A methodology for quality assessment in tensor images

Emma Muñoz-Moreno, Santiago Aja-Fernández and Marcos Martin-Fernández

Laboratorio de Procesado de Imagen

Universidad de Valladolid

Spain

- 2 Quality Measures for Scalar Images
 - Why quality assessment
 - SSIM y QILV
- 3 Tensor Image Quality Assessment
 - Basics
 - Statistics and frameworks
 - Methodology

Experiments

Conclusions

Introduction

Motivation

- Quality Measures for Scalar Images
 - Why quality assessment
 - SSIM y QILV
- 3 Tensor Image Quality Assessment
 - Basics
 - Statistics and frameworks
 - Methodology

4 Experiments

Conclusions

- Increasing use of tensors in image processing due to new modalities:
 - Diffusion Tensor Imaging: usually, 3 × 3 symmetric semidefinite positive.
 - Stress Tensor: 3 × 3 symmetric.
 - Strain Tensor: 3×3 symmetric.
- New processing algorithms to deal with tensor images.
- How is the performance of these algorithms evaluated?.
 - Quantitatively
 - Qualitatively

- Increasing use of tensors in image processing due to new modalities:
 - Diffusion Tensor Imaging: usually, 3 × 3 symmetric semidefinite positive.
 - Stress Tensor: 3×3 symmetric.
 - Strain Tensor: 3×3 symmetric.
- New processing algorithms to deal with tensor images.
- How is the performance of these algorithms evaluated?.
 - Quantitatively
 - Qualitatively

- Increasing use of tensors in image processing due to new modalities:
 - Diffusion Tensor Imaging: usually, 3 × 3 symmetric semidefinite positive.
 - Stress Tensor: 3 × 3 symmetric.
 - Strain Tensor: 3×3 symmetric.
- New processing algorithms to deal with tensor images.
- How is the performance of these algorithms evaluated?.
 - Quantitatively
 - Qualitatively

- Increasing use of tensors in image processing due to new modalities:
 - Diffusion Tensor Imaging: usually, 3 × 3 symmetric semidefinite positive.
 - Stress Tensor: 3 × 3 symmetric.
 - Strain Tensor: 3×3 symmetric.
- New processing algorithms to deal with tensor images.
- How is the performance of these algorithms evaluated?.
 - Quantitatively
 - Qualitatively

Motivation

Motivation

How to measure the algorithm performance?

Emma Muñoz-Moreno et al. (LPI)

Tensor Quality Assessment

Quantitative evaluation:

- Compute a scalar image from the tensor image and compute conventional quality measures.
- Part of the tensor information is ignored.

• Qualitative evaluation:

- Visual inspection.
- Subjective evaluation.
- Scalar images are used to visualize the tensor data. Part of the tensor information is ignored

- Quantitative evaluation:
 - Compute a scalar image from the tensor image and compute conventional quality measures.
 - Part of the tensor information is ignored.

Qualitative evaluation:

- Visual inspection.
- Subjective evaluation.
- Scalar images are used to visualize the tensor data. Part of the tensor information is ignored

- Quantitative evaluation:
 - Compute a scalar image from the tensor image and compute conventional quality measures.
 - Part of the tensor information is ignored.
- Qualitative evaluation:
 - Visual inspection.
 - Subjective evaluation.
 - Scalar images are used to visualize the tensor data. Part of the tensor information is ignored

- Quantitative evaluation:
 - Compute a scalar image from the tensor image and compute conventional quality measures.
 - Part of the tensor information is ignored.
- Qualitative evaluation:
 - Visual inspection.
 - Subjective evaluation.
 - Scalar images are used to visualize the tensor data. Part of the tensor information is ignored

A quantitave measure that takes into account all the tensor information is needed

Which is 'better'?

Which is 'better'?

How to measure the image quality?

Emma Muñoz-Moreno et al. (LPI)

Tensor Quality Assessment

• Error based measures: MSE, PMSE

• Structural based measures vs. pointwise measures.

SSIM

3 levels of comparison: Luminance, contrast and structural.

$$SSIM(I, J)(\mathbf{x}) = \frac{(2\mu_I(\mathbf{x})\mu_J(\mathbf{x}) + C_1)(2\sigma_{IJ}(\mathbf{x}) + C_2)}{(\mu_I(\mathbf{x})^2 + \mu_J^2 + C_1)(\sigma_I(\mathbf{x})^2 + \sigma_J(\mathbf{x})^2 + C_2)}$$

QILV

$$\mathsf{QILV}(I,J) = \frac{2\mu_{V_I}\mu_{V_J}}{\mu_{V_I}^2 + \mu_{V_J}^2} \cdot \frac{2\sigma_{V_I}\sigma_{V_J}}{\sigma_{V_I}^2 + \sigma_{V_J}^2} \cdot \frac{\sigma_{V_I}v_J}{\sigma_{V_I}\sigma_{V_J}}$$

• Error based measures: MSE, PMSE

• Structural based measures vs. pointwise measures.

SSIM

3 levels of comparison: Luminance, contrast and structural.

$$SSIM(I, J)(\mathbf{x}) = \frac{(2\mu_I(\mathbf{x})\mu_J(\mathbf{x}) + C_1)(2\sigma_{IJ}(\mathbf{x}) + C_2)}{(\mu_I(\mathbf{x})^2 + \mu_J^2 + C_1)(\sigma_I(\mathbf{x})^2 + \sigma_J(\mathbf{x})^2 + C_2)}$$

QILV

$$\mathsf{QILV}(I,J) = \frac{2\mu_{V_I}\mu_{V_J}}{\mu_{V_I}^2 + \mu_{V_J}^2} \cdot \frac{2\sigma_{V_I}\sigma_{V_J}}{\sigma_{V_I}^2 + \sigma_{V_J}^2} \cdot \frac{\sigma_{V_I}v_J}{\sigma_{V_I}\sigma_{V_J}}$$

Error based measures: MSE, PMSE

• Structural based measures vs. pointwise measures.

SSIM

3 levels of comparison: Luminance, contrast and structural.

$$SSIM(I, J)(\mathbf{x}) = \frac{(2\mu_I(\mathbf{x})\mu_J(\mathbf{x}) + C_1)(2\sigma_{IJ}(\mathbf{x}) + C_2)}{(\mu_I(\mathbf{x})^2 + \mu_J^2 + C_1)(\sigma_I(\mathbf{x})^2 + \sigma_J(\mathbf{x})^2 + C_2)}$$

QILV

$$\mathsf{QILV}(I,J) = \frac{2\mu_{V_I}\mu_{V_J}}{\mu_{V_I}^2 + \mu_{V_J}^2} \cdot \frac{2\sigma_{V_I}\sigma_{V_J}}{\sigma_{V_I}^2 + \sigma_{V_J}^2} \cdot \frac{\sigma_{V_I}v_J}{\sigma_{V_I}\sigma_{V_J}}$$

- Error based measures: MSE, PMSE
- Structural based measures vs. pointwise measures.

SSIM

3 levels of comparison: Luminance, contrast and structural.

$$SSIM(I, J)(\mathbf{x}) = \frac{(2\mu_I(\mathbf{x})\mu_J(\mathbf{x}) + C_1)(2\sigma_{IJ}(\mathbf{x}) + C_2)}{(\mu_I(\mathbf{x})^2 + \mu_J^2 + C_1)(\sigma_I(\mathbf{x})^2 + \sigma_J(\mathbf{x})^2 + C_2)}$$

QILV

$$\mathsf{QILV}(I,J) = \frac{2\mu_{V_I}\mu_{V_J}}{\mu_{V_I}^2 + \mu_{V_J}^2} \cdot \frac{2\sigma_{V_I}\sigma_{V_J}}{\sigma_{V_I}^2 + \sigma_{V_J}^2} \cdot \frac{\sigma_{V_I}v_J}{\sigma_{V_I}\sigma_{V_J}}$$

- Error based measures: MSE, PMSE
- Structural based measures vs. pointwise measures.

SSIM

3 levels of comparison: Luminance, contrast and structural.

$$SSIM(I, J)(\mathbf{x}) = \frac{(2\mu_I(\mathbf{x})\mu_J(\mathbf{x}) + C_1)(2\sigma_{IJ}(\mathbf{x}) + C_2)}{(\mu_I(\mathbf{x})^2 + \mu_J^2 + C_1)(\sigma_I(\mathbf{x})^2 + \sigma_J(\mathbf{x})^2 + C_2)}$$

QILV

Based on local variance distribution

$$\mathsf{QILV}(I,J) = \frac{2\mu_{V_I}\mu_{V_J}}{\mu_{V_I}^2 + \mu_{V_J}^2} \cdot \frac{2\sigma_{V_I}\sigma_{V_J}}{\sigma_{V_I}^2 + \sigma_{V_J}^2} \cdot \frac{\sigma_{V_IV_J}}{\sigma_{V_I}\sigma_{V_J}}$$

Emma Muñoz-Moreno et al. (LPI)

Main idea: extend Image quality assessment indexes to Tensor field quality assessment

- Usually MSE: mean value of the Frobenius norm of the difference between tensors; mean Euclidean distance (MED).
- Every tensor components should be taken into account.
- Structural based measures should be adapted to tensor images.
- Statistics of the tensor images are required. How are tensor statistics computed?

- Usually MSE: mean value of the Frobenius norm of the difference between tensors; mean Euclidean distance (MED).
- Every tensor components should be taken into account.
- Structural based measures should be adapted to tensor images.
- Statistics of the tensor images are required. How are tensor statistics computed?

- Usually MSE: mean value of the Frobenius norm of the difference between tensors; mean Euclidean distance (MED).
- Every tensor components should be taken into account.
- Structural based measures should be adapted to tensor images.
- Statistics of the tensor images are required. How are tensor statistics computed?

- Usually MSE: mean value of the Frobenius norm of the difference between tensors; mean Euclidean distance (MED).
- Every tensor components should be taken into account.
- Structural based measures should be adapted to tensor images.
- Statistics of the tensor images are required. How are tensor statistics computed?

- Suppose the tensor T describes a transformation, and T⁻¹ is the inverse transformation. Their composition T⁻¹T is the identity tensor. Their mean should be the identity tensor-> Geometric means are required.
- Swelling effect. The determinant of the mean tensor can be higher than the determinant of the individual tensor if Euclidean mean is computed.
- In some cases, tensor definite or semidefinite positiveness constraints should be preserve-> Riemmanian metrics that avoid negative eigenvalues are used.

- Suppose the tensor T describes a transformation, and T⁻¹ is the inverse transformation. Their composition T⁻¹T is the identity tensor. Their mean should be the identity tensor-> Geometric means are required.
- Swelling effect. The determinant of the mean tensor can be higher than the determinant of the individual tensor if Euclidean mean is computed.
- In some cases, tensor definite or semidefinite positiveness constraints should be preserve-> Riemmanian metrics that avoid negative eigenvalues are used.

- Suppose the tensor T describes a transformation, and T⁻¹ is the inverse transformation. Their composition T⁻¹T is the identity tensor. Their mean should be the identity tensor-> Geometric means are required.
- Swelling effect. The determinant of the mean tensor can be higher than the determinant of the individual tensor if Euclidean mean is computed.
- In some cases, tensor definite or semidefinite positiveness constraints should be preserve-> Riemmanian metrics that avoid negative eigenvalues are used.

- Suppose the tensor T describes a transformation, and T⁻¹ is the inverse transformation. Their composition T⁻¹T is the identity tensor. Their mean should be the identity tensor-> Geometric means are required.
- Swelling effect. The determinant of the mean tensor can be higher than the determinant of the individual tensor if Euclidean mean is computed.
- In some cases, tensor definite or semidefinite positiveness constraints should be preserve-> Riemmanian metrics that avoid negative eigenvalues are used.

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

Tensor Image Quality Assessment

Framework

- Some frameworks to compute statistics of tensor images have been defined.
- LogEuclidean framework:
 - The logarithm of the tensor is computed and their components are arranged in a vector.
 - Statistics are computed in the vector space using Euclidean metric.
 - Return to the original space by means of the exponential.

- Translate tensors to the LE domain.
- Compute the required statistics of the tensor image in the LE domain.
- Compute scalar quality indexes for each LE-vector component-> Quality index vector.
- Compute the norm of the quality index vector and normalize it with respect to the maximum allowed value.

Translate tensors to the LE domain.

- Compute the required statistics of the tensor image in the LE domain.
- Compute scalar quality indexes for each LE-vector component-> Quality index vector.
- Compute the norm of the quality index vector and normalize it with respect to the maximum allowed value.

- Translate tensors to the LE domain.
- Compute the required statistics of the tensor image in the LE domain.
- Compute scalar quality indexes for each LE-vector component-> Quality index vector.
- Compute the norm of the quality index vector and normalize it with respect to the maximum allowed value.

- Translate tensors to the LE domain.
- Compute the required statistics of the tensor image in the LE domain.
- Compute scalar quality indexes for each LE-vector component-> Quality index vector.
- Compute the norm of the quality index vector and normalize it with respect to the maximum allowed value.

- Translate tensors to the LE domain.
- Compute the required statistics of the tensor image in the LE domain.
- Compute scalar quality indexes for each LE-vector component-> Quality index vector.
- Compute the norm of the quality index vector and normalize it with respect to the maximum allowed value.

Measures

Three measures are compared:

- Pointwise Mean Euclidean Distance (MED)
- Tensor-adapted QILV.
- Tensor-adapted MSSIM.

Synthetic Tensor Field

- Built for the experiments.
- The golden standard: 2D, 128×128 .
- Built considering DTI and Stejskal-Tanner equation.
- Degradation over DWI

Measures

Three measures are compared:

- Pointwise Mean Euclidean Distance (MED)
- Tensor-adapted QILV.
- Tensor-adapted MSSIM.

Synthetic Tensor Field

- Built for the experiments.
- The golden standard: 2D, 128 \times 128.
- Built considering DTI and Stejskal-Tanner equation.
- Degradation over DWI

Experiments

-	-				-	-															-		-		-				-	-	-
												1		1	1	÷		1													
-												н		1	1	÷		1													
-					-	-						н	1	1	1	1		1	н		-		-		-		-				-
-	-	-		-	-	-	-	-	-			÷	1	1	1	1		1	н		-	-	-	-	-	-		-	-	-	-
-	-	-	-		-	-	-	-	-			×.	1	1	1	1		1	н		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-		х	1	1	1	1	1		1	н		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-		н	1		1	11	1		1	н		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-			1		1	1	1		1			-	-	-	-	-	-	-	-	-	-	-
-					-	-	-					÷		÷.	÷.	÷.	1	÷.			-		-		-						-
										÷	٠	٠	÷	ė	ò	٠	٠	÷	٠	٠											
										۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
											۰		۰	۰	۰	۰	۰	۰		۰											
													٠	٠	۰	٠	•	•													
											٠	٠	٠	٠	۰	٠	۰	٠	٠	٠											
										۰	۰	۰	۰		۰	۰	۰	۰	۰	۰											
										۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
										۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
										۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
											0	0	0	0	۰	۰		0	0	0											
										•	0	0	0				•	0	0	0											
-	-	-	-	-	-	-	-	-	-		н	1	1	1	н	1		1	н	1	-	-	-	-	-	-	-	-	-	-	-
-					-	-						1	1	1	н	1		1			-		-		-						-
										1		1		1	1	÷		1													
-	-	-			-	-		-	-			1		1				1			-	-	-	-	-			-	-	-	-
-	-	-	-	-	-	-	-	-	-			1		1	1			1	1		-	-	-	-	-	-	-	-	-	-	-
-					-	-					н	1	1	1	н			1	1		-		-		-					-	-
-	-	-	-		-	-	-	-	-		н	1	1	1	н			1	н		-	-	-	-	-		-	-	-	-	-
		-								1	1	1	1	1	1	1	1	1	1										-		
-										1		1	1	1	н	1	1	1	1												-
-		-						-		1		1		н	н	D.	1	1											-	-	-
-												10		10	11	11		10													

-	-		-	-	-	-	-	-	-	٠	1	н	1		1	н	1		÷.	1		-	-	-	-	-	-	-	-	-	-
-	-	-	-		-	-	-		-	٠	1	н	1		1	н	1		÷.	I.	-	-		-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-	٠	1	H.	1		1	н	1		÷.	т	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	٠	1	1	1		1	н	н		÷.	т	٠	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	٠	1	1	1		1	н	н		÷.	т	+	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	٠	1	1	1		1	х	÷	1	÷.	1	+	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	٠	1	1	I.	÷.	ł.	I.	×.	1	ŧ.	I.	+	-	-	-	-	-	-	-	-	-	-
-	-		-	-	-	-	-	-	-	٠	1	н	1		1	н	1		÷.	1	٠	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	٠	4	н	1		1	н	1	1	÷.	I.	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-		-	-	-		-	٠	1	н	1		1	н	1		÷.	т	-	-		-	-	-	-	-	-		-
										-	0	0				٠		0	0	0	-										
										-	۰	۰	۰	۰	۰	۰	۰	۰	٠	۰											
										-			۰	۰	•	0	0	۰	۰	۰	-										
										-			۰	•	•	0	0	۰	۰	0											
										-			۰	۰	۰	۰		۰	۰	۰											
										-	0	0	۰	۰	۰	۰	۰	۰	٥	۰											
										-	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
										-	۰	۰	۰	۰	۰	۰	۰	۰	۰	٥											
										-	0	0		۰	0	0	0	٠	۰	۰											
										-	۰	۰	۰	۰	۰			۰	۰	۰											
										+	۰	۰	۰	۰				۰	۰	۰											
													۰	٠	٠				۰	۰											
											3	8	з.	2	2	5	3	з.	з.	8	٠										
											3	3	з.	2	2	5	3		5	3	-										
											1	4		2	2				1	1										-	
		-									1	1							1	1											
		-									Ь.	N.	х.	х.	2	5	3	з.	х.	Ŀ.											
		-								٠	8	ь.	х.	з.	2	5	3	з.	а.	8										-	
											3	ь.	а.	з.	2	5	3	з.	з.	8											
											Ľ.	Ľ.	1	1	ť.	1	1	1	1	Ľ.											
		1									Ľ.	Ľ.	1	1	1	1	1	1	1	Ľ.											
	-	-	-	-	-	-	-	-	-	1	1	1			1	1	1		1	1		-	-	-	-	-	-	-	-	-	-

-	_	_	-	-	_	_	_	-	-								11		ά.			-	-	-	-	_	_	_	-		
-											1	ŝ.	4	÷		÷.	ñ.	÷.	í.	1	2								2		
-	_			_	_	_	_			÷		6	1	÷		÷	÷.	÷.	ŝ.	÷						_	_	_	_		
_	_	_	_	_	_	_	_	_		÷		÷.		÷		÷.	÷.	÷.	÷.	а.			_	_	_	_	_	_	_		
-	_	_	_	-	_	_	_			÷	1	1		4		÷.	÷.	А.	1	а.			_	-	_	_	_	_	-		
_	_	-	-	-	-	-	_	-	2	2	1	1		2		4	1	А.	1	2	2	2	-	-	-	-	-	-	-		
-	_	-	-	-	-	-	-	÷	÷	-	÷	í.	÷.	÷		÷.	ñ.	÷.	í.	÷		÷	÷	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-				ñ.	1	î.		÷.	÷.	÷.	÷.				-	-	-	-	-	-	-	-	
-								-				ŝ.	÷.	î.	i.	÷.	÷.	÷.	÷.												
										÷		÷	÷.	÷.	÷.	÷	÷	÷	÷	÷											
									_	-	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	-	_									
										_		÷	÷	÷	÷	÷	÷.	÷.	٠		-										
										-	-	÷	÷	ô	ô	ê	ê	÷	•	+	-										
										-	-	÷	ē	õ	õ	ē	ē	ē	•	+	-										
										-	-	٠		٠	٠	٠	۰	۰	•	-	-										
										-	-	٠	÷	ė	ė	ė	ė	÷	•	-	-										
										-	-	٠	÷	ò	÷	ø	ø	ò	٠	-	-										
										-	-	٠	۰	۰	۰	۰	۰	۰	٠	-	-										
										-	-	٠	۰	۰	۰	۰	۰	۰	٠	-	-										
										-	٠	۰	0	0	0	0	0		٠	٠	-										
									-	٠	٠	٠		۰			.0	.0	۰	٠	-										
									-	٠	٠	٠		٠					٠	٠	-										
											٠	٠	1	1	1	4	4		٠	٠	-										
-										٠	٠			1		1			٠	٠	٠										
-							-	-	-	٠	٠			1		1				٠	٠	-	-					-	-		-
-										٠	٠	1	1	1		1	1	1	•	٠	٠										
-										٠	٠	1	1	1		1	1	1			٠										
-										٠	٠	,							,	٠	٠								-		
-										٠	٠	2	2	3		15	15	2	2	1	٠								-		
-										٠	٠	1	1	3		1	1	1	1	1	•										
-										٠	٠	1	1	3		1	1	1	1		•										
		-	-	-		-	-	-	-	٠	٠	1				1	1		۲	٠	•	-	-	-	-	-	-	-	-	-	-

Blur : $I_{5\times 5}$ Blur : $I_{21\times 21}$

-	-			-	-				-		÷.		1		н		н		1		-			-			-		-	-	-
-		-	-	-			-	-	-		÷.	1		1		х		1		1	-	-	-		-	-	-	-		-	-
-	-	-		-	-	-	-	-	-		÷.	1								1	-	-	-	-			-	-	-		
-	-	-	-	-	-	-	-	-	-		÷.	1	1				1		1	1	-		-	-	-	-	-	-	-	-	-
-	-	-		-	-	-	-	-	-				h.	1				÷	4	1	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-		1	1	1	1		х		1		1	-	-	-	-	-	-		-	-	-	-
-	-	-	-		-	-	-		-		÷.	1	1	ł.	×.		1	÷	1	1	-	-		-	-	-	-	-	-	-	-
-	-	-	-	-		-	-	-	-		÷.	1	F.				1	1		1	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-		1	1		1	×.		1	ч	1	1	-	-	-	-	-	-	-	-	-	-	-
-			-	-	-				-		×.	1	1	1		1		1	1	1		-					-		-		-
										•	۰	۰	•	0	۰	۰		0	۰	0											
										۰	۰	۰	0	۰	0		•	0	۰												
										۰	0	۰	۰	۰		۰	۰	0	۰	0											
										۰	۰	0	۰	۰	۰	۰	0	0	0	0											
										۰	۰	۰	۰	۰	۰	0	۰	۰		۰											
										۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰											
										۰	۰	۰	۰	۰	۰	۰	0	۰	۰	0											
										۰	۰	۰	۰	۰	۰	۰	0	۰	۰	0											
										۰	۰	۰	۰	۰	0	۰	۰	۰	۰	۰											
										0	0	0	۰	۰	۰	۰	۰	۰	0	0											
										۰	0	۰	۰	۰	۰	0	0	۰	0	۰											
-	-			-	-	-			-	÷.	1		1					1	1	1		-		-	-						-
											1	1	1	1		1	1	1	1	1											
					-						1				1			1	1	1											
											1				1											-					
					-							1							1												
											1			1					1	1											
											1		×.	1																	
					-						×.	1	1													-					
											1		1		1											-					
														1						4											
			-	-			-		-		P.	P.	1	×.		1	1	1		1		-			-		-				

Noise: $I_{\sigma=20}$

Noise: $I_{\sigma=80}$

Emma Muñoz-Moreno et al. (LPI)

 !!!!!!!
 000000
 !!!!!!!
 !!!!!!!

 $I_{10\%}$

125%

TTT-----

Emma Muñoz-Moreno et al. (LPI)

	$I_{5 \times 5}$	<i>I</i> _{9×9}	<i>I</i> _{15×15}	$I_{21 \times 21}$	$I_{\sigma=20}$	$I_{\sigma=40}$	$I_{\sigma=60}$	$I_{\sigma=80}$
MSSIM	0.90	0.84	0.82	0.80	0.36	0.31	0.29	0.27
QILV	0.72	0.71	0.70	0.67	0.70	0.59	0.57	0.53
MED(×10 ⁻⁶)	0.07	0.32	0.35	0.39	0.02	0.07	0.17	0.27
				I _{10%}	I _{25%}			
		MS	SSIM	0.99	0.91			
		C	2ILV	0.99	0.92			
		MED((×10 ⁻⁶)	0.07	0.41			

QILV vs SSIM

- Noise has more influence in MSSIM.
- Blurring has more influence in QILV.
- The behaviour is similar to the scalar case.

	$I_{5 \times 5}$	<i>I</i> _{9×9}	<i>I</i> _{15×15}	$I_{21 \times 21}$	$I_{\sigma=20}$	$I_{\sigma=40}$	$I_{\sigma=60}$	$I_{\sigma=80}$
MSSIM	0.90	0.84	0.82	0.80	0.36	0.31	0.29	0.27
QILV	0.72	0.71	0.70	0.67	0.70	0.59	0.57	0.53
MED(×10 ⁻⁶)	0.07	0.32	0.35	0.39	0.02	0.07	0.17	0.27
				I _{10%}	I _{25%}			
		MS	SSIM	0.99	0.91			
		C	2ILV	0.99	0.92			
		MED((×10 ⁻⁶)	0.07	0.41			

QILV vs SSIM

- Noise has more influence in MSSIM.
- Blurring has more influence in QILV.
- The behaviour is similar to the scalar case.

Structural vs. Pointwise

- MED is high although the structure remains similar.
- Structural measures are few influenced by changes in the tensor size if structure is preserved.

Tensor based vs Scalar based

Original field is compared with reoriented tensors $\tau \in [0, \pi]$.

- MSSIM and QILV computed over FA: The value is constant for every rotation angles.
- MSSIM and QILV over tensor: varies with the rotation angle; they take into account the tensor orientation
- $\tau = \frac{\pi}{16}$, MSSIM= 0.78, QILV=0.67
- $\tau = \frac{\pi}{4}$, MSSIM=0.71, QILV=0.56.

Structural vs. Pointwise

- MED is high although the structure remains similar.
- Structural measures are few influenced by changes in the tensor size if structure is preserved.

Tensor based vs Scalar based

Original field is compared with reoriented tensors $\tau \in [0, \pi]$.

- MSSIM and QILV computed over FA: The value is constant for every rotation angles.
- MSSIM and QILV over tensor: varies with the rotation angle; they take into account the tensor orientation
- $\tau = \frac{\pi}{16}$, MSSIM= 0.78, QILV=0.67
- $\tau = \frac{\pi}{4}$, MSSIM=0.71, QILV=0.56.

No. Frank	X	S.		S.C.	3 B. B.S.		
Fi	ixed image	Moving in	mage	Registere without		Register with	red
				reorientati		reorienta	tion
		Moving	Reg.	without reorient	Reg.	with reorient	
	Tensor MSSIM	0.4566		0.6549		0.8485	1
	Tensor QILV	0.2624		0.4514		0.6363	
	MED	0.1588		0.0652		0.0457	
	FA MSSIM	0.5742		0.9700		0.9700	1
	FA QILV	0.4865		0.8710		0.8710	1
	<u> </u>						

 A methodology to extend quality measures to tensor data is proposed.

- Considers every tensor component.
- Allows the extension of structural based measures.
- The behaviour of tensor adapted measures for tensor images is similar to the behaviour of the original quality measures for scalar images.
- Tensor adapted measures are required to correctly evaluate the performance of algorithm that deals with tensor images.
- More specific measures could be defined for specific image modalities.

• A methodology to extend quality measures to tensor data is proposed.

- Considers every tensor component.
- Allows the extension of structural based measures.
- The behaviour of tensor adapted measures for tensor images is similar to the behaviour of the original quality measures for scalar images.
- Tensor adapted measures are required to correctly evaluate the performance of algorithm that deals with tensor images.
- More specific measures could be defined for specific image modalities.

- A methodology to extend quality measures to tensor data is proposed.
 - Considers every tensor component.
 - Allows the extension of structural based measures.
- The behaviour of tensor adapted measures for tensor images is similar to the behaviour of the original quality measures for scalar images.
- Tensor adapted measures are required to correctly evaluate the performance of algorithm that deals with tensor images.
- More specific measures could be defined for specific image modalities.

- A methodology to extend quality measures to tensor data is proposed.
 - Considers every tensor component.
 - Allows the extension of structural based measures.
- The behaviour of tensor adapted measures for tensor images is similar to the behaviour of the original quality measures for scalar images.
- Tensor adapted measures are required to correctly evaluate the performance of algorithm that deals with tensor images.
- More specific measures could be defined for specific image modalities.

- A methodology to extend quality measures to tensor data is proposed.
 - Considers every tensor component.
 - Allows the extension of structural based measures.
- The behaviour of tensor adapted measures for tensor images is similar to the behaviour of the original quality measures for scalar images.
- Tensor adapted measures are required to correctly evaluate the performance of algorithm that deals with tensor images.
- More specific measures could be defined for specific image modalities.

Thanks for your attention