple receiver coils for
simultaneous acquisition are considered, the bias may be an important source of error; the larger the number
of receiving coils the more critical. As stated in Tristán-Vega et al. (2009), the variance in the estimation
may be reduced by increasing the number of gradient directions, but the error bias remains. Results in
Salvador et al. (2005); Tristán-Vega et al. (2009) provide a theoretical framework to properly estimate the
DT from single- and multiple-coil systems.

Main references

• Salvador et al. (2005) (WLS assuming Rician distribution), Landman et al. (2007) (ML assuming Rician
distribution), Tristán-Vega et al. (2009) (bias of WLS estimation for nc-χ distribution), Aja-Fernández
et al. (2010) (simulations for parallel imaging).

5 Image quality assessment methods

Full-reference methods for quality assessment are those in which a signal is compared to a ground truth image,
i.e. a golden standard. Within these methods, the most frequently used are those error based methods, as
the Mean Squared Error (MSE) Eskicioglu and Fisher (1995); Tang and Cahill (1992). The limitations of
such methods have been widely reported in the literature (see Girod (1993) for example). Consequently,
some additional variations of the MSE have also been used in order to better deal with the features of the
Human Visual System Eskicioglu and Fisher (1995); Tang and Cahill (1992). In Miyahara et al. (1998) a
new index is proposed, namely, the objective Picture Quality Scale (PQS), basically intended to measure
the degradation in coding and compression of images. It takes into account properties of visual perception
of both global features and of disturbances. It turns out to be bounded, being the maximum value 5.797,
obtained when an image is compared with itself. Experiments show that although it is a good measure when
dealing with compression, it is not so good a measure for other sources of degradation Sheikh et al. (2006).
Recently, some methods based on Natural Scene Statistics have been reported Sheikh and Bovik (2006);
Sheikh et al. (2005).

In Wang et al. (2004) Wang et al. proposed a full-reference quality assessment method based on the
structural similarity of two images, the so-called Structural Similarity (SSIM) index. The method is a
modification of their Quality Index, originally proposed in Wang and Bovik (2002). As of today, this method
has proved to be versatile and robust in many different environments Sheikh et al. (2006). In Aja-Fernández
et al. (2006) a new method based on the structural information of the image and, specifically, on the statistics
of the sample local variance; it is intended to penalize degradations in which the structural content is filtered
out by accounting for the non-stationary content in the image. Additionally, it intends not to over-penalize
noise as long as noise content does not obscure structure.

Main references

• Phantoms: Collins et al. (1998) (BrainWeb) and Tristán-Vega and Aja-Fernández (2009, 2010) (DWI
phantom).
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• Full-reference methods: Wang et al. (2004) (SSIM), Aja-Fernández et al. (2006) (QILV), Eskicioglu
and Fisher (1995); Tang and Cahill (1992) (MSE).
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Descotaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R., 2008. Ipmact of Rician adapted Non–
Local Means filtering on HARDI. In: Medical Image Computing and Computer-Assisted Intervention. Vol.
5242 of Lecure Notes in Computer Science. Springer–Verlag, pp. 122–130.

DeVore, M. D., Lanterman, A. D., O’Sullivan, J. A., Apr. 2000. ATR performance of a Rician model for
SAR images. In: Proc. of SPIE 2000. Orlando, pp. 34–37.

Dietrich, O., Raya, J., Reeder, S. B., Ingrisch, M., Reiser, M., Schoenberg, S. O., 2008. Influence of multi-
channel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics.
Magn. Reson. Imag. 26, 754–762.

Donoho, D., Johnstone, I., Apr. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455.

Drumheller, D., Apr. 1993. General expressions for Rician density and distribution functions. IEEE Trans.
on Aerospace and Electronic Systems 29 (2), 580–588.

Eskicioglu, A., Fisher, P., Dec. 1995. Image quality measures and their performance. IEEE Tr. Comm.
43 (12), 2959–2965.

Fillard, P., Pennec, X., Arsigny, V., Ayache, N., Nov. 2007. Clinical DT-MRI estimation, smoothing, and
fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26 (11), 1472–1482.
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