@book {676, title = {Sunflowers: growth and development, environmental influences and pests/diseases.}, year = {2014}, pages = {323}, publisher = {Nova Science Publishers}, organization = {Nova Science Publishers}, address = {New York}, abstract = {

We are all well aware that the importance of the sunflower (Helianthus Annus) as a crop has increased significantly in recent years, not only in the food industry but also as a natural energy resource in oil production. I am, thus, very pleased to be able to present this comprehensive monograph on a wide range of important issues regarding sunflowers, with an emphasis on environmental influences, pests and diseases in order to maximise production whilst minimising costs.

Contributors where selected based on their proven experience in the field of sunflowers. Contributors submitted an extended abstract that was assessed for relevance. They were then invited to contribute draft chapters. Each chapter underwent a stringent and thorough peer review process by other experts in the field, with final approval by the editor who, thus, was able to balance the topics from all contributors.

The book contains important original results. Each chapter deals with a different topic, and draws, where appropriate, from studies and results previously published by the authors. Authors were encouraged to complement their writing with original and high quality graphs, charts, tables, figures, pictures and photographs.

It{\textquoteright}s my honour and pleasure to acknowledge the rigorous work carried out by all authors in this book, and at the same time I am very grateful to them for trusting me in leading this project in the role of the editor of their work. My thanks also go to the anonymous reviewers who contributed their time so generously to this book, and without whom it would not exist.

I am also very grateful to Nova Science Pubs. for inviting me to lead this book, and thank them for the help and coverage provided during the whole time that this project lasted.

I really do hope that you find this book of interest and wish you enjoy its reading as much as I have done through the whole editing process and as much I am sure all authors have done while writing it.

}, keywords = {Leaf classification, Sunflower, desease, environmental, pest}, isbn = {978-1-63117.348-6}, doi = {https://www.scopus.com/record/display.uri?eid=2-s2.0-84948981604\&origin=resultslist\&sort=plf-f\&src=s\&sid=6fdffa7042d279955cdde5960c4dc452\&sot=autdocs\&sdt=autdocs\&sl=17\&s=AU-ID\%287103041133\%29\&relpos=4\&citeCnt=0\&searchTerm=}, url = {https://www.amazon.com/Sunflowers-Development-Environmental-Influences-Botanical/dp/1631173472}, author = {J I Arribas} } @inbook {418, title = {A statistical-genetic algorithm to select the most significant features in mammograms}, booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)}, volume = {4673 LNCS}, year = {2007}, pages = {189-196}, abstract = {

An automatic classification system into either malignant or benign microcalcification from mammograms is a helpful tool in breast cancer diagnosis. From a set of extracted features, a classifying method using neural networks can provide a probability estimation that can help the radiologist in his diagnosis. With this objective in mind, this paper proposes a feature selection algorithm from a massive number of features based on a statistical distance method in conjunction with a genetic algorithm (GA). The use of a statistical distance as optimality criterion was improved with genetic algorithms for selecting an appropriate subset of features, thus making this algorithm capable of performing feature selection from a massive set of initial features. Additionally, it provides a criterion to select an appropriate number of features to be employed. Experimental work was performed using Generalized Softmax Perceptrons (GSP), trained with a Strict Sense Bayesian cost function for direct probability estimation, as microcalcification classifiers. A Posterior Probability Model Selection (PPMS) algorithm was employed to determine the network complexity. Results showed that this algorithm converges into a subset of features which has a good classification rate and Area Under Curve (AUC) of the Receiver Operating Curve (ROC). {\^A}{\textcopyright} Springer-Verlag Berlin Heidelberg 2007.

}, keywords = {Breast cancer, Diagnosis, Feature extraction, Genetic algorithms, Mammography, Microcalcification classification, Network complexity, Neural network classifiers, Neural networks, Tumors}, isbn = {9783540742715}, issn = {03029743}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-38149142403\&partnerID=40\&md5=ef139db3a0e5d603c4f721316abdcf2c}, author = {G V Sanchez-Ferrero and J I Arribas} }