@article {907, title = {Multimodal fusion analysis of structural connectivity and gray matter morphology in migraine}, journal = {Human Brain Mapping}, volume = {42}, year = {2021}, pages = {908-921}, abstract = {

No specific migraine biomarkers have been found in single-modality MRI studies. We aimed at establishing biomarkers for episodic and chronic migraine using diverse MRI modalities. We employed canonical correlation analysis and joint independent component analysis to find structural connectivity abnormalities that are related to gray matter morphometric alterations. The number of streamlines (trajectories of estimated fiber-tracts from tractography) was employed as structural connectivity measure, while cortical curvature, thickness, surface area, and volume were used as gray matter parameters. These parameters were compared between 56 chronic and 54 episodic migraine patients, and 50 healthy controls. Cortical curvature alterations were associated with abnormalities in the streamline count in episodic migraine patients compared to controls, with higher curvature values in the frontal and temporal poles being related to a higher streamline count. Lower streamline count was found in migraine compared to controls in connections between cortical regions within each of the four lobes. Higher streamline count was found in migraine in connections between subcortical regions, the insula, and the cingulate and orbitofrontal cortex, and between the insula and the temporal region. The connections between the caudate nucleus and the orbitofrontal cortex presented worse connectivity in chronic compared to episodic migraine. The hippocampus was involved in connections with higher and lower number of streamlines in chronic migraine. Strengthening of structural networks involving pain processing and subcortical regions coexists in migraine with weakening of cortical networks within each lobe. The multimodal analysis offers a new insight about the association between brain structure and connectivity.

}, keywords = {Brain, Magnetic Resonance Imaging, connectome, diffusion magnetic resonance imaging, migraine disorders}, doi = {https://doi.org/10.1002/hbm.25267}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25267}, author = {{\'A}lvaro Planchuelo-G{\'o}mez and Garc{\'\i}a-Azor{\'\i}n, David and {\'A}ngel L. Guerrero and Santiago Aja-Fern{\'a}ndez and Rodr{\'\i}guez, Margarita and Rodrigo de Luis-Garc{\'\i}a} } @article {844, title = {Micro-structure diffusion scalar measures from reduced MRI acquisitions}, journal = {PLOS ONE}, volume = {15}, year = {2020}, month = {2020}, pages = {1-25}, abstract = {

In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant micro-structural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like Diffusion Tensor Imaging (DTI). The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space involving a huge amount of samples (diffusion gradients) for proper reconstruction. A collection of more efficient techniques have been proposed in the last decade based on parametric representations of the EAP, but they still imply acquiring a large number of diffusion gradients with different b-values (shells). Paradoxically, this has come together with an effort to find scalar measures gathering all the q-space micro-structural information probed in one single index or set of indices. Among them, the return-to-origin (RTOP), return-to-plane (RTPP), and return-to-axis (RTAP) probabilities have rapidly gained popularity. In this work, we propose the so-called {\textquotedblleft}Apparent Measures Using Reduced Acquisitions{\textquotedblright} (AMURA) aimed at computing scalar indices that can mimic the sensitivity of state of the art EAP-based measures to micro-structural changes. AMURA drastically reduces both the number of samples needed and the computational complexity of the estimation of diffusion properties by assuming the diffusion anisotropy is roughly independent from the radial direction. This simplification allows us to compute closed-form expressions from single-shell information, so that AMURA remains compatible with standard acquisition protocols commonly used even in clinical practice. Additionally, the analytical form of AMURA-based measures, as opposed to the iterative, non-linear reconstruction ubiquitous to full EAP techniques, turns the newly introduced apparent RTOP, RTPP, and RTAP both robust and efficient to compute.

}, doi = {10.1371/journal.pone.0229526}, url = {https://doi.org/10.1371/journal.pone.0229526}, author = {Santiago Aja-Fern{\'a}ndez and Rodrigo de Luis-Garc{\'\i}a and Maryam Afzali and Molendowska, Malwina and Tomasz Pieciak and Antonio Trist{\'a}n-Vega} } @article {541, title = {A Maximum Likelihood Approach to Diffeomorphic Speckle Tracking for 3D Strain Estimation in Echocardiography}, journal = {Medical Image Analysis}, year = {2015}, pages = {-}, abstract = {

Abstract The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated in a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most accurate method to measure the motion and strain with an average median motion error of 0.42\ mm and a median strain error of 2.0 {\textpm} 0.9\%, 2.1 {\textpm} 1.3\% and 7.1 {\textpm} 4.9\% for circumferential, longitudinal and radial strain respectively. It also showed its capability to identify abnormal segments with reduced cardiac function and timing differences for the dyssynchrony cases. These results indicate that the proposed diffeomorphic speckle tracking method provides robust and accurate motion and strain estimation.

}, doi = {http://dx.doi.org/10.1016/j.media.2015.05.001}, url = {http://www.sciencedirect.com/science/article/pii/S1361841515000687}, author = {Ariel H. Curiale and Gonzalo Vegas-S{\'a}nchez-Ferrero and Johan G. Bosch and Santiago Aja-Fern{\'a}ndez} } @conference {tristan2013merging, title = {Merging squared-magnitude approaches to DWI denoising: An adaptive Wiener filter tuned to the anatomical contents of the image}, booktitle = {Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE}, year = {2013}, pages = {507{\textendash}510}, publisher = {IEEE}, organization = {IEEE}, author = {Antonio Trist{\'a}n-Vega and V{\'e}ronique Brion and Gonzalo Vegas-S{\'a}nchez-Ferrero and Santiago Aja-Fern{\'a}ndez} } @article {cordero2013magnetic, title = {A magnetic resonance software simulator for the evaluation of myocardial deformation estimation}, journal = {Medical engineering \& physics}, volume = {35}, number = {9}, year = {2013}, pages = {1331{\textendash}1340}, publisher = {Elsevier}, author = {Lucilio Cordero-Grande and Gonzalo Vegas-S{\'a}nchez-Ferrero and Pablo Casaseca-de-la-Higuera and Santiago Aja-Fern{\'a}ndez and Carlos Alberola-Lopez} } @conference {aja2012mri, title = {A MRI phantom for cardiac perfusion simulation}, booktitle = {Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on}, year = {2012}, pages = {638{\textendash}641}, publisher = {IEEE}, organization = {IEEE}, author = {Santiago Aja-Fern{\'a}ndez and Lucilio Cordero-Grande and Carlos Alberola-Lopez} } @article {aja2008matrix, title = {Matrix modeling of hierarchical fuzzy systems}, journal = {Fuzzy Systems, IEEE Transactions on}, volume = {16}, number = {3}, year = {2008}, pages = {585{\textendash}599}, publisher = {IEEE}, author = {Santiago Aja-Fern{\'a}ndez and Carlos Alberola-Lopez} } @conference {muoz2008methodology, title = {A methodology for quality assessment in tensor images}, booktitle = {Computer Vision and Pattern Recognition Workshops, 2008. CVPRW{\textquoteright}08. IEEE Computer Society Conference on}, year = {2008}, pages = {1{\textendash}6}, publisher = {IEEE}, organization = {IEEE}, author = {Emma Mu{\~n}oz-Moreno and Santiago Aja-Fern{\'a}ndez and Marcos Martin-Fernandez} } @conference {aja2005matrix, title = {Matrix Inference in Fuzzy Decision Trees.}, booktitle = {EUSFLAT Conf.}, year = {2005}, pages = {979{\textendash}984}, author = {Santiago Aja-Fern{\'a}ndez and Carlos Alberola-Lopez} }