@article {627, title = {Adjugate Diffusion Tensors for Geodesic Tractography in White Matter}, journal = {Journal of Mathematical Imaging and Vision}, volume = {54}, year = {2015}, pages = {1{\textendash}14}, abstract = {

One of the approaches in diffusion tensor imaging is to consider a Riemannian metric given by the inverse diffusion tensor. Such a metric is used for geodesic tractography and connectivity analysis in white matter. We propose a metric tensor given by the adjugate rather than the previously proposed inverse diffusion tensor. The adjugate metric can also be employed in the sharpening framework. Tractography experiments on synthetic and real brain diffusion data show improvement for high-curvature tracts and in the vicinity of isotropic diffusion regions relative to most results for inverse (sharpened) diffusion tensors, and especially on real data. In addition, adjugate tensors are shown to be more robust to noise.

}, issn = {1573-7683}, doi = {10.1007/s10851-015-0586-8}, url = {http://dx.doi.org/10.1007/s10851-015-0586-8}, author = {Andrea Fuster and Tom Dela-Haije and Antonio Trist{\'a}n-Vega and Birgit Plantinga and Carl-Fredik Westin and Luc Florack} }