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Preface

This book is a compendium of the main contributions that our lab has done in
the field of noise analysis in MRI along the last 8 years. Since many different ap-
proaches have been proposed, we think that it is important to have a chronological
point of view to fully understand the different approaches. This book is the seed of
another book in which the journals are rewritten with the same notation to give a
deeper unity to the work.

Valladolid, Spain
Feb. 2015 Santiago Aja Fernández
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Part I
Noise Models





Statistical noise models for Magnetic Resonance
Imaging

Santiago Aja-Fernández, Antonio Tristán-Vega∗

Abstract Many image processing applications within MRI are grounded on stochas-
tic methods based on the prior knowledge on the statistics of noise. The ubiquitous
Gaussian model provides a poor fitting for medium-low SNRs, yielding to the use
of Rician statistics: the noise in MRI has been traditionally modeled as a stationary
process governed by a Rician distribution with constant noise power at each voxel.
Modern MRI systems turn this model questionable, making it necessary to develop
into more complex patterns. We aim at comprehensively reviewing the main statis-
tical rationales and formulations for the noise in MRI lately found in the literature.
We attend to three different criteria: the first-order, voxel-wise probability law, the
possible spatial variability of the parameters of such distribution, and the possible
noise interdependences between neighboring voxels. Several applications using sta-
tistical methods are overviewed, discussing the implications each of the models has
on them. Finally, we explore the applicability of the surveyed models to some MRI
protocols commonly used. Whereas many parallel and nonparallel acquisitions like
GRAPPA and SENSE may be fitted into one of the existing models, other nonlinear
reconstruction procedures are lacking a proper noise characterization.

1 Introduction

Magnetic Resonance (MR) data is known to be affected by several sources of qual-
ity deterioration, due to limitations in the hardware, scanning times, movement of
patients, or even the motion of molecules in the scanning subject. One source of
degradation that affects most of the acquisitions is noise.

∗ This chapter was previously published as a Technical Report:Santiago Aja-Fernández, Antonio
Tristán-Vega, A review on statistical noise models for Magnetic Resonance Imaging, Tech Report
of the LPI, TECH-LPI2013-01, Universidad de Valladolid, Spain, Jun. 2013
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The term noise in MR can have different meanings depending on the context.
For example, it has been applied to degradation sources such as physiological and
respiratory distortions in some MR applications and acquisitions schemes [1, 2].
Even acoustic sources (the sound produced by the pulse sequences in the magnet)
are sometimes referred to as noise [3]. In this paper we will obviate these issues, fo-
cusing on the thermal noise introduced during data acquisition. The principal source
of thermal noise in most MR scans is the subject or object to be imaged, followed
by electronics noise during the acquisition of the signal in the receiver chain. It is
produced by the stochastic motion of free electrons in the RF coil, which is a con-
ductor, and by eddy current losses in the patient, which are inductively coupled to
the RF coil.

The presence of noise over the acquired MR signal is a problem that affects not
only the visual quality of the images, but also may interfere with further processing
techniques such as segmentation, registration or fMRI analysis [4, 5, 6]. There are
different ways to cope with this degradation, but, due to the random nature of ther-
mal noise, a probabilistic modeling is a proper and powerful solution. The accurate
modeling of signal and noise statistics in MR data usually underlies the tools for
processing and interpretation within Magnetic Resonance Imaging (MRI).

One of the most direct approaches to cope with acquisition noise in MRI (of
course, not the only one) is signal estimation via noise removal. Traditionally, noise
filtering techniques in different fields have been based on a well-defined prior statis-
tical model of data, usually a Gaussian model. Noise models in MRI have allowed
the natural extension of many well known techniques to cope with features specific
of MRI. Many examples can be found in the literature, such as the Conventional
Approach (CA) [4], Maximum Likelihood (ML) [7], linear estimators [8, 9, 10], or
adapted non-local mean schemes [11, 12, 13]. However, an accurate noise model-
ing may be useful in MRI not only for filtering purposes, but also for many other
processing techniques. For instance, Weighted Least Squares methods to estimate
the Diffusion Tensor (DT) have proved to be nearly optimal when the data follows
a Rician [14] or a non-central Chi (nc-χ) distribution [15]. Other approaches for
the estimation of the DT also assume an underlying Rician model of the data: ML
and Maximum a Posteriori (MAP) estimation [16, 17], or sequential techniques for
online estimation [18, 19] have been proposed. The use of an appropriated noise
model is crucial in all these methods to attain a statistically correct characterization
of the underlying signals.

Other methods in MRI processing that benefit from relying on a precise noise
distribution model include automatic segmentation of regions [20, 21], compressed
sensing for signal reconstruction [22, 23], and fMRI activation and simulation [24,
25, 26]. All in all, many examples in literature have shown the advantage of statisti-
cally modeling the specific features of noise for a specific typology of data.

For practical purposes, it has been usually assumed that the noise in the image
domain is a zero-mean, spatially uncorrelated Gaussian process, with equal variance
in both the real and imaginary parts. In case the data is acquired by several receiving
coils, the exact same distribution is assumed for all of them. As a result, in single
coil systems the magnitude data in the spatial domain are modeled using a station-
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ary Rician distribution [5]. When multiple (independent) coils are considered and
the k-space is fully sampled, the natural extension of the Rician model yields to a
stationary noncentral-χ (nc-χ) distribution [27], whenever the different images are
combined using sum of squares, the variance of noise is the same for all coils, and
no correlations exist between them.

These two distributions, Rician and nc-χ, have been extensively used in the MR
literature whenever a noise model is needed. However, in modern acquisition sys-
tems, they may no longer hold as reliable distributions. Interpolations due to non-
Cartesian sampling, ghost-correction post-processing for acquisitions schemes such
as EPI [28, 29], manufacturer-specific systems for noise and artifacts reduction, or
coil uniformity correction techniques will dramatically alter spatial noise charac-
teristics. Thus, in many practical situations, the initial assumptions on the nature
of noise do not completely hold. On the other hand, even when these schemes are
not used, nowadays MRI systems often collect subsampled versions of the k-space
to speed-up the acquisitions and palliate phase distortions. In order to correct the
aliasing artifacts produced by this subsampling, some reconstruction methods are
to be used, the so-called Parallel MRI (pMRI) techniques [30, 31]. The most popu-
lar among them, owing to their common use in commercial devices, are Sensitivity
Encoding (SENSE) [32] and GeneRalized Autocalibrated Partially Parallel Acqui-
sitions (GRAPPA) [33], but there are many more, and lots of new emerging ones
every day [30, 34].

In this paper we will review the main statistical models commonly used in MRI,
under the assumption of a direct acquisition, i.e., we will assume that: (1) data are
acquired in the k-space using a regular Cartesian sampling; (2) the different contri-
butions of noise are all independent, so that the total noise in the system is the sum
of the noise from each individual source; and (3) post processing schemes such as
EPI correction are not applied. Though these assumptions may seem unrealistic for
certain applications, they are common in the literature, and otherwise necessary to
achieve a reasonable trade-off between the accuracy of the model and its general-
ization capabilities. Note the corrections mentioned in the previous paragraph are
usually manufacturer-dependent or they even depend on the particular magnet de-
vised, hence they will need a more in-depth study which is far from the scope of this
paper. In many cases, however, such study can be derived from the general models
here described.

With the aforementioned limitations, we present a comprehensive study of the
noise models arising in the most common MRI protocols currently used, mainly
single- and multiple-coil acquisitions without k-space subsampling, SENSE, and
GRAPPA. In first place we review the popular Rician model as a first order statistical
model for the voxel-wise distribution of noise, and introduce the nc-χ model as
a necessary generalization in many multiple-coil systems. pMRI methods require
a more careful study, presented in the next section, with the identical conclusion
that the nc-χ generalization is mandatory for GRAPPA. The other widely accepted
assumption in noise modeling, i.e., the noise power being constant for the whole
image domain, is reviewed next. We reason that a non-stationary behavior must be
assumed in many cases due to the inhomogeneous sensitivity of the receiving coils,
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the existing correlations between the thermal noise produced by each of them, and
the reconstruction process itself with GRAPPA. With SENSE, the reconstruction
process introduces a different side effect, the spatial correlation of the noise pattern,
which is studied in the final part of the manuscript. To conclude, we show the actual
relevance of the features studied through representative examples, and discuss their
impact over a number of MRI processing pipelines, explaining how to adapt the
existing methods based on stationary Rician noise to more complex models.

2 First-order statistical models for fully sampled signals

2.1 Complex single– and Multiple–Coil MR signals

The k–space data are acquired in multiple-shot acquisitions through the repeated
application of excitation pulses with a different phase encoding gradient for each
readout gradient. Each sampled line of the k−space is frequency encoded, and the
measured signal is uniformly sampled at the desired rate. The points in the k-space
measured from the MRI scanner are thus independent samples of the RF signal
received by each coil. The primary origin of random fluctuation is the so-called
thermal noise [35], whose variance depends on the following parameters:

σ2
thermal ∝ 4kBT Reff BW , (1)

where kB is Boltzmann’s constant, T is the absolute temperature of the resistor,
Reff is the effective resistance of the coil loaded by the object to scan, and BW is
the bandwidth of the noise-voltage detecting system.

Under the assumption that the noise affects equally to all the frequencies, it is
independent for each source, and independent on the signal, it can be modeled as
a complex Additive White Gaussian Noise (AWGN) process, with zero mean and
variance σ2

Kl
[36, 37]:

sl(k) = al(k) + nl(k; 0, σ2
Kl

(k)), l = 1, · · · , L, (2)

with al(k) the noise-free signal at the l-th coil (of a total of L coils) and sl(k)
the received (noisy) signal. If the noise in the RF signal is considered stationary, it
makes sense to consider nl itself stationary (which implies that σ2

Kl
(k) = σ2

Kl
is a

constant), so that we may write:

nl(k; 0, σ2
Kl

(k)) ≡ nl(k; 0, σ2
Kl

) = nlr (k; 0, σ2
Kl

) + j · nli(k; 0, σ2
Kl

).

The complex image domain is obtained as the inverse Discrete Fourier Transform
(iDFT) of sl(k) for each slice and at each coil. Under the assumption that the
data is sampled on a Cartesian lattice, and the iDFT is applied without any kind
of interpolation/filtering/apodization/zero-padding, the iDFT will be an orthogonal
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linear transformation, and the noise in the complex image domain will still be Gaus-
sian for each receiving coil:

Sl(x) = Al(x) +Nl(x; 0, σ2
l ), l = 1, . . . , L, (3)

where Nl(x; 0, σ2
l ) = Nlr (x; 0, σ2

l ) + j · Nli(x; 0, σ2
l ). Since the iDFT is applied

to each coil, it will not introduce any correlation per sé. However, there may be
an initial noise correlation between the receiver coils due to electromagnetic cou-
pling [38, 39, 40]. As a consequence, the noise pattern in the complex image domain
may be seen as a complex multivariate (one variable per coil) AWGN process, with
zero mean and covariance matrix Σ [41]:

Σ =




σ2
1 σ2

12 · · · σ2
1L

σ2
21 σ2

2 · · · σ2
2L

...
...

. . .
...

σ2
L1 σ

2
L2 · · · σ2

L


 , (4)

with σ2
ij = ρ2

ijσiσj and ρ2
ij the coefficient of correlation between coils i-th and j-th.

While this coefficient of correlation depends only on the electromagnetic coupling
between coils i and j, the variance of noise for each coil may be easily predicted
from that in the k−space [36, 42, 43]:

σ2
l =

1

|Ω|σ
2
Kl
, (5)

where |Ω| is the size of the Field of View (FOV), i.e. the number of points used in
the 2D iDFT.

2.2 Fully sampled single coil: the Rician distribution

For a single–coil acquisition the complex model in eq. (3) simplifies to:

S(x) = A(x) +N(x; 0, σ2),

with N(x; 0, σ2) = Nr(x; 0, σ2) + j · Ni(x; 0, σ2) a complex AWGN with zero
mean and variance σ2. The magnitude signal M(x) is the Rician distributed enve-
lope of the complex signal [5]:

M(x) = |S(x)|. (6)

The probability density function (PDF) of the Rician distribution is defined as [44]2:

2 To simplify the notation, the dependency with x has been removed from the PDFs.
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Real component

| . |

Complex Gaussian

x−space

Rician
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Imag. component

σ2
K

σ2

σ2

Fig. 1 Single-coil acquisition process. The data in both the k-space and the image domain follow a
Gaussian distribution. The final signal after the magnitude is taken will follow a Rician distribution.

pM (M |AT , σ) =
M

σ2
exp

(
−M

2 +A2
T

2σ2

)
I0

(
ATM

σ2

)
u(M), (7)

where we call In(.) the n-th order modified Bessel function of the first kind, u(.)
the Heaviside step function, and AT (x) = |A(x)|. In the image background, where
the SNR is zero due to the lack of water-proton density in the air, the Rician PDF
simplifies to a Rayleigh distribution with PDF:

pM (M |σ) =
M

σ2
exp

(
−M

2

2σ2

)
u(M). (8)

For the sake of illustration, a pipeline with the distributions involved in single coil
acquisitions is depicted in Fig. 1.

2.3 Fully sampled, uncorrelated multiple coils: the noncentral-χ
distribution

In a multiple coil system, if the k−space is fully sampled, the Composite Magnitude
Signal (CMS) must be reconstructed from the L complex signals from every coil,
Sl(x), with l = 1 · · · , L. One of the most used methods is the so-called Sum of
Squares (SoS), which can be directly applied over eq. (3) [27, 38]:

ML(x) =

√√√√
L∑

l=1

|Sl(x)|2. (9)
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In an ideal scenario the variance of noise is the same for all the coils, which are
assumed to produce uncorrelated samples. The covariance matrix Σ in eq. (4) is
hence diagonal with identical eigenvalues:

Σ = σ2 · I,

where I is the L × L identity and σ2 = 1
|Ω|σ

2
K . Under these assumptions, ML(x)

follows a noncentral χ (nc-χ) distribution [27, 45] with PDF:

pML
(ML|AT , σ, L) =

A1−L
T

σ2
ML
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
u(ML),

(10)

with A2
T (x) =

L∑
l=1

|Al(x)|2. Obviously, for L = 1, the nc-χ reduces to the Rician

distribution. In the background, this PDF simplifies to a central χ (c-χ) distribution
with PDF:

pML
(ML|σ, L) =

21−L

Γ (L)

M2L−1
L

σ2L
exp

(
−M

2
L

2σ2

)
u(ML), (11)

which reduces to Rayleigh for L = 1.

2.4 Fully sampled, correlated multiple coil: the noncentral-χ
approximation

The nc-χ distribution proposed in the previous section has been used to model
the noise in MRI when the signals at different receiving coils are combined with
SoS [27, 46, 47, 48]. However, this CMS will only show nc-χ statistics if the vari-
ance of noise is the same for all coils, and no correlation exists between them. Al-
though it is well known that in phased array systems noise correlations do exist
[41, 38, 39, 40], this effect is usually left aside due to their minimal effect and prac-
tical considerations, as stated in [27].

However, for modern acquisition systems comprising up to 32 or 64 coils, the
receivers will show in general a certain coupling. This means that the noisy samples
at each k−space location will be correlated from coil to coil. Assuming such corre-
lation is frequency-independent (i.e. the same for all k−space samples), the linear
iDFT operator will clone this exact same correlation between coils in the complex
image domain, so that Σ becomes a non-diagonal, symmetric, positive definite ma-
trix. The off-diagonal elements stand for the correlations between each pair of coils.
In this case, the actual PDF is not strictly a nc-χ, though for small correlations it
is expected that such model remains approximately valid [49]. Even when the nc-χ
assumption is feasible, correlations will affect the number of Degrees of Freedom
(DoF) of the distribution. If SoS is used, the PDF of the CMS can indeed be accu-
rately approximated with the traditional nc-χ model in eq. (10) whenever effective
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Fig. 2 Multiple-coil acquisition process. The data in both the k-space and the image domain follow
a Gaussian distribution in each coil. The final composite magnitude signal will follow different dis-
tributions depending on the method employed to aggregate coils and on the possible correlations.

parameters (reduced L and increased σ) are used [49]:

Leff(x) =
A2
T (x) tr (Σ) + (tr (Σ))

2

A∗(x) Σ A(x) + ||Σ||2F
; (12)

σ2
eff(x) =

tr (Σ)

Leff(x)
, (13)

with ||.||F the Frobenius norm and A(x) = [A1(x), A2(x), · · · , AL(x)]T . Note
that, with this approximation, the Leff(x) becomes a non integer number.

Thus, for multiple correlated coils the nc-χ model is just an approximation of
the real distribution, and effective parameters must be considered. The parameters
of the final distribution are signal-dependent, and therefore they become harder to
estimate than simpler models [50].

For the sake of illustration, a pipeline with the distributions involved in multiple-
coil acquisitions is depicted on Fig. 2. Note the correlations between coils are the
same in both the k-space and the image domain. These correlations are hardware-
dependent and thus inevitable.

3 First-order statistical models for pMRI acquistions

In the previous section we have reviewed the noise model for multiple–coil systems
when the k−space is fully sampled. However, pMRI protocols usually increase the
acquisition rate by subsampling the k−space data [30, 31], while reducing phase
distortions when strong magnetic field gradients are present. The immediate ef-
fect of the k−space subsampling is the appearance of aliased replicas in the image
domain retrieved at each coil. In order to suppress or correct this aliasing, pMRI
combines the redundant information from several coils to reconstruct a single non-
aliased image domain.
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The previously presented Rician and nc-χ models do not necessarily hold in
this case. Depending on the way the information from each coil is combined, the
statistics of the image will follow different distributions. It is therefore necessary to
study the behavior of the data for a particular reconstruction method. In this paper
we focus on two of the most popular methods, SENSE [32] and GRAPPA [33], in
their most basic formulation.

In the following sections we will assume that sSl (k) is the subsampled signal
at the l-th coil of the k−space, SSl (x) is the subsampled signal in the image do-
main, and r is the subsampling rate. Since sSl (k) is just a subsampled version of the
k−space signal, it is still corrupted with AWGN. If the iDFT is directly applied to
the subsampled signal, we will have an AWGN process [43] with variance (compare
with eq. (5)):

σ2
l =

r

|Ω|σ
2
Kl
.

with |Ω| the final number of pixels in the FOV. Note the final noise power is greater
than in the fully sampled case due to the reduced k−space averaging, as it will be
the case with SENSE (see below). On the contrary, the iDFT may be computed after
zero-padding the missing (not sampled) k−space lines, and then we have [42]:

σ2
l =

1

|Ω| · rσ
2
Kl
.

In the latter case the noise power is reduced with respect to the fully sampled case,
since we average exactly the same number of samples but only 1 of each r of them
contributes a noise sample (this will also be the case with GRAPPA), see Table 1 for
a more thorough description. Finally, note that although the level of noise is smaller
in GRAPPA due to the zero padding, the SNR does not increase, due to a reduction
of the level of the signal.

3.1 Statistical model in GRAPPA reconstructed images

GRAPPA estimates the missing lines in a subsampled k−space by linear interpo-
lation of the complex data [30, 33, 34]. While the sampled data sSl (k) remain the
same, the reconstructed lines sRl (k) are estimated through a linear combination of
the existing nearby samples from all the available coils. Given a neighborhood η(k)
of k, the interpolation reads:

sRl (k) =

L∑

m=1

∑

c∈η(k)

sSm(k− c)ωml(c), (14)

where ωml(c) is a complex coefficient weighting the contribution of the measured
signal at the m-th coil in the interpolation of a missing line at the l-th coil, given
an offset c between the measured and the missing samples. These coefficients are
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Noise relations
k-space Parameters x-space Relation

Fully sampled,
σ2
Kl

k-size: |Ω|

σ2
l = 1

|Ω|σ
2
Kl

,
x-size: |Ω|

Subsampled r,
σ2
Kl

k-size: |Ω|/r

σ2
l = r

|Ω|σ
2
Kl

,
x-size: |Ω|/r

Subsampled r,
σ2
Kl

k-size: |Ω|
(zero padded)

σ2
l = 1

|Ω|·rσ
2
Kl

,
x-size: |Ω|

Table 1 Relations between the variance of noise in complex MR data for each coil in the k-space
and the image domain.

learnt from the low-frequency spectrum (as it will show the highest SNR), the so-
called Auto Calibration Signal (ACS) lines, which are sampled at the Nyquist rate.
Breuer et al. in [51] pointed out that eq. (14) can be rewritten using the convolution
operator:

sRl (k) =

L∑

m=1

sSm(k) ~ wml(k), (15)

where wml(k) is a convolution kernel that can be easily built from the GRAPPA
weights ωml(k). For the sake of simplicity in the analysis, these weights are usu-
ally considered as constant (non-stochastic). Since a (circular) convolution in the
k-space is equivalent to a product in the image domain, we can write:

SRl (x) = |Ω|
L∑

m=1

SSm(x)×Wml(x) (16)

= |Ω|
L∑

m=1

ASm(x)×Wml(x)

︸ ︷︷ ︸
Reconstructed Signal

+ |Ω|
L∑

m=1

Nm(σ2
n)×Wml(x)

︸ ︷︷ ︸
Gaussian Noise

(17)

= ARl (x) +NRl (x), (18)
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with Wml(x) the 2D iDFT of wml(k). This result assumes the signal plus noise
model in each coil used in the previous section, a Cartesian sampling of the k-
space, and the GRAPPA weights are considered as constant (non-stochastic). The
first important conclusion is that the noise power at each image location x will be
different, since Wml(x) is spatially variant. Since the convolution in eq. (15) is
again a linear operator, the noise in the image domain is still an AWGN process. In
addition, even assuming that the coils are initially independent, the signals SRl (x)
will become correlated when the signals from each coil are mixed through ωml(c).

The composite magnitude image ML(x) can be obtained using SoS as shown in
eq. (9). Following a similar reasoning to the one for fully sampled correlated coils,
we can conclude that the resultant distribution is not strictly a nc-χ. Again, it can be
modeled as such with a small error if effective values are taken into account [42]:

Leff(x) =
A2
T tr

(
C2
X

)
+
(
tr
(
C2
X

))2

A∗ C2
X A + ||C2

X ||2F
; (19)

σ2
eff(x) =

tr
(
C2
X

)

Leff
, (20)

where C2
X(x) = W(x) Σ W∗(x) is the covariance matrix of the interpolated data

at each spatial location; A(x) = [AR1 (x), AR2 (x), · · · , ARL (x)]T is the noise-free

reconstructed signal; A2
T (x) =

L∑
i=1

|ARi (x)|2, and W(x) is a matrix arranged by

the set of complex weights Wml(x):

W(x) =




W11(x) W12(x) · · · W1L(x)
W21(x) W22(x) · · · W2L(x)

...
...

. . .
...

WL1(x) WL2(x) · · · WLL(x)


 . (21)

The reduced number of DoF in the nc-χ model is originated by the correlation
and inhomogeneous variance of the complex Gaussians, i.e. by C2

X . In GRAPPA,
this artifact mainly comes from the interpolation matrix W and not from the covari-
ance matrix Σ.

Summarizing, the nc-χ model does not hold for GRAPPA reconstructed data.
However, this distribution can be used as a good approximation of the actual one.
For this approximation to hold, effective parameters have to be considered which
represent an equivalent, non-subsampled configuration with a smaller number of
coils (DoF) and, consequently, a greater level of noise. Note the effective parame-
ters Leff and σ2

eff are signal dependent (hence spatial-dependent), which is further
discussed in the next section.
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Fig. 3 Example of the SENSE interpolation for 8 coils and an acceleration factor r = 2.

3.2 Statistical model in SENSE reconstructed images

Most of the noise related studies in SENSE are usually done from a SNR or a g-
factor (noise amplification) point of view [32, 34]. In what follows we present an
equivalent reformulation, implicit in previous studies [43, 52, 46] but more coherent
with the signal and noise analysis done for the other modalities reviewed in this
paper.

For the sake of simplicy, let us assume that SENSE [32] is only be applied to
MRI data regularly subsampled by a factor r. The reconstruction takes place in the
image domain. Assuming an original size |Ω| = Mx ×My , the subsampled signal
SSl (x) = SSl (x, y) are the (complex) Fourier inverse transform of sSl (k), of size
Mx × (My/r) .

In multiple coil scanners, the image received in coil l-th, Sl(x, y), can be seen as
an original image S0(x, y) weighted by the sensitivity of that specific coil:

Sl(x, y) = Cl(x, y)S0(x, y), l = 1, · · · , L (22)

An accelerated pMRI acquisition with a factor r will reduce the matrix size of the
image at every coil. The signal in one pixel at location (x, y) of l-th coil can be now
written as [34]:

Sl(x, y) = Cl(x, y1)S0(x, y1) + · · ·+ Cl(x, yr)S0(x, yr) (23)

In SENSE, the reconstructed image SR(x, y) can be seen as an estimator of the orig-
inal image SR(x, y) = Ŝ0(x, y) that can be obtained from eq. (23). For instance,
for r = 2 for pixel (x, y), SR(x, y) is obtained as

[
SR1
SR2

]
=
[
W1 W2

]
×
[
SS1 · · · SSL

]
. (24)

An example for 8 coils and r = 2 is depicted in Fig. 3. In matrix form for each
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output pixels an arbitrary r

SRi = Wi × SS i = 1, · · · , r. (25)

SR = W × SS , (26)

with W(x, y) = [W1, · · ·Wr] a reconstruction matrix created from the sensitivity
maps at each coil. These maps, C(x, y) = [C1, · · · ,CL] are estimated through
calibration right before each acquisition session. Once they are known, the matrix
W(x, y) reduces to a least-squares solver for the overdetermined problem C(x, y)×
SR(x, y) ' SS(x, y) [32, 34]:

W(x, y) = (C∗(x, y)C(x, y))−1C∗(x, y). (27)

The correlation between coils may be incorporated in the reconstruction as a pre-
whitening matrix for the measurements, and W(x, y) becomes then a weighted least
squares solver with correlation matrix Σ:

W(x, y) = (C∗(x, y)Σ−1C(x, y))−1C∗(x, y)Σ−1.

The SNR of the fully sampled image and the image reconstructed with SENSE are
related by the so-called g-factor [52, 34]:

SNRSENSE =
SNRfull√
r · g (28)

However, we will focus on the actual noise model underlying the SENSE re-
construction and on the final variance of noise. The final signal for each of the r
reconstructed pixles, SRi , is obtained as a linear combination of the samples in each
coil, SSl , where the noise is Gaussian distributed. Thus, the resulting signal is also
Gaussian, with variance:

σ2
i = W∗

iΣWi. (29)

Since Wi is position dependent, i.e. Wi = Wi(x, y), so will be the variance of
noise, σ2

i (x, y). For further reference, when the whole image is taken into account,
let us denote the variance of noise for each pixel in the reconstructed data by σ2

R(x).
Note now that all the lines SRi reconstructed from the same data SSl will be

strongly correlated, since they are basically different linear combinations of the
same Gaussian variables. In that case, the covariance between SRi and SRj , i 6= j
can be calculated as

σ2
i,j = W∗

iΣWj , (30)

and the correlation coefficient is derived straight forward:

ρ2
i,j =

σ2
i,j

σiσj
=

W∗
iΣWj√

(W∗
iΣWi)

(
W∗

jΣWj

) , (31)
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However, eachr correlated lines are far enough within the �nal image, so we can
neglect this correlation effect for processing purposes. In other pMRI modalities
that carry out the interpolation in thek-space, such as GRAPPA, there will also
be spatial correlations. However, the iDFT will sparsely distribute them among the
entire image domain, considerably reducing their impact when compared to those
in x-space reconstruction methods. Accordingly, they are usually left aside.

All in all, noise in the �nal reconstructed signalSR (x) will follow a complex
Gaussian distribution. If the magnitude is considered, i.e.M (x) = jSR (x)j, the
�nal CMS will follow a Rician distribution, just like single-coil systems.

We can summarize our developments as follows:

1. Subsampled multi coil MR data reconstructed with Cartesian SENSE follow a
Rician distribution at each point of the image.

2. The resulting distribution is non-stationary. This means that the variance of noise
will vary from point to point across the image.

3. The �nal value of the variance of noise at each point will only depend on the
covariance matrix of the original data and on the sensitivity map.

4. Each pixel in the �nal image will be strongly correlated with all those pixels
reconstructed from the same original data. Each pixel is correlated withr � 1
other pixels. Due to the distance between correlated pixels, this correlation may
be left aside.

For the particular case in which there is no initial correlation between coils and
all the coils have the same noise variance� 2, we can write eq. (29) as:

� 2
i = � 2 � j W i j2: (32)

Since� 2 is the noise variance of the subsampled data in the image domain, accord-
ing to eq. (5), it is related to the original noise level without subsampling, say� 2

0 ,
by the subsampling rate:

� 2 = r � � 2
0 ;

and therefore
� i =

p
r � � 0 � j W i j; (33)

which is totally equivalent to the formulations for SNR reduction in literature [32,
43].

4 Spatial variation of the noise distribution parameters: Noise
maps

We have concluded in the previous sections that the noise pattern in certain multiple-
coil systems may show spatially-variant, or even signal-dependent distributions. The
origin of this artifact may be the initial correlation (coupling) between the receiver
coils in the MRI scanner, or the reconstruction process in pMRI protocols. In all














































































































































































































































































































































































































































































