

¹ LABORATORIO DE PROCESADO DE IMAGEN UNIVERSIDAD DE VALLADOLID

S³ Division of Imaging Sciences and Biomedical Engineering, King's College London

An Automated Tensorial Classification Procedure for Left Ventricular Hypertrophic Cardiomyopathy

S. Sanz-Estébanez¹, J. Royuela-del-Val¹, S. Merino-Caviedes¹,
A. Revilla-Orodea², T. Sevilla², L. Cordero-Grande³,
M. Martín-Fernández¹ and C. Alberola-López¹

Introduction

• Cardiomyopathies are complex heart muscle diseases caused by multiple etiologies and heterogeneous phenotypic expressions.

• Functional tensorial descriptors from MR-Tagging (HARP) provide quantitative analysis of cardiac function and its anomalies.

• Multi-stage scheme for hypertrophic cardiomyopathies classification composed by different machine learning methods.

Introduction: State of the art

References	Modalities	Methodology	Contributions
Cordero-Grande, 2013	MR-Cine and LE-MR	Non-rigid registration	Mechanical characterization of fibrotic tissue
Gopalakrishnan, 2014	MR-Cine	Global biomarker extraction	Sequential classification of pediatric cardiomyopathies
Piella, 2010	MR-Tagging	Non-rigid registration	Segmental strain tensor analysis in athletes, healthy and HCM patients
Rahman, 2015	ECG	Signals heartbeat features	Identification of pathologic behaviors on heartbeats
Shimon, 2000	Echocard.	Block-matching	GLS correlated with global presence of fibrosis
Richard,2003	ECG, blood, echo.	Genetic analyses	Distribution of disease genes in HCM-genotype

 We propose a multi-stage pipeline to classify heterogeneous groups of HCM according to the characteristics of the different pathologies. Hypertrophic patients were previously diagnosed according clinical history and MR information (47 cases).

- 23 were diagnosed as primary HCM (16 male and 8 female, aged 57.1±17 years).
- 10 were diagnosed with secondary forms of hypertrophy, such as hypertensive heart disease or aortic stenosis (6 male and 4 female, aged 69.5±10.2 years).
- 14 were healthy non-athletes controls (8 male and 6 female, aged 47.3±21.4 years).

Materials: Acquisition

Sequence	MR-Tagging SA	MR-Tagging LA	MR-Cine SA	MR-Cine LA
Δ_p	1.21-1.32	1.21-1.34	0.96-1.18	0.98-1.25
Δ_l	10	10	8-10	8-10
N _t	16-25	15-27	30	30
N _l	10-15	1-3	10-15	1-3
N_p	256-432	240-340	240-320	256-448
T _R	2.798-6.154	2.903-4.507	2.902-3.9178	2.858-3.529
T_E	1.046-3.575	1.097-2.897	1.454-2.222	1.251-2.132
α	7-25	45	10-45	45

Table 2. Detailed sequences. Δp : Pixel resolution (mm). Δl : Slice Thickness (mm). Nt: Temporal phases. Nl: Number of slices. Np: Number of pixels. TR: Repetition Time (ms). TE: Echo Time (ms). α : Flip Angle (degrees).

Methods: Alignment

- MR-Cine manual segmentations mapped onto the MR-Tagging sequence by affine registration.
- MR-Tagging sequence detagged for suitable performance.
- The anatomical image shows a low variability (low pass signal), allowing suppressing the tag pattern by means of a notch filter.

Methods: LAD Reconstruction

- Redundant information when using SA and LA. HARP 3D requires 3 wave vectors.
 - 4 wave vectors K with their correspondent phase images Y(x) available.

$$\mathbf{Y}(\mathbf{x}) = \left[\frac{\partial^* \phi_{1,SA}}{\partial \mathbf{x}^T}(\mathbf{x}), \frac{\partial^* \phi_{2,SA}}{\partial \mathbf{x}^T}(\mathbf{x}), \frac{\partial^* \phi_{1,LA}}{\partial \mathbf{x}^T}(\mathbf{x}), \frac{\partial^* \phi_{2,LA}}{\partial \mathbf{x}^T}(\mathbf{x})\right]^T$$

- Material deformation gradient tensor F(x) obtained as: K = Y(x)F(x).
- Phase interferences, mainly near boundaries, give rise to multiple outliers.
- Least Absolute Deviation method (LAD) is suitable due to its robustness.
 - Solved by Iterative Re-Weighted Least Squares (l_1 norm minimization).

$$\mathbf{F}_{l+1}(\mathbf{x}) = (\mathbf{Y}^T(\mathbf{x})\mathbf{W}_l(\mathbf{x})\mathbf{Y}(\mathbf{x}))^{-1}\mathbf{Y}^T(\mathbf{x})\mathbf{W}_l(\mathbf{x})\mathbf{K},$$

Methods: Classification

Tensorial mechanical descriptors useful for HCM classification:

- Projected components of the strain tensor on the RLC space (polar coordinates).
- Rotation/Torsion as difference of curl or twist between apical and basal slices.
- Location of the zero crossing for rotation-related components.

Jiang and Yu. Quantitative Imaging in Medicine and Surgery, 2014

Methods: Classification

- Sigmoidal Normalization for outlier suppression.
- Fuzzy c-Means and SVM with quadratic and Gaussian kernels tested at every stage.
- Randomized Leave-10-out cross validation. Population rate unaltered along trials.

Results

- Affine registration methods tested with/without filtering.
- Improved performance in terms of Dice coefficient independently from metric.
- 3D tensors calculated using LS and LAD reconstruction methods.
- Error (FND) distribution between the 2D components and tensor from SA images.
- LAD estimator better behaves in presence of phase inconsistencies. CDF is left skewed despite of heavier tails.

Results: Confusion matrix

- Accurate multi-stage methodology for classifying HCM patients.
- Better sensitivity for control and primary HCM with respect to the secondary patients.
- No primaries are classified as controls and vice versa. Good performance as an screening tool.

	FCM		SVMq		SVMg			Mixed				
	Con	Sec	Pri									
Con	0.245	0.055	0	0.225	0.072	0.003	0.215	0.085	0	0.239	0.061	0
Sec	0.051	0.125	0.024	0.063	0.136	0.001	0.08	0.119	0.001	0.036	0.147	0.017
Pri	0.012	0.016	0.472	0	0.148	0.352	0.004	0.069	0.427	0	0.034	0.466

Table 3. Confusion matrixes. *Mixed approach consists of Fuzzy C-Means in stages 1 and 2.2 and SVM with Gaussian kernel in stage 2.1.

Conclusions

- Robust 3D tensor estimation technique from SA and LA MR-Tagging with a novel homomorphic filtering preprocessing step leading to multimodal schemes.
- Phase interferences have proven to be a major issue in HARP analysis. LAD estimator improves robustness for overdetermined reconstruction.
- Different machine learning methods tested. A mixed approach takes advantage of each method improving performance with respect to homogeneous classifiers.
- Although the classifier is stablished for HCM, other cardiovascular diseases can be classified even with biomarkers extracted from different technologies.