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RESUMEN
La caracterización de tejidos resulta de gran importancia en imagen médica

pues permite diferenciar entre tejidos sanos y enfermos. Existen multitud de
técnicas para proporcionar esta caracterización. Las más comunes son aquellas
basadas en reconocimiento de patrones, que examinan caracterı́sticas de las tex-
turas que les permitirán extrapolarlas para obtener una clasificación de tejidos.
Otras aproximaciones tienen en cuenta los modelos fı́sicos subyacentes del proceso
de adquisición y procuran caracterizar los mecanismos que producen las señales
recibidas. La principal ventaja de estas técnicas es que su uso no está limitado
por su capacidad de aprender patrones de grupos de entrenamiento. Al contrario,
dependen de la idoneidad del modelo fı́sico escogido. Esta Tesis estudia la caracte-
rización de tejidos en imágenes ultrasónicas (US) y de resonancia magnética (MRI)
a partir de los modelos fı́sicos subyacentes que originan los patrones de naturaleza
aleatoria resultantes.

La descripción estadı́stica de la señal de US permite aportar una importante
información de los tejidos que reflejan la señal de eco y que presentan un patrón ca-
racterı́stico llamado speckle. Los parámetros de los modelos estadı́sticos permiten
entonces identificar caracterı́sticas de los tejidos que sirven como importantes de-
scriptores para lograr una clasificación. Muchos métodos de segmentación, fil-
trado o clasificación se basan en técnicas Bayesianas que precisan de un modelo
estadı́stico acertado. Esto hace que el campo del modelado de la envolvente de
señales de US haya sido muy prolı́fico en los últimos años. No obstante, la com-
plejidad de la composición de tejidos puede presentar combinaciones de diferentes
naturalezas en la celda de resolución. Además, las transformaciones de señal
que se llevan a cabo en el proceso de adquisición dificultan una apropiada car-
acterización probabilı́stica de las señales. Todo esto hace que exista una falta de
consenso sobre las distribuciones probabilı́sticas que modelan los tejidos en US.

A pesar de que la fı́sica que gobierna el proceso de adquisición de US y MRI
son radicalmente distintas, las distribuciones que modelan el ruido en MRI son
similares a las de US. En el caso de MRI la presencia de ruido afecta a la eficacia
de los métodos de postprocesado, como pueden ser la segmentación, el registrado
o estimación, y ello hace que las aplicaciones de filtrado sean de gran interés. Por
tanto, las técnicas de caracterización usadas en US son potencialmente de gran
utilidad para fines de filtrado en MRI.

Esta Tesis propone métodos para caracterizar la naturaleza aleatoria de los
tejidos en US en diferentes etapas de la adquisición. Con este propósito, las prin-
cipales suposiciones que original los modelos probabilı́sticos son reconsideradas
ası́ como la influencia que los procesos de adquisición tienen sobre ellos. Como
resultado, se proponen modelos probabilı́sticos de speckle en las etapas de inter-
polación y compresión logarı́tmica. Se estudia y modela también la heterogeneidad
de los tejidos ası́ como distribuciones que tienen en cuenta la respuesta altamente
impulsiva del speckle. Además, se proponen algunos métodos matemáticos para
caracterizar las distribuciones de probabilidad.

El uso de los modelos propuestos proporciona las bases para desarrollar cuatro
aplicaciones: un clasificador probabilı́stico de tejidos en US, un filtro anisótropo
de reducción de speckle, un método de estimación de parámetros de compresión
logarı́tmica realista y un método de filtrado en MRI como extensión de los modelos
probabilı́sticos propuestos para US.





ABSTRACT
Tissue characterization in medical images is of paramount importance for diag-
nostic purposes, since it permits physicians to differentiate between healthy and
diseased tissues. Several techniques exist for providing such a characterization.
Most common ones make use of pattern recognition algorithms, which learn fea-
tures from textures and their capability of extrapolation allows them to provide
a classification of tissues. Other approaches make use of the underlying physical
processes of the acquisition and try to characterize the mechanisms that produced
the received signals. The main advantage of these techniques is that their perfor-
mance is not limited by their capability to learn patterns from training sets. Con-
versely, they depend on the accuracy of the assumed physical models. The Thesis
here proposed studies tissue characterization from this perspective. Specifically,
it focuses on the probabilistic characterization of tissues in ultrasonic (US) and
magnetic resonance images (MRI), since their underlying physical models give rise
to probabilistic models describing the resulting patterns.

The statistical description of US provides an important information of the back-
scattered echo from tissues, which exhibits a characteristic pattern known as
speckle. The parameters of the statistical models allow identifying the features
of tissues and provide important descriptors for classification. Many segmenta-
tion, filtering, or classification algorithms rely on a Bayesian approach where an
accurate statistical model becomes necessary. As a consequence, modeling the
statistics of US envelop signals has been a very active area. However, the complex
composition of tissues that may show combinations of different kinds of speckle
in the resolution cell, and the transformations of data during the acquisition pro-
cess, make it difficult to provide a proper probabilistic description of signals. This
results in the absence of agreement on the probabilistic distributions that charac-
terize tissues in US.

Though the underlying physics that govern the acquisition of MRI and US are
completely different, the distributions that model noise in MRI are similar to those
of the ultrasonic speckle. In the case of MRI, the presence of noise affects the
performance of post-processing techniques such as segmentation, registration, or
estimation and, thus, the application of techniques to remove the noise in MRI
are of great interest. Hence, tissue characterization techniques used in US can be
potentially used for denoising purposes in MRI.

This Thesis aims at characterizing the random nature of tissues in US imaging
at different steps of the acquisition process. For this purpose, the main assump-
tions of the probabilistic models for speckle are revisited, as well as how they are
influenced by the different acquisition stages. As a result, new models for the
probability distributions of interpolated, filtered, and log-compressed speckle are
proposed. The heterogeneity of tissues is also studied and modeled along with other
probabilistic distributions that consider the highly impulsive response of speckle.
Additionally, new mathematical tools are developed to characterize probability dis-
tributions.

The proposed models provide the bases for four new applications within the
scope of US and MRI processing: the probabilistic classification of tissues in US;
the reduction of speckle via anisotropic filtering; the estimation of the parameters
of log-compressing in US acquisition; and the denoising of MRI as an extension of
the probabilistic models devised for US.
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1
Introduction and Summary

In my beginning is my end.
Thomas S. Elliot, 1888–1965.

Among the non-invasive imaging modalities, ultrasound imaging is, proba-
bly, the most widespread technique. The main reason of its success is that
it provides a low-cost way to help diagnosing and can be used in many med-
ical applications. However, ultrasonic (US) images are characterized by the
presence of a peculiar granular pattern, the so-called speckle.

This term was adopted from the field of laser optics [Goo75] in the early
sixties due to the similarity of the patterns between laser optics and ul-
trasonics. Although the nature of the speckle in US images stems from
a different phenomena, there still share some similarities. Both patterns
come from the random interference of many coherent wave components re-
flected from different microscopic elements. In the case of US, the volume,
the number of effective scatterers, and the acquisition process contribute
to the formation of speckle [Elt06].

The analysis of backscattered echo from tissues needs a proper descrip-
tion of the US signals. For this purpose, and due to the random nature of
the speckle, several statistical models have been proposed in the literature.
This characterization can be used either for segmentation [Des09], classi-
fication [Sea11] or for filtering the speckle itself [Yu02, AF06, Kri07]. The
latter usually considers the speckle as an undesired consequence, since it
degrades resolution and adds spatial noise to the image. Thus, filtering is
commonly applied as a preprocessing step for further segmentation of re-
gions of interest or to extract relevant measures for physiological analysis.

The statistical description of US signals provide an important informa-
tion of the backscattered echo from tissues. The parameters of the sta-
tistical models allow identifying the features of these tissues and provides
important descriptors for classification. Some of the filtering algorithms
relay on a Bayesian approach where an accurate statistical model becomes
necessary. As a consequence, modeling the amplitude statistics of US sig-
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nals has been a very active area. Thus, several statistical models have been
proposed in last decades.

Probably the most well-known is the Rayleigh model, which is a one-
parameter distribution which describes the so-called fully formed (or devel-
oped) speckle. This probabilistic distribution of the amplitude of US signals
describes the behavior of speckle when a high number of effective scatter-
ers is present in the resolution cell. However, real images show a deviation
from this model. This non-Rayleigh behavior can be due to a small number
of scatterers in the resolution cell or when there are some dominant com-
ponents in the cell. The most commonly accepted distributions that try
to model non-Rayleigh distributions are the Rice (fully resolved speckle), K
(partially formed speckle) and Homodyned K (partially resolved speckle).

Although those models are based on physical assumptions of the back-
scattering process, some other distributions have proven to provide a good
performance on real images. This is the case of Gamma [Tao06,Nil08] and
Nakagami [Sha00] distributions. The first is proposed as a two-parameter
distribution that describes the result of interpolated/filtered fully formed
speckle and also has shown good results in empirical tests among other dis-
tributions [Tao06,Nil08]. The Nakagami distribution proposed by Shankar
for the case of US characterization [Sha00] is also a two-parameter distri-
bution which generalizes the Rayleigh distribution. This distribution was
adopted from the models proposed to describe the statistics of the returned
radar echo.

The capability of the Nakagami distribution to model the backscatter-
ing from tissues for fully resolved and fully formed speckle render it one of
the most commonly accepted model for tissue characterization. However,
the tails of the probabilistic density functions of Nakagami, K, Rayleigh or
Gamma do not show the impulsive response of speckle which originates
heavier tails. In order to describe this impulsive response, a generalized
Nakagami distribution was proposed by Shankar [Sha01]. This is a three-
parameter model which has shown a better behavior than the Nakagami or
Rayleigh, an expected result since it is a generalization of the other models.
However, the generalized Nakagami distribution does not have closed-form
Maximum Likelihood (ML) estimates and, thus, it makes their use difficult.

In summary, there is no agreement on the probabilistic distributions
that model the different nature of tissues in US. This is due to the complex
composition of tissues that can show combinations of different kinds of
speckle in the resolution cell. Besides, the probabilistic nature of speckle
is affected by every acquisition step before the image is fully acquired.

Other modalities present similar probabilistic behaviors when the noise
of the image is analyze. The case of magnetic resonance imaging (MRI)
show some important similitudes with respect to the probabilistic mod-
els of speckle, though the inner nature of the noise patterns stems from
a completely different phenomena. Concretely, the noise in MRI is due to
the presence of zero-mean uncorrelated Gaussian noise with equal vari-
ance in both the real and imaginary parts of the complex spatial frequency
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space called the k-space. In these conditions, the noise in absence of signal
follows a Rayleigh distribution whereas the Rice distribution describes the
noisy signal [Gud95].

The presence of noise in MRI affects the performance of post-processing
techniques such as segmentation, registration or classification. Thus, the
application of techniques to remove the noise in MRI are of great interest.
The probabilistic distributions commonly used for characterizing the ob-
served noisy patterns for both US and MRI are similar. In both cases the
Rayleigh and Rice distributions as well as other more general distributions
are used for describing the image. Consequently, it seems reasonable that
all the techniques that ease the characterization of tissues through the ac-
quisition steps of US imaging can be extended and applied for the case of
MRI in order to develop new methods for noise removal.

In this Thesis we intend to characterize the random nature of tissues in
US imaging through the different steps of the acquisition process. To that
end, it will be necessary to develop some mathematical tools to character-
ize probabilistic distributions of models with an increasing complexity along
the acquisition process of the image. Once the tissues and noise are prop-
erly characterized, we propose some theoretical and practical contributions
to the field of US and MRI imaging.

1.1 Problem Statement

Filtering or segmenting applications based on Maximum Likelihood and
Maximum a posteriori approaches need a suitable probability densities esti-
mation in different regions. In the case of US imaging, these approaches are
usually derived from the analysis of acoustic physics and the information
available of the ultrasound probe. However, having the whole information
of the acquisition is not so common and many assumptions must be made
during the acquisition process. As an example, images provided by prac-
titioners usually do not include the acquisition parameters as gain and/or
contrast adjustment. Additionally, some of the steps of the acquisition pro-
cess are not known depending on the commercial firm of the ultrasound
machine.

A common way to deal with this lack of information on probability densi-
ties is to use empirical approximations which fit speckle patterns accurately
enough to provide good results for filtering or segmenting. This methodol-
ogy has been used by Tao et al. [Tao06] and Eltolft [Elt06] for different kind
of distributions and offers an empirical methodology to test the goodness
of fit of the distributions to real data avoiding the problem of propagating
the probabilistic distributions through the whole acquisition process. This
approach is a conventional technique in the field of statistical inference to
test the goodness of fit for different distributions and appears to be a good
choice whenever there is no information regarding the transforming pro-
cesses that change the probabilistic distributions of the received signals.
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Figure 1.1: Scheme of ultrasonic system components adapted from [Ali08]. This
scheme divides processing into three parts: Front-End, Mid-End and Back-end
processing. The classical probability distributions model the statistics of speckle
without considering Mid-End processing such as Echo Line Averaging, or Back-
End Processing such as bilinear interpolation.

In order to provide a relevant study of the probability distributions from
both the theoretical and empirical perspectives, all the steps of the acqui-
sition must be studied. In the next section, we explain the steps most com-
monly used throughout the acquisition process. Then, we provide the fun-
damentals of speckle from a stochastic perspective and discuss the absence
of agreement concerning the probability distributions for speckle charac-
terization. We also introduce an analysis of noise in MRI which links the
probabilistic characterization of speckle in US with the probability models
derived from the acquisition of MR images. The analysis of speckle and
MRI noise will lead us to establish the main objectives of this thesis and
the adopted methodology to achieve them.

1.1.1 Ultrasound Image Acquisition

The formation of US images begins with the emission of a pulse packet
which travels through the tissue. The backscattering produced by the scat-
terers in the resolution cell contribute to the change of the pulse shape
according to the characteristics of the media, i.e., the number of scatterers
as well as their size [Sea11,Sha00].

The ultrasound system focuses sound waves along a given scan line in
such a way that the waves constructively add together at the desired fo-
cal point. As the pulses propagate through the media, a backscattering
process is produced by any object they encounter along their propagation
path. The sound waves are focused into a focal point by means of a set of
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transducer elements which are energized with time-delayed pulses to pro-
duce the corresponding sound waves that propagate through the region of
interest. This process to focus the beam is commonly referred to as beam-
forming. The transducers act either as transmitters or receivers. They can
detect any reflected pressure wave produced by a change in tissue density
within the region of interest.

The received signals by the piezoelectric elements in the transducer pro-
duce low voltage signals that are scaled by using a variable controlled am-
plifier (VCA) before being sampled by an analog-to-digital converter (ADC).
The VCA is configured in such a way that the attenuation of the signal is
compensated.

In the receiver beamformer, the signals are scaled and delayed to permit
coherent summation of the signals. This new signal represents the beam-
formed signal for the focal points along a particular scan line. The beam-
former operations are usually performed in application-specific integrated
circuit (ASIC), field-programmable gate array (FPGA), DSP or a combination
of these components [Ali08].

After the beamforming, some preprocessing is performed depending on
the US modality and filters are commonly used to reduce band-pass noise.
In Doppler mode, the demodulation operation is followed by velocity and
turbulence estimation. A color transformation is then applied to represent
the velocity and turbulence. In spectral mode, a windowed Fast Fourier
Transform (FFT) is applied to the demodulated signal and displayed sep-
arately. For B-mode, demodulation followed by envelope detection and log
compression is usually applied. The amplitude of the reflected sound waves
forms the bases for the ultrasound image.

Envelope detection is used to locate the peaks in the received signal and
then logarithmic compression is used to reduce the dynamic range of the re-
ceived signals for efficient display. The final image can be displayed after en-
velope detection and logarithmic compression steps for analysis purposes.
Usually, a coordinate transformation is needed since the coordinate system
of the acquisition is different than the display coordinate system [Ali08].

The US system components are shown in Fig. 1.1 (adapted from [Ali08]).
It can be divided into three parts:

• Front-End Processing. This part comprises the beamforming and the
time gain compensation.

• Mid-End Processing. In this stage, the signal is sampled and digital-
ized. A linear filter is commonly used to improve the signal to noise ra-
tio. This is the so-called Echo Line Averaging. The Envelope extraction
is also applied in this stage. It is usually performed by calculating the
analytic representation of the signal by means of the Hilbert transform.
The magnitude of the resulting complex signal is used as the detected
signal for imaging. Additional low pass filtering with decimation or in-
terpolation may be carried out on this signal before presenting it for
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further processing. The dynamic range of the signal is then reduced
by means of a logarithmic compression.

• Back-End Processing. Some operations are still carried out before
displaying the information. The exact processing depends on the sys-
tem configuration. The most common is the scan conversion step,
which transforms the samples from polar coordinates to Cartesian co-
ordinates. This step involves a bilinear interpolation technique.

All the described stages of the acquisition change the distribution of
speckle and the classical models do not fit its probabilistic behavior any
more. Next section describes the fundamentals of probabilistic models in
the speckle of the received signals.

1.1.2 The Underlying Physics in Ultrasonic Speckle

The radio-frequency (RF) ultrasound signal in an inhomogeneous random
media can be understood as the contribution of multiple ultrasound scat-
terers represented as vectors with random magnitude and phase in the
complex plane. This link between the RF signal and random phasors al-
low us to derive models that describe the probabilistic behavior of speckle.
In this section, we adopt the approach derived by Ng et al. [Ng06], which
offers an outstanding way to understand the physical assumptions and the
consequences in the probabilistic models.

In absence of scatterers, the medium is considered to be uniform with
density ρ0 and adiabatic compressibility κ0. The speed c0 at which acoustic
waves travel in this uniform medium is given by

c0 =
1

√
ρ0κ0

. (1.1)

Ng et al. [Ng06] propose to model the presence of scatterers in the medium
by adding spatially-dependent terms ∆ρ(x) and ∆κ(x) to the density and
the compressibility, respectively. The total pressure field P (x, ω) of the wave
propagation follows the partial differential equation

∇2P (x, ω) +

(
ω

c0

)2

P (x, ω) = −(SP )(x, ω), (1.2)

where S is the scattering operator defined as

S = γ(x)

(
ω

c0

)2

−∇ · µ(x)∇, (1.3)

where the scattering terms are defined as

γ(x) =
∆κ(x)

κ0
, µ(x) =

∆ρ(x)

ρ0 + ∆ρ(x)
. (1.4)



Introduction and Summary 7
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Figure 1.2: Coordinate system for the scattering in inhomogeneous regions adapted from
Ng et al. [Ng06].

The general solution to Eq. (1.2) can be written as the sum of the solution
to the homogeneous equation, Pi(x, ω), and the particular solution, Ps(x, ω).
The physical interpretation of both solutions is that Pi(x, ω) is the solution in
absence of scatterers and, thus, the incident pressure field; whereas Ps(x, ω)
is the scattered pressure field.

The incident pressure field is calculated by assuming that each area
element, d2xa, of the transducer is infinitesimally small. By applying the
Huygen-Fresnel principle1, the incident field pressure is obtained by sum-
ming the spherical wave contribution from each area element. In Fig. 1.2,
the notation and the 3D coordinate system for describing the scattering in
inhomogeneous regions are shown. The curvature radius ofA is assumed to
be large, so A is considered flat. In these conditions, the incident pressure
field is calculated as the Rayleigh integral

Pi(x,x0, ω) =
ρ0

2π

∫
A
jωV (xa, ω)

e−jω/c0|x−x0−xa|

|x− x0 − xa|
d2xa, (1.5)

where V (xa, ω) is the temporal Fourier transform of the normal velocity on
the transmitting sub-aperture surface. This result can be shortly expressed
by introducing a transfer function

Pi(x,x0, ω) = jωρ0Ht(x, ω), (1.6)

where

Ht(x, ω) =

∫
A
V (xa, ω)

e−jω/c0|x−x0−xa|

|x− x0 − xa|
dxa. (1.7)

The scattered pressure is calculated by using the Green’s function method.
In this step it is assumed that the waves scattered from the volume V propa-
gate into an effectively unbounded medium. In this case, the Green’s func-

1The Huygen-Fresnel principle states that each area element contributes with a spheri-
cally expanding wave to the incident pressure field.



8 Problem Statement

tion takes the form −1
4π|x−x′|e

−jω/c0|x−x′| [Ng06]. Additionally, both ∆ρ(x) and
∆κ(x) are supposed to be zero outside V.

So the scattered pressure field is calculated as

Ps(x,x0, ω) =

∫
R3

(SP )(x′,x0, ω)
1

4π|x− x′|
e−jω/c0|x−x′|d3x′. (1.8)

The scattering is also supposed to be weak compared to the incident
pressure field, so |Ps(x,x0, ω) << |Pi(x,x0, ω)|. Thus, in Eq. (1.8), one can
assume P (x,x0, ω) ≈ Pi(x,x0, ω). This assumption is referred to as the Born
approximation [Jen91] and allow us to express the scattered pressure field
in terms of the transfer function as

Ps(x,x0, ω) = jωρ0

∫
R3

(SHt)(x
′ − x0, ω)

1

4π|x− x′|
e−jω/c0|x−x′|d3x′. (1.9)

For the case of the received voltage, the signal is obtained by summing
up the scattered pressure field over the receive sub-aperture and filter it
by the electromechanical response of piezoelectric elements. The force per-
ceived in the sub-aperture is defined as F (x0, ω) and can be calculated as
the sum over the sub-aperture of an apodization and focusing transfer func-
tion, W (x, ω) applied to the scattered pressure as follows

F (x0, ω) =

∫
A
W (xa, ω)Ps(x0 + xa,x0, ω)d2xa. (1.10)

Now, defining a receive transfer function, Hr(x, ω), for convenience as

Hr(x, ω) =

∫
A
W (xa, ω)

1

4π|x− x′|
e−jω/c0|x−x′|d2xa (1.11)

and, by introducing the result obtained in Eq. (1.9), the receive force can
be approximated by

F (x0, ω) ≈ jωρ0

∫
R3

(SHt)(x
′ − x0, ω)Hr(x

′ − x0, ω)d3x′. (1.12)

By plugging in the scattering terms defined in Eq. (1.4) and applying the
Scatterer operator, the following result is derived (see [Ng06] for more de-
tails)

F (x0, ω) ≈ jω3ρ0

c2
0

∫
R3

Ht(x
′ − x0, ω)Hr(x

′ − x0, ω)(γ(x′)− µ(x′))d3x′. (1.13)

For a known force over the transducer, the received voltage signal, R(x0, ω),
can be calculated by applying the electromechanic transfer functionEm(x0, ω)

R(x0, ω) = Em(x0, ω)F (x0, ω). (1.14)
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Finally, we can calculate the received voltage signal by considering the fol-
lowing definitions

fm(x) =
κ0ρ

2
0

2

(
∆κ(x)

κ0
− ∆ρ(x)

ρ0 + ∆ρ(x)

)
, Vpe(ω) = iω3Em(x), (1.15)

where fm is the scatter field and Vpe the electromechanical response. The
received voltage signal results is expressed as

R(x0, ω) ≈ Vpe(ω)Ht(−x, ω)Hr(−x, ω)⊗x fm(x)|x=x0 , (1.16)

where the symbol ⊗x stands for the spatial convolution.

In the time domain, the voltage signal can be written as

r(x0, t) ≈ vpe(t)⊗t hpe(−x, t)⊗x fm(x)|x=x0 , (1.17)

where hpe(−x, t)) = F−1{Ht(−x, ω)Hr(−x, ω)} and ⊗t stands for time con-
volution. At this point, the convolution is assumed to be bi-dimensional
since the surface A is restricted to lie on the xy plane. From a signal pro-
cessing point of view, the electromechanical response vpe(t) and the pulse-
echo impulse hpe(t) can be combined into a point spread function h(x, t) ≈
vpe(t)⊗t hpe(−x, t) and the received voltage is calculated as

r(x, y, t) ≈
∫∫∫
R3

h(x′ − x, y′ − y, z′, t)fm(x′, y′, z′)dx′dy′dz′. (1.18)

To see the effect in the calculation of the envelope of the signal, the
analytic signal is considered by means of the Hilbert transform, Ht{·}, in
time

r+(x, y, t) ≈
∫∫∫
R3

(h(x′− x, y′− y, z′, t)− jHt{h(x′− x, y′− y, z′, t)})fm(x′, y′, z′)dx′dy′dz′.

(1.19)

It is assumed that the center frequency of the RF ultrasound signal and
the speed of sound in tissue are reasonably constant. In this case, the
complex analytic pulse can be described by its complex envelope

h+(x, y, z, t) = h(x, y, z, t)− jHt{h(x, y, z, t)} = h̃(x, y, z, t)ej(ω0t−2k0z), (1.20)

so, the following equation holds

r+(x, y, t)e−jω0t ≈
∫∫∫
R3

h̃(x′ − x, y′ − y, z′, t)fm(x′, y′, z′)e−2jk0z′dx′dy′dz′. (1.21)
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The envelope is then calculated as

r̃ = |r+(x, y, t)| =

∣∣∣∣∣∣
∫∫∫
R3

h̃(x′ − x, y′ − y, z′, t)f̃m(x′, y′, z′)dx′dy′dz′

∣∣∣∣∣∣ , (1.22)

where the complex envelope of the point spread function, h̃, of the imaging
system can be viewed as the complex resolution cell which slowly varies
with depth (corresponding to time t, since c0 is assumed to be constant).

Now, the amplitude of the scatter field, f̃ , is assumed to be formed from
the sum of all the scatterers within the pulse envelope. This assumption can
be mathematically described as a set of Dirac’s functions modeling discrete
scatterers in the resolution cell

fm(x, y, z) =

N−1∑
n=0

bnδ(x− xn, y − yn, z − zn), (1.23)

so the signal, s(x, y, t) = r+(x, y, t), is simplified to

s(x, y, t) =

N−1∑
n=0

bnh̃(xn − x, yn − y, zn, t)e−2jk0zn . (1.24)

Finally, for each (x, y) of the probe surface, the received signal is the follow-
ing sum of phasors

S = s(x, y, t) =

N−1∑
n=0

αne
jθn . (1.25)

This result is equivalent to a random walk due to the random location of
the scatterers in the resolution cell [Sha00] and allow us to understand
the speckle as a stochastic process. It will serve as a starting point for
the development of probabilistic models for tissue characterization. The
classical probabilistic models obtained from the analysis of this result is
explained in the next section.

1.1.3 Classical Probabilistic Models in Ultrasonic Images

The speckle strongly depends on the effective scatter density, that is, on the
effective number and intensity distribution of the scatters in each resolution
cell, their size, their shape, their spatial organization as well as the acquisi-
tion instrumentation and the tissue attenuation [Sha93,Sha00,Des10]. In
the conditions assumed in the previous section and considering the analy-
sis of Eq. (1.25), the resulting speckle noise can be grouped in the following
main categories:
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• Fully developed: infinite effective number of scatterers per reso-
lution cell and no deterministic component, modeled by Rayleigh
distribution in the case of one-parameter distribution.
This model arises from the application of the Central Limit Theorem
to the sums of Independent and Identically Distributed (IID) random
variables. In this case, the phases of Eq. (1.25) are assumed to be uni-
form random variables in [0, 2π]. Then, the envelope of the backscat-
tered signal echo, R =

√
X2 + Y 2 is Rayleigh distributed as [Ray80,

Goo75,Wag83,Wag87,Bur78]

fR(r) =
r

σ2
e−

r2

2σ2 u(r), (1.26)

where u(·) is the Heaviside step function defined as

u(x) =

{
0, x < 0
1, x ≥ 0

(1.27)

• Possibly fully resolved: infinite effective number of scatterers per
resolution cell and existence or not of a deterministic component,
modeled by Rice distribution.
Under the assumption of a high number of effective scatterers, but
with the presence of resolvable structures in the resolution cell (spec-
ular component, C), X and Y become non-zero mean Gaussian distri-
butions. The envelop does no longer follow a Rayleigh distribution but
a Rician one as [Ric45,Nak40,Tut88]:

fR(r) =
r

σ2
e−

r2+C2

2σ2 I0

(
rC

σ2

)
u(r), (1.28)

where I0(·) where is the zero-th order modified Bessel function of first
kind given by

I0(x) =
1

π

∫ π

0
exp(x cos θ)dθ. (1.29)

• Possibly partially developed: arbitrary effective number of scat-
terers per resolution cell and no deterministic component, mod-
eled by K distribution.
When the number of scatterers decreases and the Central Limit Theo-
rem cannot be applied, more complicated distributions are proposed to
model the distribution of the envelope. Concretely, the K distribution
models the case when the number of scatterers is a random variable
itself, which is modeled as a Poisson statistical distribution whose lo-
cal mean is Gamma distributed, this is equivalent to consider σ as
Gamma distributed as [Elt06,Jak80,Jak84,Sha93]

fR(r|σ) =
r

σ2
e−

r2

2σ2 u(r) (1.30)

and
fσ(σ) =

1

2b2
1

Γ(ν + 1)

( σ

2b2

)
e−

σ
2b2 u(σ). (1.31)
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So, the probability density function (PDF) of R is

fR(r) =

∫
fR(r|σ)fσ(σ)dσ =

2

bΓ(ν + 1)

( σ

2b2

)ν+1
Kν

(r
b

)
u(r), (1.32)

where Kν(·) is the modified Bessel function of the second kind

Kν(x) =

∫ ∞
0

exp(−x cosh t) cosh(νt)dt. (1.33)

• Possibly partially resolved: arbitrary effective number of scatter-
ers per resolution cell and existence or not of a deterministic com-
ponent, modeled by K-Homodyne distribution.

A generalization of the previous models appears when a specular com-
ponent is considered and the number of scatterers, N follows a nega-
tive binomial distribution. This is the case of the K-Homodyne distri-
bution [Dut94,Jak87]. Its PDF is given by

fR(r) = r

(∫
x

1 + x2σ2/2ν
J0(xC)J0(xr)dx

)
u(r). (1.34)

This PDF has no closed expression and, thus, its use is limited.

Note that the most general case of speckle is the possibly partially re-
solved, which is modeled by the K-Homodyne distribution. The K distribu-
tion is a special case of the K-Homodyne distribution with no deterministic
component, the Rice distribution is the limiting case corresponding to an
infinite effective density of scatterers per resolution cell and the Rayleigh
distribution is a special case of the Rice distribution with no deterministic
component.

On a completely different approach, Shankar [Sha00] proposed a Nak-
agami distribution as a “simpler universal model for tissue characterization”.
Unlike the previously reviewed models, the Nakagami is not based on phys-
ical arguments or on a bottom-up modeling of the scattering process. The
Nakagami PDF is as follows

fR(r) =
2mmr2m−1

Γ(m)(2Ω)m
e−

m
2Ω
r2
u(r). (1.35)

This distribution offers good properties to describe the backscattered echo:
the Rayleigh distribution is a particular case of the Nakagami (m = 1) and,
additionally, when m > 1 is similar to the Rice distribution. This is the
reason that makes the Nakagami distribution one of the commonly ac-
cepted distribution for developed speckle and it is also considered as the
two-parameter approximation of the true distribution for all the cases (with-
out log-compression or application of filters) [Des11,Sha00,Des10,Sah11].
Nevertheless, this distribution has some limitations. The Nakagami model
can not fit the heavier tails of the empirical PDFs due to the impulsive na-
ture of scatterers [Sha01].
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Tao et al. [Tao06] and Nillesen et al. [Nil08] empirically fitted many dis-
tributions to real data and shown that speckle is better described by the
Gamma distribution. In those works, generic B-mode images having un-
dergone log-compression and filtering were considered [Clo11], though no
theoretical justifications were provided for this better fitting.

The distribution of speckle depends not only on the tissues but also on
the acquisition process and the post-processing. The transducer center fre-
quency also affects the distributions. Note that, as the central frequency
increases, the size of the range cell shrinks and, thus, the number of scat-
terers in the range cell goes down and one must expect non-Rayleigh statis-
tics. This can be seen as an additional reason for the better fitting of other
two-parameter distributions such as the Gamma distribution. Additionally
the post-processing techniques as log-compression and filtering also affects
the probability distributions of speckle.

In order to describe the impulsive response of scatterers, Shankar [Sha01]
proposed a generalized Nakagami distribution which is essentially a gener-
alized Gamma distribution [Sta65]. This is a three-parameter model which
has shown a better behavior than the Nakagami or Rayleigh; an expected
result since it is a generalization of the other models.

However, the use of the generalized Nakagami distribution is rather dif-
ficult since no closed-form for the ML estimates are available. An approxi-
mation of its parameters by the method of moments was proposed by Stacy
and Mihram [Sta65], where the authors also expressed the difficulties of
obtaining ML estimates: “Closed expressions for solutions to the maximum
likelihood equations are highly unlikely”. It is important to remark that an
inappropriate use of the results by Stacy and Mihram [Sta65] might intro-
duce highly variable estimates, a delicate point which was not considered
by Shankar [Sha01], one of the basic references in this topic.

The absence of agreement on the probabilistic models of speckle along
the acquisition process makes the characterization of tissues highly difficult
in US imaging. This disagreement stems from the deviation of the physical
models with respect to real data. There are several reasons that may cause
this deviation. On one hand, a very simplified acquisition model does not
consider stages as the down-sampling or filters that dramatically change
the statistics of the signal. On the other hand, the presence of heavy tailed
distributions after the envelope calculation step evidences that the assump-
tions of the physical model are also very simplified. In this thesis, we study
some of the acquisition stages to see their influence on the probabilistic
models of speckle. Additionally, new probabilistic models are also proposed
in order to describe the highly impulsive response of scatterers in the reso-
lution cell beyond the Central Limit Theorem assumption. From a practical
point of view, some applications that take advantage of the probabilistic
characterization of tissues are also proposed.

The application of the probabilistic models proposed in this work can
also be extended to other modalities such as MRI. The link between the
noise of both image modalities is explained in the following section.
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Figure 1.3: Multi-coil acquisition process. The data in both k-space and the image domain
follow a Gaussian distribution in each coil.

1.1.4 Probabilistic Models in Magnetic Resonance Imaging

Magnetic Resonance imaging is known to be affected by noise during the
acquisition process. This noise is an inconvenience that affects not only the
visual quality of images, but also affects further processing techniques such
as segmentation, registration or fMRI (functional MRI) analysis [McG93,
Gud95,AF08b].

Among the most common methods used to reduce the effect of acquisi-
tion noise, the most appropriate ones are those that consider the random
nature of thermal noise to define the probabilistic model. An accurate noise
modeling may be useful not only for filtering purposes, but also for many
other processing techniques. For instance, Diffusion Tensor Estimate2 have
proved to be nearly optimal when the data follows a Rician or a non-central-
χ [Sal05] as well as ML and Maximum a posteriori (MAP) estimation [And08]
or sequential techniques for on-line estimation [Pou08]. The use of an ap-
propriated noise model is crucial in all these methods to attain a statistically
correct characterization of the underlying signals.

The noise is usually assumed to be a zero-mean, spatially uncorrelated
Gaussian process, with equal variance in both the real and imaginary parts.
As a result, in single coil systems the magnitude data in the spatial domain
are modeled using a stationary Rician distribution [Gud95]. When multi-
ple (independent) coils are considered, the natural extension of the Rician
model yields to a stationary non central-χ distribution, whenever the differ-
ent images are combined using sum of squares, the variance of noise is the
same for all coils, and no correlations exist between them. The derivation
of these probabilistic model is as follows:

The k-space data is acquired in multiple-shot acquisitions through the
repeated application of excitation pulses with a different phase encoding
for each readout gradient. Each sampled line of the k-space is “frequency
encoded”, and the measured signal is uniformly sampled at the desired rate.
The primary origin of random fluctuation is due to the so-called thermal
noise.

2Diffusion Tensor Imaging has become a very active modality within MRI dealing with
fiber pathways estimation in the brain.
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Under the assumption that the noise affects equally to all the frequencies
without correlation between coils, it can be modeled as a complex Additive
White Gaussian Noise (AWGN) process, with zero mean and variance σ2

Kl
given by [Hen85,Bru91]

sl(k) = al(k) + nl(k; 0, σ2
Kl

(k)), l = 1, · · · , L, (1.36)

with al(k) the noise-free signal at the l-th coil (of a total of L coils) and sl(k)
the received signal. If the noise in the RF signal is assumed to be stationary,
it makes sense to consider nl itself stationary, so that we may write

nl(k; 0, σ2
Kl

(k)) ≡ nl(k; 0, σ2
Kl

) = nlr(k; 0, σ2
Kl

) + j · nli(k; 0, σ2
Kl

). (1.37)

The complex image domain is obtained as the inverse Discrete Fourier
Transform (iDFT) of sl(k) for each slice and each coil. For the sake of illus-
tration, a pipeline with the distributions involved in single coil acquisitions
is depicted in Fig. 1.3. Under the assumption that the data is sampled on a
Cartesian lattice, the noise in the complex image domain is still Gaussian
for each receiving coil

Sl(x) = Al(x) +Nl(x; 0, σ2
l ), l = 1, · · · , L, (1.38)

where Nl(x; 0, σ2
l ) = Nlr(k; 0, σ2

Kl
) + j ·Nli(k; 0, σ2

Kl
). Since the iDFT is applied

to each coil, no correlation is assumed among the coils. However, there may
be an initial noise correlation between the receiver coils due to electromag-
netic coupling [Hay90,Har92]. As a consequence, the noise pattern in the
complex image domain may be seen as a complex multivariate (one variable
per coil) AWGN process, with zero mean and covariance matrix Σ given by

Σ =


σ2

1 σ2
1,2 · · · σ2

1,L

σ2
2,1 σ2

2 · · · σ2
2,L

...
... . . . ...

σ2
L,1 σ2

L,2 · · · σ2
L

 , (1.39)

where σ2
i,j = ρi,jσiσj and ρi,j is the correlation coefficient between coils i-th

and j-th. While this correlation coefficient depends only on the electromag-
netic coupling between coils i and j, the variance of noise for each coil may
be easily predicted from that in the k-space as

σ2
l =

1

|Ω|
σ2
Kl
, (1.40)

where |Ω| is the size of the Field of View, i.e., the number of points used in
the 2D iDFT.

In the case of a single coil, Eq. (1.38) simplifies to

S(x) = A(x) +N(x; 0, σ2), (1.41)

with N(x; 0, σ2) = Nr(k; 0, σ2
K) + j · Ni(k; 0, σ2

K) a complex AWGN with zero
mean and variance σ2. The magnitude signal M(x) is the Rician distributed
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envelope of the complex signal, i.e. M(x) = |S(x)|. The Rician PDF is defined
as (see Eq. (1.28) for US)

fM (M |AT , σ) =
M

σ2
exp

(
−
M2 +A2

T

2σ2

)
I0

(
ATM

σ2

)
u(M), (1.42)

where AT (x) = |A(x)|.

In the image background, where the SNR is zero due to the lack of water-
proton density in the air, the Rician PDF simplifies to a Rayleigh distribution
with PDF (see Eq. (1.26) for US)

fM (M |AT , σ) =
M

σ2
exp

(
−M

2

2σ2

)
u(M). (1.43)

In a multiple coil system, if the k-space is fully sampled, the Composite
Magnitude Signal (CMS) must be reconstructed from the L complex signals
from every coil, Sl(x), with l = 1, · · · , L. One of the most used methods
is the so-called Sum of Squares (SoS), which can be directly applied over
Eq. (1.38) to obtain

ML(x) =

√√√√ L∑
l=1

|Sl(x)|2. (1.44)

In an ideal scenario the variance of noise is the same for all the coils, which
are assumed to produce uncorrelated samples. The covariance matrix is
diagonal with identical eigenvalues: Σ = σ2 ·IL, where IL is the L×L identity
matrix and σ2 = 1

|Ω|σ
2
K . Under these assumptions, ML(x) follows a non-

central-χ distribution with PDF given by

fML
(ML|AT , σ, L) =

A1−L
T ML

L

σ2
exp

(
−
M2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
u(ML), (1.45)

with A2
T (x) =

∑L
l=1 |Al(x)|2. This distribution particularizes to a Rician one

when L = 1. In absence of signal, the PDF simplifies to a central-χ PDF as

fML
(ML|σ, L) =

M2L−1
L

Γ(L)2L−1σ2L
exp

(
−
M2
L

2σ2

)
u(ML), (1.46)

which reduces to a Rayleigh for L = 1.

The case of a single coil acquisition is statistically the same as the case
of fully formed/resolved speckle in US imaging. In the case of a multi-
coil acquisition, the distributions become more general. The correlations
between coils may produce a non-stationary noise in images in a similar
way as in US images, where the speckle may be non-stationary due to the
intrinsic heterogeneity of tissues. This link between both modalities may
allow to extend all the methods obtained from US imaging to MRI and vice
versa.

With this purpose, the methodology that we follow to achieve the objec-
tives of this thesis is intended to be as general as possible in order to provide
mathematical tools and methods for tissue characterization of US and MR
medical imaging. The main objectives are stated in the next section.
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1.2 Objectives

The characterization of noise in US imaging and MRI described in the pre-
vious section evidence the necessity of models that properly describe the
probabilistic behavior of the acquired signals, depending on the acquisition
protocol. The global objective may be stated as follows:

To provide a general model to characterize the random nature of
tissues in US imaging at different stages of the acquisition process.
This model should reconsider the assumptions of the classical models
in order to cope with the highly impulsive response of speckle.

In order to achieve this goal, some partial objectives can be phrased in
the case of US imaging. The partial objectives, the contextual motivations,
contributions and applications are depicted in Fig. 1.4 and described next:

[O1] To analyze the empirical PDFs obtained for different acquisition
stages such as interpolation, filtering and log-compression, and
propose mathematical models that describe the empirical behav-
ior and highly impulsive response of speckle which originate heav-
ier tails.
In this partial objective is intended to replicate the experiments per-
formed by Tao et al. [Tao06] and Nillesen et al. [Nil08], where the clas-
sical models were tested in real images in different steps of the acquisi-
tion processes. After testing the distributions that better fit the proba-
bilistic behavior of speckle in different tissue classes, some hypothesis
about the scattering mechanisms should be derived and tested. This
hypothesis will focus on the most common steps of the acquisition
processes such as linear filtering, interpolation and log-compression
of US images. Additionally, the hypothesis of Gaussianity after assum-
ing a high number of effective scatterers will be tested for real cases
that exhibit a heavy-tailed behavior.

[O2] To develop a mathematical methodology to describe sample statis-
tics probability distributions to characterize the local statistics of
images.
An important tool for approximating distributions of sample statis-
tics is provided by the Edgeworth expansion [Bli98]. This expansion
approximates the statistical distribution around the standard normal
distribution by means of combinations of Hermite polynomials and co-
efficients depending on the moments of the distribution, though other
polynomials can be used [Roy62, Tan77]. For this reason, a suitable
methodology to calculate moments of sample probability distributions
in different scenarios becomes necessary. The aim of this goal is to
develop a mathematical methodology that eases the characterization
of distributions by approximating distributions.

[O3] To propose mathematical models that describe the non-stationa-
rity of noise and the heterogeneity of tissues per resolution cell.
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Figure 1.4: General scheme of the work proposed including its context, aimed objectives,
contributions and proposed applications. The context shows the acquisition process of
US imaging by considering the speckle as a stochastic process for tissue characterization.
When the classical models are tested throughout the acquisition process some deviations
are detected and not theoretically justified. Hence, new probabilistic models are needed
to provide a suitable characterization of tissues. As a result of the main objective, both
theoretical contributions and applications are depicted.

The echo-morphology of tissues usually appears as the contribution
result of different tissue types (components). Hence, this partial ob-
jective focuses on the introduction of mathematical methods to ob-
tain combinations of probabilistic models which describe the multiple
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echo-lucid responses in the resolution cell.

All these objectives provide tools to develop some applications which
make use of the statistical description of speckle. So, the following ap-
plications are also pursued:

[O4] To propose a classifier which takes into account the probabilistic
characterization of tissues and provides the probability of belong-
ing to each tissue class.
A proper characterization of speckle may offer important features to
develop a classifier to distinguish between different tissues for clini-
cal purposes. This objective aims at testing the probabilistic models
proposed for classifying tissues.

[O5] To propose a filter with makes use of the probability of belonging
to each tissue.
The capability of distinguishing tissues offers an important a priori
knowledge to perform a filter that enhances the features and textures
of relevant tissues while the non-relevant are filtered. This objective
consists in the proposal of a filter that uses probabilistic characteriza-
tion to filter non-relevant tissues.

As an additional goal, the MRI noise characterization will be studied
in order to extend, if possible, the previous methods to MRI. Then, this
objective can be formulated as:

[O6] To extend the mathematical models developed for US imaging to
MRI to characterize tissues for filtering and/or segmenting pur-
poses.
In this objective, some extensions of the methodologies and models
obtained for US will be studied. The links between the characterization
of noise in both modalities may allow us to adapt the probabilistic
models and applications to specific problems in MRI.

1.3 Contributions

In pursuit of these objectives, the following published contributions were
presented:

• Publications in indexed international journals:

[J1] G. Vegas-Sánchez-Ferrero, S. Aja-Fernández, M. Martı́n-Fernán-
dez and C. Palencia, A Direct Calculation of Moments of the Sample
Variance, Mathematics and Computers in Simulation, 82(5): 790–
804, 2012.
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[J2] G. Vegas-Sánchez-Ferrero, S. Aja-Fernández, C. Palencia and M.
Martı́n-Fernández, Generalized Gamma Mixture Model for Ultra-
sonic Tissue Characterization, Computational and Mathematical
Methods in Medicine, No. 481923, 2012.

[J3] G. Vegas-Sánchez-Ferrero, J. Seabra, O. Rodriguez-Leor, A. Serra-
no-Vidal, S. Aja-Fernández, C. Palencia, M. Martı́n-Fernández,
J. Sanches, Gamma Mixture Classifier for Plaque Detection in In-
travascular Ultrasonic Images, Submitted.

• Publications in Conference Proceedings:

[C1] G. Vegas-Sánchez-Ferrero, D. Martı́n-Martı́nez, S. Aja-Fernández,
and C. Palencia, On the Influence of Interpolation on Probabilistic
Models for Ultrasonic Images, In IEEE International Symposium
on Biomedical Imaging: From Nano to Macro (ISBI), Rotterdam,
The Netherlands, pp. 292–295, April 2010.

[C2] G. Vegas-Sánchez-Ferrero, F. Simmross Wattenberg, M. Martı́n-
Fernández, C. Palencia, C. Alberola-López, Caracterización de -
Speckle con Modelos de Cola Pesada, XXX Congreso Anual de la
Sociedad Española de Ingenierı́a Biomédica (CASEIB), San Se-
bastián, Spain, November 2012.

[C3] G. Vegas-Sánchez-Ferrero, S. Aja-Fernández, M. Martı́n-Fernán-
dez, A. F. Frangi and C. Palencia, Probabilistic-Driven Oriented
Speckle Reducing Anisotropic Diffusion with Application to Cardiac
Ultrasonic Images, In 13th International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI),
Beijing, China, Lecture Notes in Computer Science, Vol. 6361, pp.
518–525, September 2010.

[C4] G. Vegas-Sánchez-Ferrero, D. Martı́n-Martı́nez, Pablo Casaseca-
de-la-Higuera, Lucilio Cordero-Grande, S. Aja-Fernández, M. Mar-
tı́n-Fernández and C. Palencia, Realistic Log-Compressed Law for
Ultrasound Image Recovery, In 18th IEEE International Confer-
ence on Image Processing (ICIP), Brussels, Belgium, pp. 2029–
2032, September 2011.

[C5] G. Vegas-Sánchez-Ferrero, A. Tristán-Vega, S. Aja-Fernández, M.
Martı́n-Fernández, C. Palencia and R. Deriche, Anisotropic LMMSE
Denoising of MRI Based on Statistical Tissue Models, In IEEE Inter-
national Symposium on Biomedical Imaging: From Nano to Macro
(ISBI), Barcelona, Spain, pp. 1519–1522, April 2012.

1.4 Methodology

The main objective established in this Thesis emerges from the lack of con-
sensus with respect the probabilistic distributions that describe the scat-
tering processes in US imaging. This problem suggests a set of questions
that arises in a natural way: “why the classical models do not hold?” and
“which assumptions of classical models are not satisfied?”.
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In order to see when the classical models fail, a replication methodology
is adopted as a starting point and then the following scientific method was
followed [Pop34]:

• Replication. Works presented by Tao et al. [Tao06] and Nillesen et
al. [Nil08] was replicated to detect the deviations from the classical
models by disproving the following Null Hypothesis: “Rayleigh and
Rice distributions fit fully formed/resolved speckle”. We expect to ob-
tain some intuition about the processes that change the probabilistic
behavior of speckle and to find out which assumptions in the classical
models are flawed.

• Hypotheses. Once the different stages of the acquisition of US images
is empirically studied, some hypotheses were stated. They should take
into account both the physical processes of scattering and the precon-
ditioning of the acquired signals. The stated hypotheses will offer some
predictions about the behavior of the received signal in different stages
of the acquisition process. These predictions must be tested in several
conditions with synthetic and real data.

• Designing Experiments. The hypotheses will be tested by reproduc-
ing the acquisition stages (interpolation, filtering, log-compression,
etc.) of the US devices and analyzing the influence on the probabilistic
models by statistical test of hypothesis such as the χ2 goodness-of-fit
test or the Kolmogorov-Smirnov test.

• Analysis. Once the hypotheses are compared to the predictions, some
conclusions can be extracted about the advantage of providing a bet-
ter description about the probabilistic behavior of speckle. The clas-
sification capability of the underlying probability distributions will be
tested by defining probabilistic classifiers. Additionally, some speckle
selective filters can be proposed. The application of the mathematical
methodologies and algorithms may be also applied to MRI under some
assumptions. This research line will be studied as well.

The methodology adopted for each of the contributions is the following:

The replication of works presented by Tao et al. [Tao06] and Nillesen et
al. [Nil08] was performed by testing the Null Hypothesis “Rayleigh and Rice
distributions fit fully formed/resolved speckle” in real-life US non-compressed
images with a representative set of distributions proposed in the literature:
Gamma, Log-Normal, Rayleigh, Normal, Nakagami, Beta, Rician Inverse
Gaussian (RiIG), Rice, Exponential and K. The results we obtained in [C1]
and [C3] confirmed those of Tao et al. [Tao06] and Nillesen et al. [Nil08]:
The Gamma distribution showed a better fitting of the probabilistic behavior
for fully formed speckle, whereas no differences were appreciated between
Gaussian and Rice distributions for fully resolved speckle.

In [C1], we hypothesized that the effect of the interpolation step of the ac-
quisition process modifies the probabilistic behavior of fully formed speckle
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towards a Gamma distribution. A set of synthetic experiments were de-
signed in order to test this hypothesis. They confirmed that the interpola-
tion of fully formed speckle give similar results on χ2 goodness-of-fit tests to
the ones obtained by Nillesen et al. [Nil08] and Tao et al. [Tao06], and also
those of our works [C1] and [C3].

As a result, the work presented in [C1] pointed out that a deeper study
should be done on the interpolation step of the acquisition process of ultra-
sonic data. For this purpose, some parametric approaches for probability
distributions were studied in order to develop a suitable methodology to
model transformations such as the interpolation of random variables. We
studied the Edgeworth expansion [Bli98] for approximating distributions
of sample statistics. Other expansions were also studied [Roy62, Tan77].
These expansions make use of the moments of the transformed random
variable and, thus, the interpolation and other transformations such as
linear filtering increased their complexity when higher moments were con-
sidered. In [J1] we proposed a direct methodology to obtain higher moments
for sample statistics. This methodology allows us to calculate, even in closed
form, the moments for combinations of random variables.

The analysis of the results obtained in [C1] led to a better characteriza-
tion of speckle in important tissues such as vulnerable plaque of arteries.
A proper characterization of this plaques provide important information to
perform a probabilistic classification scheme by using Gamma distributions
on the interpolated images. In [J3] we studied the effect of fitting Gamma
distributions in non-interpolated images. We found out that the linear filter-
ing performed in the down-sampling stage of the acquisition also changes
the statistics of speckle to a Gamma-like distribution. This was due to
the effect of a previous linear filtering usually performed after the envelop
calculation to avoid aliasing in the down-sampling stage. We tested the per-
formance of Gamma against the Rayleigh or the Nakagami distributions by
several t-test. Results always confirmed the better fitting of Gamma models.

Additionally, in [J3] we proposed a Gamma Mixture Model (GMM) to de-
scribe the heterogeneity of tissues. The GMM was compared to a Rayleigh
and Nakagami mixture models by means of the Kullback-Leibler divergence,
the Kolmogorov-Smirnov statistic and Bayesian Information Criterion. Re-
sults demonstrated the better performance for tissue characterization. The
capability of the mixture model for characterizing the plaques was used
to develop a classifier which provides the probability of belonging to each
tissue class. This probability can be used as prior information for several
purposes such as classification, segmentation and filtering.

The analysis of the highly impulsive response of scatterers in the reso-
lution cell was studied in two different ways. First, we studied the Gener-
alized Gamma distribution proposed by Shankar in [Sha01]. This distribu-
tions fuses both the Gamma and the Nakagami distributions and allow to
parametrize the decay of the tails, which is an important advantage when
compared to its simplifications –the Gamma and the Nakagami. Neverthe-
less, this distribution did not have the same acceptance as the Nakagami.
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The main reason was that no closed forms for the ML estimates exist and
the method commonly used shows important drawbacks such as biases. In
[J2] we proposed a simple but robust method to calculate the ML estimates
of the Generalized Gamma distribution. The method we propose exhibits a
good performance without any appreciable bias and a much smaller vari-
ance on the estimates when compared to other methods of the literature. An
additional advantage of this methodology is that it leads to a simple formu-
lation of the mixture model with Generalized Gamma (GGMM) distributions.
This GGMM provide a more general way to approximate the heterogeneous
nature of speckle with the advantage of considering the highly impulsive
response of speckle.

We completed the study of the highly impulsive response of scatterers
in the resolution cell by revisiting the assumptions commonly adopted for a
high number of effective scatterers. Concretely, we checked if the Gaussian
hypothesis derived from the application of the Central Limit Theorem can
be assumed. Instead of this assumption, we purposed to adopt a more gen-
eral one which assumes α-stable distributions. This study was carried out
in [C2] and results demonstrated that the Gaussian hypothesis is rarely ac-
cepted with real data. Statistical tests demonstrated that isotropic α-stable
distributions are consistent with real data and they provide a significantly
better description of heavy-tailed distributions.

The resulting probability distributions obtained from GMM, GGMM or α-
stable models provide an important information for a further post-processing.
In [C3] we decided to make use of the probabilistic characterization to define
an anisotropic filter which takes into account the probability of belonging
to each tissue class. This filter was inspired in the diffusion equation and
defines its anisotropy as a function of the structure tensor obtained from
the probability of belonging to each tissue class which results in a better
definition of the edges of tissues when compared to other similar filters.

The study of the distributions throughout the acquisition protocol was
completed by studying the effect of real log-compress devices. The expected
distribution of fully formed speckle after the log-compression step is the
so-called Fisher-Tippett distribution, which is a double exponential func-
tion. However, in real cases, the empirical distribution of speckle is far
from the Fisher-Tippett, which evidences that the hypothesis of the com-
pression law should be reconsidered carefully. For instance, the Fisher-
Tippett tail for lower values does not appear in real cases. This is probably
due to the non-logarithmic behavior of the analog amplifiers for small volt-
age input. In [C4] we studied the effect of a realistic log-compress law for
a true logarithmic amplifier TDA8780M. The contribution of this work is a
realistic log-compression law model for ultrasound images based on a real
amplifier. This amplifier was chosen since it has 72 dB of true logarithmic
dynamic range which is large enough for the dynamic range of the input
signal. When we tested the effect of this amplifier on real data, we realized
that 12% of samples were in the non-logarithmic regime of the amplifier.
Thus, the probabilistic behavior of it should be rather different than the ex-
pected Fisher-Tippett. A method for estimating the parameters of the model
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in order to recover the pre-compressed image is there proposed.

The methods developed in [J2] and [J3] provided a suitable way to de-
scribe the heterogeneity of tissues in US. This important characteristic can
be used to overcome an important drawback of the Linear Minimum Mean
Squared Error Estimate (LMMSE) filter proposed by [AF08a] for the case of
Rician noise (one coils acquisition) and extended to non-central-χ in Brion
et al. [Bri11] (multiple-coil acquisition). The limitation of LMMSE models
relies on the way the local moments are estimated. For those voxels corre-
sponding to image edges, the neighborhoods used typically comprise several
different kinds of tissues. Hence, the value estimated for the variance is ar-
tificially increased due to the superposition of the effect of noise and the
multi-modal distribution of gray levels corresponding to each tissue. As a
consequence, edge voxels are not properly denoised, since the noisy pattern
is mixed-up with the fine details.

In this context, the main advantage of using Gamma or Generalized
Gamma is the good fitting to the non-central-χ distribution as was noticed
by Patnaik [Pat49]. This allow us to characterize different tissues in the
image and to distinguish the tissues in the local neighborhood where the
moments are calculated. Thus, the probability of belonging to each tissue
class can be used to calculate local moments conditioned to each of the
tissues. As a consequence, the estimation of local variance is not biased by
the presence of different tissues.

1.5 Outline of the Thesis

This PhD Thesis is elaborated as a compendium of publications. Thus, the
following chapters are adapted from the previously mentioned contribu-
tions.

In the first part of the Thesis we establish the theoretical background.
It comprises the following chapters:

• Chapter 2. The influence of interpolation in fully formed speckle is
analyzed. This chapter is adapted from contribution [C1].

• Chapter 3. Some mathematical methods dealing with interrelations of
random variables are introduced. This chapter is adapted from con-
tribution [J1].

• Chapter 4. We introduce some mathematical methods for the General-
ized Gamma distribution to fit highly impulsive speckle. Additionally, a
method to derive the Generalized Gamma Mixture Model is presented.
This chapter is adapted from contribution [J2].

• Chapter 5. The highly impulsive response of speckle is studied. The α-
stable distributions are tested for real images. This chapter is adapted
from contribution [C2].
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The second part of the Thesis is devoted to the presentation of applica-
tions that make use of probability characterization by probabilistic models:

• Chapter 6. A probabilistic classifier is proposed by means of mixtures
of mixtures of Gamma distributions. This chapter is adapted from
contribution [J3].

• Chapter 7. We present an anisotropic filter driven by the probability
of belonging to each tissue class. This chapter is adapted from contri-
bution [C3].

• Chapter 8. A realistic log-compression law and an estimation method
of its parameters are proposed. This chapter is adapted from contri-
bution [C4].

• Chapter 9. An extension of the proposed probability distributions
and methods for US is presented for the case of MRI. This chapter
is adapted from contribution [C5].

1.6 Conclusions

This Thesis studies the acquisition steps of US images and their effects on
the probabilistic behavior of speckle. The classical models commonly ac-
cepted were revisited and tested in different steps of the acquisition process.
This study resulted in a significant deviation of the probability distributions
from the classical models. The main goal was to provide a general model to
characterize the random nature of tissues at different stages of the acquisi-
tion process and, for this purpose, the assumptions of the classical models
were reconsidered.

The analysis of the probability distributions in different stages of the
acquisition (as stated in objective [O1]) was studied in the following contri-
butions:

• [C1] for the interpolation step, where we showed that the Gamma
distribution accurately fits this model. This distribution, though was
empirically suggested by other authors, was confirmed to arise from
the interpolation of Rayleigh data. Additionally, the probability of ac-
ceptance of Gamma distributions achieved for synthetic and real ex-
periments evidences that the interpolation model can be fitted with a
Gamma distribution and confirms that interpolation should be taken
into account for tissue probabilistic estimation.

• [C4] for the log-compression step, where the analysis of a real Log-
Compression Law Model showed that 12% of the values of the output
signal are in the small signal gain area where the amplifier does not act
as a logarithmic compressor. This demonstrates that the compression
law should be considered very carefully since many values of the image
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are incorrectly decompressed when ideal Log-Compression Laws are
used. Additionally, a methodology for decompressing is also proposed.

• [J3] for the down-sampling step, where it is shown that the linear
filtering performed before down-sampling changes the probability dis-
tribution in the same way as the interpolation. Thus, the Gamma dis-
tribution approach proposed in [C1] still holds. This distribution was
compared to the Nakagami and Rayleigh ones in different scenarios
resulting in a better performance of the Gamma for all of them.

• [J2] for the highly impulsive response of speckle, where the pres-
ence of heavy tails was analyzed for real non-compressed and non-
interpolated data. Results demonstrated that the assumption of Gaus-
sianity commonly used fails due to the presence of heavy tails en the
in-phase and quadrature components. A model based on α-stable dis-
tributions with specular component was proposed. It is consistent
with real data and improves the goodness-of-fit in comparison to mod-
els which make use of the Gaussian hypothesis and do not consider
the specular component.

In order to accomplish objective [O2], some mathematical methods were
proposed in [J1]. Two theorems were presented as the main results of [J1].
The first one deals with the way to group all possible combinations of a finite
set of indexes. The second one calculates any moment of the sample vari-
ance. Some corollaries are also proposed which allow calculating moments
of different arrangements of random variables.

In the development of probability models some mathematical methods
were needed to deal with arrangements of random variables. In [J2] a simple
and robust method for estimating the parameters of Generalized Gamma
distributions was proposed. The formulation of the proposed method allows
generalizing it for mixture models of Generalized Gamma distributions.

In objective [O3], we pursued the characterization of the heterogeneity
of tissues and the non-stationarity of noise. The heterogeneity of tissues
was studied and some methods were proposed in [J2] and [J3]. Results
of both contributions showed that a better characterization is obtained by
using mixture models. In [J3], a classifier based on Gamma Mixture Models
was tested for describing the heterogeneous nature of vulnerable plaque
in arteries. Results demonstrated the better performance of the proposed
method compared to similar and texture-based philosophies. In [J2] the
Generalized Gamma Mixture Models were tested in different heterogeneity
conditions which justified their use.

In the case of MRI, the non-stationarity of noise and characterization
of different tissues was studied in [C5], where the Gamma Mixture Models
were used for tissue characterization in parallel MRI. The proposed method-
ology showed that the inclusion of statistical models lead to a better estimate
of local moments by considering the local moments conditioned to the prob-
ability of belonging to each tissue class. As a consequence, the proposed
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anisotropic LMMSE filter obtains better performance than the conventional
ones.

Some potential applications were propose as a result of a proper char-
acterization. Objective [O4] pursued a classification scheme that takes into
account the probability of belonging to each kind of tissue by speckle char-
acterization. For this purpose, we presented a classifier in [J3] which makes
use of Gamma Mixture Models. This classifier scheme can be easily gen-
eralized to other more general distributions by using the methods derived
in contribution [J2]. The proposed classifier provided better results than
other ad hoc classifiers proposed in the literature.

As an additional potential contribution, a filter which makes use of the
probability of belonging to each tissue was stated in objective [O5]. Two dif-
ferent filters were presented: In [C3] we present an anisotropic implemen-
tation of the diffusion equation which detects the most probable structures
from the probabilistic characterization. The method offers an advantage
over the follow-up of statistical properties of the image in each iteration
while preserving and enhancing the structures. Experiments on synthetic
and real images show that the proposed method preserves edges of the
structures better than other stat-of-the-art anisotropic methods. In [C5],
an anisotropic implementation of the LMMSE is proposed. The anisotropy
is achieved by applying probabilistic models to the tissues based on the
Gamma Mixture model. This mixture has proved to properly fit the prob-
abilistic behavior of noise in conventional MRI (Rician) and parallel MRI
(non-central-χ).

Some extensions to other image modalities such as MRI were intended
in the statement of objective [O6]. The methods developed in [J3] were suc-
cessfully used for modeling the noise in MRI. However, there is still much
work to do in analyzing the non-stationarity of noise in parallel MRI and
our future research lines will follow this direction.

Many other applications can make use of probabilistic tissue character-
ization. In the future, we will extend the use of the proposed methods and
distributions for developing segmentation algorithms such as Active Shape
Models driven by probability maps and speckle tracking methods based on
the time coherence of speckle in US sequences.

Several contributions have been proposed to cover all the objectives sta-
ted. We hope they may offer a versatile family of distributions and method-
ologies to characterize speckle in US images for a wide number of appli-
cations. We proposed some of them and many others may be developed.
Nevertheless, there is still work to do when real devices are considered due
to the non-linear regime of devices which may lead to the highly impulsive
responses of speckle. Thus, the response of speckle in US imaging is not
only due to its physical nature, but also depends on the devices used to
measure it.

The methods here proposed were intended to be as general as possible
in order to extend their use to other modalities such as MRI, RADAR or
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the characterization of fading channels in communications. As an exam-
ple, the mathematical methods proposed in [J1] also offer a simple way to
deal with sample statistics distributions which may be used for developing
test of equality of variances and covariances. Other uses are gene clas-
sification and DNA analysis [Mur09] or studies on spectrum of nonlinear
matter [Sch08].
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On the influence of Interpolation on Probabilistic

Models for Ultrasonic Images

What we observe is not nature itself,
but nature exposed to our method of questioning.

Werner Heisenberg, 1901-1976.

Abstract– The influence of the Cartesian interpolation of ultra-
sound data over the final image statistical model is studied. When
fully formed speckle is considered and no compression of the data
is done, we show that the interpolated final image can be modeled
following a Gamma distribution, which is a good approximation
for the weighted sum of Rayleigh variables. The importance of
taking into account the interpolation stage to statistically model
ultrasound images is pointed out. The interpolation model here
proposed can be easily extended to more complex distributions.

Adapted from: G. Vegas-Sánchez-Ferrero1, D. Martı́n-Martı́nez1, S. Aja-Fernández1,
and C. Palencia2, On the Influence of Interpolation on Probabilistic Models for Ultra-
sonic Images, In IEEE International Symposium on Biomedical Imaging: From
Nano to Macro (ISBI), Rotterdam, The Netherlands, pp. 292–295, April 2010.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
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2.1 Introduction

Some image filtering and segmentation techniques for ultrasound imaging,
as those approaches based on maximum likelihood and maximum a poste-
riori [Tao06], rely on an accurate statistical model for the different regions
in the image. This model is usually derived from the analysis of the acoustic
physics and the information available of the ultrasound probe. However, the
whole information during the acquisition process is not usually available,
and therefore some suppositions must be considered. For example, images
provided by practitioners usually do not include the acquisition parameters
as gain and/or contrast adjustment. Additionally, some of the steps of the
acquisition process may be unknown, depending on the commercial firm of
the ultrasound equipment.

When estimating probability density functions (PDFs) for filtering or seg-
mentation, a common way to deal with the lack of information is to use
empirical approximations which accurately fit these PDFs to the speckle
patterns. This methodology has been used in literature [Tao06, Elt06] for
different kind of distributions. It offers an empirical methodology to test the
goodness of fit of the distributions to real data in the last step of the acquisi-
tion process, avoiding this way, the problem of propagating the probabilistic
model through the whole acquisition process.

Speckle in ultrasound image can be seen as a random process whose
statistical features provide information about the tissue. Existence of de-
terministic component in this process depends on the number of obsta-
cles (scatters) into the resolution cell and their size in comparison with the
wavelength of ultrasound signal. Depending on the scatter number density
per cell (SND), four types of speckle can be defined: (1) Fully formed: large
number of scatters and non-existence of deterministic component, modeled
by Rayleigh distribution. (2) Fully resolved: large number of scatters and
existence of deterministic component, modeled by Rice distribution. (3) Par-
tially formed: non-large number of scatters and non-existence of determin-
istic component, modeled by K distribution. (4) Partially resolved: non-large
number of scatters and existence of deterministic component, modeled by
K-Homodyne distribution.

In this paper we will focus on the first model, i.e. fully formed speckle.
In fully formed speckle regions [Bur78], acquired signal can be modeled fol-
lowing a Rayleigh distribution. However, to form the final Cartesian image,
these Rayleigh distributed data have to be interpolated. Thus, the resulting
image will no longer follow a Rayleigh distribution. Our aim will be to model
this final distribution taking into account the interpolation process. Albeit
being the simplest of the proposed models, the initial Rayleigh distribution
considered can be found in several practical situations, for example in ultra-
sound imaging of blood. Blood cells behave like tiny randomly distributed
scatters, so blood speckle can be classified into fully formed speckle.

If no compression of the data is done (which will be an assumption
throughout the paper), we show that the some results provided in litera-
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ture [Tao06,Elt06] hold with the interpolation probabilistic model here pre-
sented and that this approach can be extended easily to other distributions.
We present an exhaustive statistical test using real-life cases for cardiac ul-
trasonic images which will confirm that the interpolation model accurately
fits the data.

The paper is structured as follows: In section 2.2 the interpolating trans-
formation is studied and a distribution is proposed for approaching the the-
oretical distribution. In section 2.3 the proposed distribution is tested and
compared with other works of the literature. In section 2.4 the interpolation
model is used for classifying tissues for real and simulated images. Finally,
in section 2.5 we conclude analyzing the results.

2.2 Interpolation Model

Ultrasonic images are constructed from a number of acoustic “lines” or vec-
tors usually organized in a sequential pattern [Sza04]. These vectors form
lines in the image after conversion by envelope detection. Each line repre-
sents a time record of the scattered waves from different depths. The pro-
cess of image formation begins with a pulse packet emission which travels
along the beam vector axis and changes shape according to characteris-
tics of the media. The traveling pulse is scattered by objects placed at a
scattering depths and cause delays in the pulse. Reflections are received
by the transducer and, considering a constant sound speed, the depths of
the scattering objects can be estimated. These intercepted waves are in-
tegrated over the surface of the transducer with a suitable weighting and
time delays are added for focusing and beamforming. The amplitude of the
envelope record is usually logarithmically compressed but this is optional
depending on the ultrasonic machine. At this point, when fully formed
speckle regions are observed, a Rayleigh probabilistic distribution is often
considered [Goo75]. After this step all the lines are interpolated to form a
complete Cartesian image from a number of image lines arranged in their
geometrical attitude [Sza04].

In this section we discuss the influence of interpolation on the proba-
bilistic model when fully formed speckle regions are considered. Although
this strategy can be extended to other distributions, we will pay special at-
tention to the Rayleigh case.

Let {Xi} be independent identically distributed (IID) random variables
(RVs) which follow a Rayleigh distribution fX(x)

f(x) =
x

σ2
exp
−x2

2σ2
, x ≥ 0. (2.1)

When a simple scheme of interpolation is considered such the bilinear one
in the 2D-case or trilinear in the 3D-case (which is likely to be the one
used by the ultrasound machine because of its computational efficiency),
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the resultant interpolated value of the pixel can be calculated as

Y =

n∑
i=1

wiXi, where
n∑
i=1

wi = 1. (2.2)

The resultant PDF of the interpolated RV has no closed expression and
several ways for calculating it has been presented in the last years [Bea90].
In this work, we will consider a numerical approach based on quadrature
methods due to its simple implementation, since we want to study the be-
havior of this PDF in order to validate the empirical approaches of the liter-
ature.

One simple way to calculate FY (y) is to see it as the convolution of the
weighted PDFs of independent RV. This way, a closed expression can be ob-
tained when characteristic functions are used since a Rayleigh distribution
admits a characteristic function which is known, though not simple [Bea90]

φX(t) = E{etX} = 1 + iσte−σ
2t2/2√π2

(
erf

(
i σt√

2

)
+ 1
)

=

1F1

(
1, 1

2 ,
−t2σ2

2

)
+ i
√

π
2 tσe

−t2σ2/2. (2.3)

So, the characteristic function of Y is

φY (t) =
n∏
i=1

φi(t), (2.4)

where φi(t) is the characteristic function of each wiXi. Note that wi affects to
Xi in such a way that Y can be considered as the sum of Rayleigh RVs with
different σ. The PDF is obtained from Eq. (2.4) by numerical quadrature.

This distribution is not practical to be used in statistical estimation of
real data, due to the large number of parameters to estimate. A simplified
model must be used. In this paper a Gamma distribution to approximate
the exact distribution of the sum of Rayleigh RVs is considered. Note that
a Gamma PDF has only two free parameters and the behavior of the tails
is similar to the PDF of Y . In addition, in literature Gamma PDFs has also
been used to model this kind of speckle [Tao06], but no justification has
been given.

In Fig. 2.1 we show the characteristic function of a Gamma φγ, Gaussian
φG and theoretical sum of Rayleigh φ for 4 terms and the error committed
in the approximation for an increasing number of terms.

In this figure we can see that the characteristic function of a Gamma dis-
tribution offers a better behavior than the Normal distribution even when
the Central Limit theorem can be applied. Experiments were made consid-
ering the same weights of the RVs, however this approach can be done for
arbitrary weights and the result still holds (See Fig. 2.1.c).

In order to test this assumption we simulate Speckle based in the ac-
quisition model in the same fashion as it is done in [Per07]. This method
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Figure 2.1: Characteristic functions for Gamma, Normal and Interpolated Rayleigh RVs.
(a) 4 terms characteristic functions and the error committed (dash-dotted lines). (b) Error
of the approach of Gamma and Normal when number of terms increases. (c) Error of the
approach of Gamma and Normal when number of terms increases for random weights for
each case.

scans an image and records the data in a matrix which is corrupted by
means of the speckle formation model of [Bur78] where the tissue is mod-
eled as a collection of scatters that are so numerous and of size comparable
to the wavelength. The speckle pattern is obtained by means of random
walk which does not assume any statistical distribution in order to avoid
any bias of the results.

In Fig. 2.2 we show the reconstructed image when no coherent echoes
exist and the number of scatters is high enough to consider the speckle as
a fully formed speckle pattern. As it is shown, the histogram of the image
before interpolation follows a Rayleigh distribution whereas, in the case of
the interpolated image, the result shows clearly that a Gamma distribution
accurately fits to the data histogram.
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Figure 2.2: (a) Fully formed speckle pattern. (b) Histogram of the received signal and
Rayleigh distribution estimate. (c) Histogram of the reconstructed image and Gamma dis-
tribution estimate.

2.3 Goodness of Fit test

In this section we study the goodness of fit test in the same way as was done
in [Tao06], this test provides the best probability distribution which fits to
real data. The study is extended to a representative set of distributions that
were proposed in the literature: Gamma, Log-Normal, Rayleigh, Normal,
Nakagami, Beta, Rician Inverse Gaussian (RiIG), Rice, Exponential and K.
We will show that the Gamma is the distribution that best fits the real data
assuming the interpolation model.

The images of the data bank were obtained from a clinical machine
Philips Medical Systems iE33 with the software PMS5.1 Ultrasound iE33
4.0.1.357 taken to real patients. In this work we have 120 images of size
1024× 768 and 8 bits.

In order to obtain a proper statistical model, it is necessary to assume
spatial independence between pixels. However, the independence assump-
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Figure 2.3: Acceptance rate of the goodness-to-fit test for each distribution.

tion does not usually hold. In order to avoid spatial correlation the image
is sub-sampled by a factor of 6.

A χ2 Goodness-to-fit test was done for all the images for an α = 0.05 for a
representative set of aforementioned distributions in areas with fully formed
speckle previously segmented. Results obtained are shown in Fig. 2.3 where
a better performance of the Gamma distribution is evident. This result
holds with that one obtained in [Tao06] for Gamma distributions and sug-
gest that interpolation of fully formed speckle can be estimated by a Gamma
as it was shown before. To confirm this hypothesis we decide to use the χ2

test for weighted sums of independent Rayleigh RVs for different number
of samples and weights. For this test, a bilinear interpolation is considered
since real images were obtained from a 2D echography. Weights were cho-
sen to guarantee the contribution of the neighborhood pixels which is the
most common situation in the interpolation.

Fig. 2.4 shows the probability of passing the goodness-of-fit test for a
Gamma in 200 independent experiments of simulated images for an in-
creasing number of samples. This figure shows that the Gamma distribu-
tion has a good behavior for fitting data distribution even for a big number
of samples. Segmented areas of the real images (left ventricle) has usually
about 500 samples so, for this number of samples, the probability of ac-
ceptance Gamma distributions achieved for real and synthetic experiments
shows that the interpolation model can be fitted with a Gamma and con-
firms that interpolation should be taken into account for tissue probabilistic
estimation.



38 Tissue Classification

300 400 500 600 700 800 900 1000
50

55

60

65

70

75

80

85

90

95

100
4 contributions Gamma fit

Number or samples

P
ro

ba
bi

lit
y 

of
 p

as
si

ng
 th

e 
te

st
 (

%
)

Weights: 0.25        0.25        0.25        0.25
Weights: 0.30861     0.30861     0.19139     0.19139
Weights: 0.44888     0.20075     0.20075     0.14963
Weights: 0.34549     0.34549     0.15451     0.15451

Figure 2.4: Probability of passing the goodness-of-fit test for a Gamma in 200 independent
experiments for an increasing number of samples.

2.4 Tissue Classification

In this section we present some results for real and simulated images in
order to distinguish between blood and cardiac tissue. For this purpose
we will consider a Gamma distribution as a good approach for fully formed
speckle for the interpolated image as we saw in previous sections. A normal
distribution can be taken for cardiac tissue, this supposition is reasonable
when we consider the weighted sum of a Rice or K distribution, though
a Gamma distribution is also reasonable for pseudo-Rayleigh speckle. In
these cases, the PDF is more symmetric and a Normal provides a good
approach. Fig. 2.5 shows a classification by means of distribution fitting
for real and simulated images. As we can see, in both cases a Gamma
distribution accurately fits the contribution of fully formed speckle.

2.5 Conclusions

In this work we analyze the influence of the interpolation in the proba-
bilistic model of ultrasonic images for the case of fully formed speckle. We
show that a Gamma distribution accurately fits to this model. Although the
goodness-of-fit of the Gamma was empirically suggested by other authors,
in this paper we make clear that this model arises from the interpolation
of Rayleigh data. Additionally, we present some synthetic and real results
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Figure 2.5: (a) and (b): Real cardiac ultrasound image and tissue classification and its
histogram fitted with the Rayleigh interpolated model and Pseudo-Rayleigh model. (c) and
(d): Simulated image from the real image and its classification for Rayleigh interpolated
model and Rice model.

that show that interpolated speckle can be modeled by the same distribu-
tions which approximate the theoretical distributions of the interpolated
models. These results point out that a deeper study should be done on the
interpolation step of the acquisition process of ultrasonic data.





3
A direct calculation of moments of the Sample Variance

One doesn’t recognize in one’s life the really
important moments –not until it’s too late.

Agatha Christie, 1891-1976.

Abstract– A systematic method to deal with the interrelations of
systems with multi-index quantities (Random Variables) is pro-
posed. The method differs of the well-known Polykays. An appli-
cation of the theoretical results here presented is the calculation
of the moments of the sample variance for general populations in
a direct way. The main advantage of the proposed methodology
is that no conversion formulae and other complicated Polykays
rules are needed. However, the proposed method is compatible
with Polykays philosophy and conversion formulae and multipli-
cation rules can be derived by using the theoretical results of this
work. For practical purposes, two algorithms for the calculation
of the moments of the sample variance are proposed.

Adapted from: G. Vegas-Sánchez-Ferrero1, S. Aja-Fernández1, M. Martı́n-Fernández1
and C. Palencia2, A Direct Calculation of Moments of the Sample Variance, Mathe-
matics and Computers in Simulation, 82(5): 790–804, 2012.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
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3.1 Introduction

The approximation of the probability density function (PDF) of sample vari-
ances from non-normal universes becomes a classical and important prob-
lem for studying the deviation from normality on the analysis of variance
and covariance [Tan77]. One practical example can be found in [AF10],
where authors use the sample (local) variance distribution of Rician and
non-central Chi data to model the background/signal areas or magnetic
resonance images. Other examples comprise gene classification and DNA
analysis [Mur09] and studies in nonlinear matter power spectrum [Sch08].

Some methods have been reported in literature to approximate the PDF
of sample variance of general populations, see for instance [Cho04,Cho05,
Roy62, Tik65, Tan77]. In order to estimate the PDF, these methods need
the computation of higher order moments of the sample variance. This
becomes a difficult task, since there is not a closed form to calculate them
for general populations. The usual way to do it is by using the Polykays
method by Tuckey [Tuk56]. However, this is a complex methodology which
needs conversion formulae and rules for the product of Polykays that have
to be calculated in a non-direct way.

Concretely, Tukey uses the augmented symmetric functions for a set of
x1, x2, · · · , xn defined as

[pπ1
1 , pπ1

2 , . . . , pπ1
s ] =

∑
xp1
i x

p1
j . . . xp2

q x
p2
r . . . xpsu x

ps
v , (3.1)

where there are π1 powers p1, π2 powers p2, and son on. All the suffixes
are different and the summation takes place over all values of x. Thus, the
expression has n(n− 1)(n− 2) . . . terms in the summation. For example

[1223] =
∑

x2
ixjx

3
l xk; [23] =

∑
x2
ix

2
jx

2
k.

Additionally, Tukey also uses the monomyal symmetric functions defined as

(pπ1
1 , pπ1

2 , . . . , pπ1
s ) =

[pπ1
1 , pπ1

2 , . . . , pπ1
s ]

π1!π2! · · ·πs!
. (3.2)

From these definitions, one can state the following fundamental result

E{[pπ1
1 , pπ1

2 , . . . , pπ1
s ]} = n(n− 1) · · · (n− ρ+ 1)µπ1

p1
µπ2
p2
· · ·µπsps , (3.3)

where ρ =
∑s

i=1 πi and µi is the i-th raw moment.

The calculation of the moments of sample variance can be defined by
expressions including terms with monomial symmetric functions, so the
problem is reduced to express the sample variance as sums of augmented
symmetric functions. Some tables exist giving these functions in terms of
one another. However, the derivation of these tables is not systematic and
needs the calculation of power-sums of lower weights. The original tables
were heroically (manually) calculated up to 10th order by M.G. Kendall in
two different ways and were independently checked by F.N. David in [Dav49].
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In this work we propose a systematic method to deal with the interrela-
tions of systems with multi-index quantities (Random Variables) in a differ-
ent way as it is done with Polykays. Two theorems are proposed that will
allow a direct computation of moments of sample variance for general pop-
ulations. The main advantage of this new methodology is that there is no
need of conversion formulae, multiplication tables and other complicated
Polykays rules [Tuk56, Tuk50, Dav49]. So, the moments can be calculated
in a closed form for any order.

As a result, the calculation of the higher order moments will be straight-
forward, and the algorithm here proposed will show a computational gain
up to order 15.

The paper is structured as follows: Section 3.2 establishes the problem
of the moments of the sample variance and presents two theorems as the
main results of this work. Additionally, the case of the variance of the sam-
ple variance is explained as an example following the theorems presented
(section 3.3). Section 3.4 is devoted to the implementation details, where
two different implementations of the method are described: a direct one and
a more refined method in order to reduce the computations. In Section 3.5,
we conclude.

3.2 Theory

3.2.1 The problem of Moments of Sample Variance

Let V be the (unbiased) sample variance of X1, X2, · · · , XN Independent and
Identically Distributed (IID) random variables, defined as

V =
1

N − 1

N∑
i=1

(Xi − X̄)2 =
1

N(N − 1)

(
N

N∑
i=1

X2
i − (

N∑
i=1

Xi)
2

)
. (3.4)

The j-th raw moment of the sample variance is

E
{
V j
}

= E

 1

N j(N − 1)j

(
N

N∑
i=1

X2
i − (

N∑
i=1

Xi)
2

)j =

E

 1

N j(N − 1)j

j∑
k=0

(
j

k

)
Nk(−1)j−k

(
N∑
i=1

X2
i

)k( N∑
i=1

Xi

)2(j−k)
 = (3.5)

1

N j(N − 1)j

j∑
k=0

(
j

k

)
Nk(−1)j−kE


(

N∑
i=1

X2
i

)k( N∑
i=1

Xi

)2(j−k)
 .

So, according to Eq.(3.5), the problem of the calculation of the raw moments
of the sample variance is reduced to the calculus of the expected value of
all the combinations of products of sums of two different powers of random
variables.



44 Theory





1122

112

112

2

nm

nm

nm

nm

2

2

2

2

1

NX

X

X


2

2

2

2

1

NX

X

X


2

2

2

2

1

NX

X

X



NX

X

X


2

1

NX

X

X


2

1

NX

X

X


2

1

 


m


n





32

22

1

3

12

1

2

12

1

2

1

XXX

XX

XX

X

nm

nm

nm

nm

nmN

Figure 3.1: This graph represents all possible combinations of M = m + n groups of N
indexes per group. Sums of N different indexes are depicted in columns, whereas rows
show the product combination. Each path from left to right gives a different combination
of products of random variables.

3.2.2 Sketch of the method

For the sake of simplicity, we will refer to this problem in its general form as

E

{(
N∑
i=1

X2
i

)m( N∑
i=1

Xi

)n}
. (3.6)

The expansion of the product of two sums will give sums of different ar-
rangements of random variables of different indexes. Since Xi are IID ran-
dom variables, the expectation of those arrangements are the product of
the raw moments of the same order as the exponent of the random vari-
able. Hence, all arrangements with the same number of different indexes
are equivalent in terms of its expectations and they can only differ in the
power of each random variable, i.e. the order of each moment.

This problem can be seen as a graph (see Fig. 3.1), where each vertex
is an index of each sum which can be combined with the indexes of the
following sums. Thus, this graph represents all possible combinations of
M = m + n groups of N indexes per group. Obviously the number of com-
binations is NM .

In order to construct the minimum set of combinations, the method will
focus on those arrangements of different number of indexes. This will avoid
calculating redundant arrangements of indexes. In the next section we give
some theoretical results that provide a methodology to calculate the solution
of Eq.(3.6) in a suitable way.

Concretely, two theorems will be demonstrated; the first one allows con-
structing all the combinations as the disjoint union of sets of s∗ different
indexes with a certain multiplicity, cs∗, for each index. Note that this the-
orem performs a suitable way to describe the whole set of combinations
in order to make an easier way to treat them, but no distinction is taken
into account concerning the exponent of each random variable. The second
theorem makes use of the result of the first, and allows us to distinguish
between variables with different exponents.
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3.2.3 Main results

Theorem 1. Let A be the set of all possible combinations of M groups of
indexes with N indexes per group, and let As∗ be a set of all possible combi-
nations of s∗ different indexes where s∗ = {1, · · · ,min(M,N)}. Then, the sets
As∗ are mutually disjoint sets of the form

As∗ =
⋃

(s,c)∈Ss∗×Cs∗

B(s,c) (3.7)

and A is the union of all these sets

A =

min(M,N)⋃
s∗=1

As∗ =

min(M,N)⋃
s∗=1

⋃
(s,c)∈Ss∗×Cs∗

B(s,c), (3.8)

where Ss∗ is the set of the combinations of s∗ indexes out of N . Cs∗ is the set of
all possible solutions of the composition of M as the sum of s∗ strictly positive
integers, and B(s,c) is the set of all permutations without repetition of s ∈ Ss∗
with multiplicity c ∈ Cs∗ .

Proof. The set Ss∗ of s∗ different indexes out of N possibilities is constructed
from the combinations of N elements in groups of s∗ elements, thus, its
cardinal is

(
N
s∗

)
. From this set, we can construct the set As∗, of all possible

combinations of M elements with s∗ different indexes. This is done just by
knowing the multiplicity of indexes that must hold the following Diophan-
tine equation

c1 + c2 + · · ·+ cs∗ = M, (3.9)

where ci with i = 1, . . . , s∗ is the non-zero multiplicity of each index.

Note that the solutions of Eq.(3.9) are the same as the problem in Num-
ber Theory of the composition of a number, M , as a sum of s∗ strictly positive
integers. It also can be seen as a partition problem when order is taken into
consideration. We call Cs∗ to the set of solutions of the form [c1, c2, · · · , cs∗ ]
of Eq.(3.9) for s∗ different indexes.

Every element of the product set (s, c) ∈ Ss∗ × Cs∗ defines a unique set of
combinations, B(s,c) of

(
M
c

)
elements which is constructed as the permuta-

tions without repetition of indexes s with multiplicity c. Note that, for a fix
s ∈ Ss∗, B(s,c) is unique because, by construction, each pair (s, c) defines a
different set b ∈ B(s,c).

Finally, the set As∗ is constructed as the union of all the disjoint sets
B(s,c)

As∗ =
⋃

(s,c)∈Ss∗×Cs∗

B(s,c). (3.10)
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So the cardinal of As∗ can be calculated as follows

|As∗ | =
∑

(s,c)∈Ss∗×Cs∗

|B(s,c)| =
∑

(s,c)∈Ss∗×Cs∗

(
M

c

)
=

(
N

s∗

) ∑
c∈Cs∗

(
M

c

)

=

(
N

s∗

) s∗∑
k=0

(
s∗

k

)
(s∗ − k)M (−1)k. (3.11)

The last equality is obtained by using the multinomial theorem

∑
c1+...+cs∗=M

ci≥0

(
M

c1, · · · , cs∗

)
= (s∗)M (3.12)

in combination with the inclusion-exclusion principle of the sets of non-
negative solutions of Eq.(3.9)

∑
c1+...+cs∗=M

ci>0

(
M

c1, · · · , cs∗

)
=

∑
c1+...+cs∗=M

ci≥0

(
M

c1, · · · , cs∗

)
−

−
(
s∗

1

) ∑
c1+...+c(s∗−1)=M

ci≥0

(
M

c1, · · · , c(s∗−1)

)
+ · · ·+

(
s∗

s∗ − 1

)
(−1)(s∗−1)

∑
c1=M

ci≥0

(
M

c1

)
.

(3.13)

Hence, for each combination of s∗ = 1, · · · ,min(M,N) different indexes, the
set of all possible combinations, A, is

A =

min(M,N)⋃
s∗=1

As∗ =

min(M,N)⋃
s∗=1

⋃
(s,c)∈Ss∗×Cs∗

B(s,c) (3.14)

and its cardinal is, from Eqs. (3.14) and (3.11)

|A| =
min(M,N)∑
s∗=1

∑
(s,c)∈Ss∗×Cs∗

(
M

c

)
=

min(M,N)∑
s∗=1

(
N

s∗

) s∗∑
k=0

(
s∗

k

)
(s∗ − k)M (−1)k = NM .

(3.15)

This theorem allows us to calculate all the combinations of indexes in
the following way: since Xi are IID random variables, the index of each
variable does not matter but the number of different indexes per combina-
tion. So, for each number of different indexes, s∗, we have

(
N
s∗

)
equivalent

combinations.

The solutions of the combination problem provide different arrange-
ments of the combinations of indexes. However, it is important to note that
many of them are equivalent and there is no need to calculate all of them.
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(
3∑
i=1

X2
i

)2( 3∑
i=1

Xi

)2

s∗ Ss∗ , Cs∗
|Ss∗ | =

(
N
s∗

)
,

|Cs∗ |
|B(s,c)| =

(
M
c

)
|As∗ |

s∗ = 1
S1 = {(1), (2), (3)}
C1 = {(4)}

|S1| = 3
|C1| = 1

B((i),(4)) = {(i, i, i, i)} |A1| = 3

s∗ = 2

S2 =


(1, 2),
(1, 3),
(2, 3)


C2 =


(1, 3),
(2, 2),
(3, 1)


|S2| = 3
|C2| = 3

B((i,j),(1,3)) =
(i, j, j, j),
(j, i, j, j),
(j, j, i, j),
(j, j, j, i)


|B((i,j),(1,3))| = 4
B((i,j),(3,1)) =

(i, i, i, j),
(i, i, j, i),
(i, j, i, i),
(j, i, i, i)


|B((i,j),(3,1))| = 4
B((i,j),(2,2)) ={

(i, i, j, j),
...

}
|B((i,j),(2,2))| = 6

|A2| = 42

s∗ = 3

S3 = {(1, 2, 3)}

C3 =


(2, 1, 1),
(1, 2, 1),
(1, 1, 2)


|S3| = 1
|C3| = 3

B((i,j,k),(2,1,1)) ={
(i, i, j, k),

...

}
|B((i,j,k),(2,1,1))| = 12

|A3| = 36

A =
⋃min(M,N)
s∗=1 As∗ = {(1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (1, 1, 1, 2), · · · } |A| = NM = 81

Table 3.1: Example of the construction of the set A for N = 3 and M = 4 for each value of
s∗ = {1, 2, 3} different indexes for (

∑3
i=1 X

2
i )2(

∑3
i=1 Xi)

2.

For instance, in Table 3.1 an example of the construction of the set A
is presented for M = 4 and N = 4. Note that when Xi are IID random
variables, all the compositions that just differ in order are equivalent. Thus,
the set of solutions of the composition problem can be dramatically reduced
into a smaller set of solutions with multiplicities for each one. The sets of
solutions can be calculated as an integer partition problem where order does
not matter and the multiplicities σ(·) can be calculated as a multinomial
coefficient, we denote the set of solutions of the integer partition problem
as Ps∗=1,··· ,4

p1 + · · ·+ ps∗ = 4

Ps∗=1,··· ,4 = {{4}, {2, 2}, {3, 1}, {2, 1, 1}, {1, 1, 1, 1}}

σ(Ps∗=1,··· ,4) =

{(
1

1

)
,

(
2

2

)
,

(
2

1, 1

)
,

(
3

1, 2

)
,

(
4

4

)}
.

Table 3.2 shows a comparison between the number of solutions of the
composition problem and the partition problem. The number of solutions
of the composition problem, |Cs∗=1,··· ,M |, can be calculated easily by placing
either a plus sign or a comma in each of the M − 1 boxes of the array

(1212 · · · 121)︸ ︷︷ ︸
M

. (3.16)
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M Composition Solutions |Cs∗=1,··· ,M | Partition Solutions |Ps∗=1,··· ,M |
10 512 42
20 524288 627
30 536870912 5604
40 549755813888 37338
50 562949953421312 204226
60 576460752303423488 966467
70 590295810358705651712 4087968
80 604462909807314587353088 15796476
90 618970019642690137449562112 56634173

100 633825300114114700748351602688 190569292

Table 3.2: Comparison between the number of solutions of Eq.(3.9) when it is considered
a composition problem versus when it is considered as an integer partition problem.

Since every composition ofM can be determined by an assignment of pluses
and commas, the number of compositions is given by the binomial coeffi-
cient

(
M−1
k−1

)
for k parts, where k = 1, · · · ,M

|Cs∗=1,··· ,M | =
M∑
k=1

(
M − 1

k − 1

)
= 2M−1. (3.17)

In the case of the partition problem, |Ps∗=1,··· ,M |, one can compute the num-
ber of solutions by means of the Hardy-Ramanujan-Rademacher formula
[And76].

Obviously, this way for calculating the solutions of Eq.(3.9) is highly more
efficient as M increases.

In the following theorem we link the arrangements of indexes with the
exponents of each random variable.

Theorem 2. Let Xi be IID random variables with 2m+ n finite raw moments
µ1, · · ·µ2m+n. Then, the following equality holds

E

{(
N∑
i=1

X2
i

)m( N∑
i=1

Xi

)n}
=

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

(Mp )∑
j=1

s∗∏
k=1

µEj,k ,

where M = m+n, Ps∗ is the set of solutions of the integer partition problem for
M into s∗ terms. σ(p) is a multinomial coefficient which indicates the number
of permutations without repetition of p ∈ Ps∗ , Ej,k =

∑M
i=1 e(i)δ(bj(i)− k) with

e = [2, · · · , 2︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
n

], δ is the Kronecker delta and bj ∈ Bs∗,p is a permutation

without repetition of s∗ elements with multiplicities the elements of p.

Proof. First we prove that there is no need to construct the set Bs,c for each
s ∈ Ss∗ when dealing with IID random variables. This is an important issue
for its numerical implementation.

Let b ∈ Bs,c be one of the vector of indexes s with multiplicities c. Prod-
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ucts of random variables with indexes s can be defined as

X (b, s) =
s∗∏
k=1

X
Ek(s)
s(k) , (3.18)

where

Ek(s) =

M∑
i=1

e(i)δ(b(i)− s(k)) (3.19)

and e = [2, · · · , 2︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
n

]. Let Bs∗,c be the set of combinations of indexes

[1, 2, · · · , s∗] with multiplicities c. Note that this set of combinations does
not depend on the elements of Ss∗ but on the number of different indexes
s∗. So, for a fixed s∗ and c, a bijection can be established between elements
of Bs∗,c and Bs,c in such a way that, for every b ∈ Bs,p, there exists one
b∗ ∈ Bs∗,p such that

Ek(s) =
M∑
i=1

e(i)δ(b(i)− s(k)) =

M∑
i=1

e(i)δ(b∗(i)− k) = Ek (3.20)

and, |Bs,c| = |Bs∗,c|. Hence,

E {X (b, s)} = E

{
s∗∏
k=1

X
Ek(s)
s(k)

}
=

s∗∏
k=1

E
{
XEk
k

}
= E {X (b∗)} , (3.21)

which demonstrates the equality

E

 ∑
a∈As∗

X (a)

 = E

 ∑
(s,c)∈Ss∗×Cs∗

∑
bj∈B(s,c)

X (bj)

 =

E


(
N

s∗

) ∑
c∈Cs∗

∑
b∗j∈B(s∗,c)

X (b∗j )

 . (3.22)

Now, the construction of B(s∗,c) =
{

b1,b2, · · · ,b(Mc )

}
becomes direct just by

creating all the permutations without repetition of a vector of indexes with
multiplicity the elements of c.

All element bj ∈ B(s∗,c) has a direct relationship with the exponents of
the random variables, i.e. the first m indexes are those of random variables
with power 2, whereas the last n indexes are those of power 1. So, the order
of the moment of the random variable is the sum of all the powers of the
same index

X (B(s∗,c)) =


X
E1,1

1 X
E1,2

2 · · ·XE1,s∗
s∗

X
E2,1

1 X
E2,2

2 · · ·XE2,s∗
s∗

...

X
E

(Mc ),1
1 X

E
(Mc ),2

2 · · ·X
E

(Mc ),s∗
s∗


, (3.23)
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where

Ej,k =
M∑
i=1

e(i)δ(bj(i)− k)

e = [2, · · · , 2︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
n

].

All in all, from Eq.(3.8) and Eq.(3.22), we have

E

{(
N∑
i=1

X2
i

)m( N∑
i=1

Xi

)n}
= E

{∑
a∈A
X (a)

}

= E


min(M,N)∑
s∗=1

∑
(s,c)∈Ss∗×Cs∗

∑
bj∈B(s,c)

X (bj)

(3.24)

=

min(M,N)∑
s∗=1

(
M

s∗

) ∑
p∈Ps∗

σ(p)
∑

bj∈B(s∗,p)

E {X (bj)} ,

where the last equality is obtained due to the equivalence of the composi-
tions that just differ in order.

So, finally, Eq. (3.23) leads to

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

(Mp )∑
j=1

E {X (bj)} =

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

(Mp )∑
j=1

E
{
X
Ej,1
1 X

Ej,2
2 · · ·XEj,s∗

s∗

}
=

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

(Mp )∑
j=1

s∗∏
k=1

µEj,k , (3.25)

which completes the proof.

For the sake of clarity, let us see the example of Table 3.1. For s∗ = 2 it
is clear that ∑

b∈B((i,j),(1,3))

E {X (b)} =
∑

b∈B((i,j),(3,1))

E {X (b)}

and the same happens for s∗ = 3∑
b∈B((i,j,k),(2,1,1))

E {X (b)} =
∑

b∈B((i,j,k),(1,2,1))

E {X (b)} =
∑

b∈B((i,j,k),(1,1,2))

E {X (b)} .

One of the potentials of Theorem 2 is that it can be easily generalized to
more complex products of sums of random variables, since the multiplicity
of each sum is defined by e. Then, the following corollary of Theorem 2 can
be established.



A direct calculation of moments of the Sample Variance 51

Corollary 1. Let Xi be IID random variables with t1m1 + tTmT finite raw
moments. Then, the following equality holds

E

{(
N∑
i=1

Xt1
i

)m1

· · ·

(
N∑
i=1

XtT
i

)mT}
=

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

(Mp )∑
j=1

s∗∏
k=1

µEj,k ,

where M =
∑T

t mt, Ps∗ is the set of solutions of the integer partition prob-
lem for M into s∗ ∈ {1, · · · ,M} terms. σ(p) is a multinomial coefficient which
indicates the number of permutations without repetition of p ∈ Ps∗ , Ej,k =∑M

i=1 e(i)δ(bj(i)−k) with e = [t1, · · · , t1︸ ︷︷ ︸
m1

, · · · , tT , · · · , tT︸ ︷︷ ︸
mT

], δ is the Kronecker delta

and bj ∈ Bs∗,p is a permutation without repetition of s∗ elements with multi-
plicities the elements of p.

The proof can be derived in the same way as was done for Theorem 2.

3.3 An example: Variance of sample variance

To illustrate the results of the previous section with a practical example, we
will calculate the variance of the unbiased sample variance

Var {V } = E
{
V 2
}
− E {V }2 , (3.26)

with V = 1
N(N−1)

(
N

N∑
i=1

X2
i − (

N∑
i=1

Xi)
2

)
and N ≥ 4. In this case we need to

calculate just two raw moments, i.e. E {V } and E
{
V 2
}

E {V } = µ2 − µ2
1

E
{
V 2
}

=
1

N2(N − 1)2

2∑
k=0

(
2

k

)
Nk(−1)2−kE


(

N∑
i=1

X2
i

)k( N∑
i=1

Xi

)2(2−k) =

1

N2(N − 1)2

E

(

N∑
i=1

Xi

)4
− 2NE


(

N∑
i=1

X2
i

)(
N∑
i=1

Xi

)2
+N2E


(

N∑
i=1

X2
i

)2

 .

The former is straightforward, but note that for the latter moments of prod-

ucts of sums must be calculated. For E

{(
N∑
i=1

Xi

)4
}

, applying Theorem 2,

we have
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s∗ Ps∗ B(s∗,p), |B(s∗,p)| =
(M
p

)
X (B(s∗,p))

(N
s∗
)∑

a∈As∗
E{X (a)}

s∗ = 1
P1 = {(4)}
σ(P1) = {1}

B(1,(4)) =
{(1, 1, 1, 1)}
|B(1,(4))| = 1

X (B(1,(4))) = {X4
1}

(N
1

)
µ4

s∗ = 2
P2 =

{
(3, 1)
(2, 2)

}
σ(P2) = {2, 1}

B(2,(3,1)) = (1, 1, 1, 2)
...


|B(2,(3,1))| = 4
B(2,(2,2)) = (1, 1, 2, 2)

...


|B(2,(2,2))| = 6

X (B(2,(3,1))) =X3
1X2

...


X (B(2,(2,2))) =X2

1X
2
2

...


(N

2

)
(8µ1µ3 + 6µ2

2)

s∗ = 3
P3 = {(2, 1, 1)}
σ(P3) = {3}

B(3,(2,1,1)) = (1, 1, 2, 3),
...


|B(3,(3,1))| = 12

X (B(3,(3,1))) =X2
1X2X3,

...


(N

3

)
(36µ2

1µ2)

s∗ = 4
P4 = {(1, 1, 1, 1)}
σ(P4) = {24}

B(4,(1,1,1,1)) = (1, 2, 3, 4)
...


|B(4,(1,1,1,1))| = 24

X (B(4,(1,1,1,1))) =X1X2X3X4

...


(N

4

)
(24µ4

1)

E

{(∑N
i=1Xi

)4
}
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(N

1

)
(µ4) +

(N
2

)
(8µ1µ3 + 6µ2

2) +
(N

3

)
(36µ2

1µ2) +
(N

4

)
(24µ4

1).

Now for E

{(
N∑
i=1

X2
i

)(
N∑
i=1

Xi

)2
}

we have

s∗ Ps∗ B(s∗,p), |B(s∗,p)| =
(M
p

)
X (B(s∗,p))

(N
s∗
)∑

a∈As∗
E{X (a)}

s∗ = 1
P1 = {(3)}
σ(P1) = {1}

B(1,(3)) =
{(1, 1, 1)}
|B(1,(3))| = 1

X (B(1,(3))) =
{X2

1X1X1}
(N

1

)
µ4

s∗ = 2
P2 =

{
(2, 1)

}
σ(P2) = {2}

B(2,(2,1)) = (1, 1, 2)
(1, 2, 1)
(2, 1, 1)


|B(2,(3,1))| = 3
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1X1X2

X2
1X2X1

X2
2X1X1
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2

)
(4µ1µ3 + 2µ2
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P2 =
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(1, 1, 1)

}
σ(P2) = {1}
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(1, 2, 3)
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...
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1X2X3
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1X3X2
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)
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1µ2)
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}

=
(N
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)
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2) +
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)
(6µ2
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and, finally, for E
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i=1

X2
i

)2
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(N
s∗
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E{X (a)}

s∗ = 1
P1 = {(2)}
σ(P1) = {1}

B(1,(2)) =
{(1, 1)}
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1X

2
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)
µ4
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(1, 1)
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Then, the variance of the sample variance can be written as

Var {V } =
1

N
µ4 −

4

N
µ1µ3 −

(N − 3)

N(N − 1)
µ2

2 +
4(2N − 3)

N(N − 1)
µ2

1µ2 −
2(2N − 3)

N(N − 1)
µ4

1.

This result, first derived by Gauss, has been derived recently by quite heuris-
tic algebraic methods [Cho04, Cho05] in terms of zero-mean random vari-
ables which was also obtained in [Tuk56]. Quoting [Spe02], deriving this
result “is already messy enough to warrant thinking very carefully about
the algebraic formulation one adopts, and any desire to obtain more general
expressions of the same kind focuses the mind greatly on the same issue”.
The contribution of Theorem 2 is that it offers a simple methodology for cal-
culating the sample variance moments which is easy to implement even for
higher orders avoiding, as much as possible, the combinatorial explosion.
Additionally, Theorem 2 corollary offers the desired general expressions.

3.4 Numerical Implementation

There are two important problems that must be solved in order to calculate
arbitrary moments of the sample variance. The first one is the partition
problem. This is a very common problem in combinatorics, algebra and
many algorithms. For computational purposes one is interested in gener-
ating the set of all the partitions of an integer or those that satisfy some
conditions. In our case, we are interested in generating all the set of parti-
tions, Ps∗. Many algorithms to generate the set of solutions have appeared
in the literature [And76,McK65b,McK65a,Opd10,Sto62,Zog98], so we can
use any of them.

On the other hand, the problem of generating the set Bs∗,p is a permuta-
tion problem with possible repeated terms. There are also many algorithms
to solve this problem [Aho74, Knu97, Rol88, Sed84] so we can also choose
any of them.

The direct implementation of E
{(

N∑
i=1

X2
i

)m( N∑
i=1

Xi

)n}
is presented in

Algorithm 1. Note that following the results presented in Theorems 1 and 2
this implementation is straightforward. The heaviest computational part of
the algorithm is the construction of Bs∗,p, since it needs to build all unique
combinations of s∗ indexes with a particular arrangement of multiplicities p.
As an example, for the 5th raw moment of the sample variance, the biggest
set Bs∗,p will have 3, 628, 800 elements and it will cost a considerably amount
of time and memory.

In order to reduce the number of elements to calculate, one can realize
that the set of all combinations of Bs∗,p can be decomposed into two dif-
ferent groups of m and n elements. The fist one refers to those indexes of
random variables of power 2: X2

i . The second group to those of power 1:
Xi. This way, it is clear that every permutation inside these two groups is
equivalent in terms of the expectation so, one just need to know the cardi-
nal of all equivalent permutations, which is easily calculated by means of a
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Algorithm 1 Algorithm to calculate E

{
(
N∑
i=1

X2
i )m(

N∑
i=1

Xi)
n

}
.

m← Power of (
∑N

i=1X
2
i )m

n← Power of (
∑N

i=1Xi)
n

M ← m+ n
v← Vector of M raw moments of Xi

e← [2, · · · , 2︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
n

]

Ps∗=1,··· ,M ← Sets of all the partitions of M
value← 0
for s∗ = 1 to min(M,N) do

for p ∈ Ps∗ do
Bs∗,p ← Sets of permutations without repetition

Ej,k ←
M∑
i=1

e(i)δ(bj(i)− k)

σ(p)← Number of unique permutations of p

value← value+

(
N

s∗

)
σ(p)

(Mp )∑
j=1

s∗∏
k=1

v(E(j, k))

end for
end for
return value

multinomial coefficient with multiplicities those of indexes in each group.
So, the following corollary can be established.

Corollary 2. Let Xi be IID random variables with 2m+n finite raw moments
µ1, · · ·µ2m+n. Then, the following equality holds

E

{(
N∑
i=1

X2
i

)m( N∑
i=1

Xi

)n}
=

min(M,N)∑
s∗=1

(
N

s∗

) ∑
p∈Ps∗

σ(p)

|D(s∗,p,m)|∑
j=1

s∗∏
k=1

µEj,k ,

where M = m+n, Ps∗ is the set of solutions of the integer partition problem for
M into s∗ terms. σ(p) is a multinomial coefficient which indicates the number
of permutations without repetition of p ∈ Ps∗ . D(s∗,p,m) is the set of unique
combinations of M elements (s∗ indexes with multiplicities those of p) taken
m at time with multiplicities p = (p1, p2, · · · , ps∗). Êj,k is defined as

Êj,k = 2× π(dj)(k) + π∗(dj)(k),

where π(bj) = (m1, · · · ,ms∗) are the multiplicities of each index of bj ∈ D(s∗,p,m)

and π∗(bj) = (p1 −m1, · · · , ps∗ −ms∗).

Proof. For each s∗ and each p let D(s∗,p,m) be the set of unique combinations
of M elements (s∗ indexes with multiplicities those of p) taken m at time
with multiplicities p = (p1, p2, · · · , ps∗). This set obviously has a maximum
cardinal |D(s∗,p,m)| =

(
M
m

)
when N ≥M , s∗ = M and p = (1, 1, · · · , 1).
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From each element dj ∈ D(s∗,p,m) we can easily calculate the multiplicities
of each index π(d) = (m1,m2, · · · ,ms∗)

π : D(s∗,p,m) −→ Ns∗

d (m1, · · · ,ms∗),
(3.27)

where

mi =

s∗∑
k=1

δ(d(k)− i) with i = 1, . . . , s∗. (3.28)

We avoid intentionally the dependence of π with respect to s∗ and p in order
to make notation simpler.

Now, let d∗j = DC(s∗,p,m) be the complement of each element dj ∈ D(s∗,p,m),
i.e., the indexes and the multiplicities of the indexes that are not in dj ∈
D(s∗,p,m). The multiplicities of d∗j can be easily calculated by π(d∗j ) = π∗(dj) =
(p1 −m1, p2 −m2, · · · , ps∗ −ms∗)

π∗ : D(s∗,p,m) −→ Ns∗

d (p1 −m1, · · · , ps∗ −ms∗).
(3.29)

From these sets it is easy to calculate the number of equivalent arrange-
ments since all unique permutations of each group belong to the same sort
of random variable (X2

i or Xi) and the order of indexes does not matter.

There are
(

m
π(dj)

)(
n

π(d∗j )

)
equivalent elements for each p. And now we can

avoid using e since the order of the moments per index becomes

Êj,k = 2× π(dj)(k) + π∗(dj)(k). (3.30)

So, finally, for each s∗ and p we have

(Mp )∑
j=1

s∗∏
k=1

µEj,k =

|D(s∗,p,m)|∑
j=1

(
m

π(dj)

)(
n

π∗(dj)

) s∗∏
k=1

µÊj,k . (3.31)

The method to implement this reduction of combinations is presented in
Algorithm 2.

3.5 Discussion

In this paper the problem of the calculation of the moments of the sample
variance has been studied. Two theorems are proposed that allow calculat-
ing in a direct way the moments of the products of sums of different powers
of random variables. The main contribution of these theorems is that there
is no need of conversion formulae of multiplication tables as the Polykay
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Algorithm 2 Alternative method for E

{
(
N∑
i=1

X2
i )m(

N∑
i=1

Xi)
n

}
.

m← Power of (
∑N

i=1X
2
i )m

n← Power of (
∑N

i=1Xi)
n

M ← m+ n
v← Vector of M raw moments of Xi

Ps∗=1,··· ,M ← Sets of all the partitions of M
value← 0
for s∗ = 1 to min(M,N) do

for p ∈ Ps∗ do
D(s∗,p,m) ← set of unique combinations of M elements taken m at time
(s∗ indexes with multiplicities those of p)
σ(p)← Number of unique permutations of p

value← value+

(
N

s∗

)
σ(p)

|D(s∗,p,m)|∑
j=1

(
m

π(dj)

)(
n

π∗(dj)

) s∗∏
k=1

v(Ê(j, k))

end for
end for
return value

j Algorithm 1. max |Bs∗,p| Algorithm 2. max |D(s∗,p,m)|
1 2 1
2 24 3
3 720 6
4 40320 15
5 3628800 35
6 479001600 84
7 87178291200 210
8 20922789888000 495
9 6402373705728000 1287

10 2432902008176640000 3003
11 1124000727777607680000 8008
12 620448401733239439360000 19448
13 403291461126605635584000000 50388
14 304888344611713860501504000000 125970
15 265252859812191058636308480000000 319770

Table 3.3: Maximum number of combinations for each algorithm, to calculate the j-th raw
moment of the sample variance, (E{V j}), up to order 15.

philosophy. Additionally, if one is interested in conversion formulae or mul-
tiplication tables, they can be derived with the methods here proposed in a
direct way.

From a practical point of view, two algorithms for numerical implemen-
tation are proposed. The first one is a direct implementation of the main re-
sult of this work. This algorithm can be easily generalized for more complex
products. The second one is a refined method for the case of two different
powers of random variables.
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The complexity of both algorithms is related to the number of elements
in each of the sets Bs∗,p and D(s∗,p,m). These sets can be obtained from
algorithms with constant delay (see [Zog98]), this means that the time for
obtaining each element of the sets from the previous one can be assumed
to be constant and included in the time of the operations inside each loop.

So, considering N ≥ M , the instructions inside the loops consume a
time T(1,s∗) for each element of the sets Bs∗,p and D(s∗,p,m). This time can be
considered fix since the operations to be done are products in the interval
(1, s∗) which, in the worst case, is T(1,M). So, the time consumed in the
loops, T1 and T2, for the first and the second algorithm respectively are

T1 =
M∑
s∗

∑
p∈Ps∗

|Bs∗,p|∑
j=1

T(1,s∗) ≤ T(1,M)

M∑
s∗

max
p
|Bs∗,p||Ps∗ | (3.32)

T2 =
M∑
s∗

∑
p∈Ps∗

|D(s∗,p,m)|∑
j=1

T(1,s∗) ≤ T(1,M)

M∑
s∗

max
p
|D(s∗,p,m)||Ps∗ |. (3.33)

Table 3.3 shows the maximum number of combinations for each algo-
rithm when N ≥ M , to calculate the j-th raw moment of the sample vari-
ance, (E{V j}), up to order 15. The higher performance of this implementa-
tion becomes evident.
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Generalized Gamma Mixture Model for Ultrasonic

Tissue Characterization

Si le poète doit choisir dans les choses (et il doit),
ce n’est pas le beau, mais le caractéristique.

Victor Hugo, 1802–1885.

Abstract– Several statistical models have been proposed in the
literature to describe the behavior of speckle. Among them, the
Nakagami distribution has proven to very accurately characterize
the speckle behavior in tissues. However, it fails when describ-
ing the heavier tails caused by the impulsive response of speckle.
The Generalized Gamma (GG) distribution (which also general-
izes the Nakagami distribution) was proposed to overcome these
limitations. Despite the advantages of the distribution on terms
of goodness of fitting, its main drawback is the lack of a closed-
form maximum likelihood (ML) estimates. Thus, the calculation
of its parameters becomes difficult and not attractive. In this
work we propose: (1) a simple but robust methodology to estimate
the ML parameters of GG distributions; (2) a Generalized Gama
Mixture Model (GGMM). These mixture models are of great value
in ultrasound imaging when the received signal is characterized
by different nature of tissues. We show a better speckle char-
acterization is achieved when using GG and GGMM rather than
other state-of-the-art distributions and mixture models. Results
showed the better performance of the GG distribution in charac-
terizing the speckle of blood and myocardial tissue in ultrasonic
images.

Adapted from: G. Vegas-Sánchez-Ferrero1, S. Aja-Fernández1, C. Palencia2 and M.
Martı́n-Fernández1, Generalized Gamma Mixture Model for Ultrasonic Tissue Char-
acterization, Computational and Mathematical Methods in Medicine, No. 481923,
2012.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
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4.1 Introduction

Among the non-invasive imaging modalities, probably, the most widespread
are the ultrasound imaging. The main reason of its success is that it pro-
vides a low-cost way to help diagnosing and can be used for many medi-
cal applications. However, ultrasonic (US) images are characterized by the
presence of a peculiar granular pattern: the so-called speckle.

This term was adopted from the field of laser optics [Goo75] in the early
sixties due to the similarity of the patterns between laser optics and ul-
trasonics. Although the nature of the speckle in US images stems from
a different phenomena, there still share some similarities. Both patterns
come from the random interference of many coherent wave components re-
flected from different microscopic elements. In the case of US; the volume,
the number of effective scatterers, and the acquisition process contribute
to the formation of speckle [Elt06].

The analysis of backscattered echo from tissues needs a proper descrip-
tion of the ultrasonic signals. For this purpose, and due to the random na-
ture of the speckle, several statistical models have been proposed in the lit-
erature. This characterization can be used either for segmentation [Des09],
classification [Sea11] purposes or for filtering the speckle itself [Yu02,AF06,
Kri07, VSF10a]. The latter usually considers the speckle as an undesired
consequence, since it degrades resolution and adds spatial noise to the im-
age. Thus, filtering is commonly applied as a preprocessing step for further
segmentation of regions of interest or to extract relevant measures for phys-
iological analysis.

The statistical description of US signals provide an important informa-
tion of the backscattered echo from tissues. The parameters of the statisti-
cal models allow identifying the features of tissues and provides important
descriptors for classification. Some of the filtering algorithms relay on a
Bayesian approach where an accurate statistical model becomes necessary.
As a consequence, modeling the amplitude statistics of US signals has been
a very active area.

Several statistical models have been proposed in the last decades. Prob-
ably the most well-known is the Rayleigh model, which is a one-parameter
distribution which describes the so-called fully formed (or developed) Speckle.
This probabilistic distribution describes the behavior of speckle when a high
number of effective scatterers is present in the resolution cell. However, real
images show a deviation from this model, this non-Rayleigh behavior can
be due to a small number of scatterers in the resolution cell or when there
are some dominant components in the cell. The most commonly accepted
distributions that try to model non-Rayleigh distributions are the Rice (fully
resolved speckle), K (partially formed speckle) and Homodyned K (partially
resolved speckle).

Although those models are based in physical assumptions of the back-
scattering process, some other distributions have proven to provide a good
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performance on real images. This is the case of Gamma [VSF10b, Tao06,
Nil08] and Nakagami [Sha00] distributions. The first is proposed as a two-
parameter distribution that describes the result of interpolated/filtered fully
formed speckle [VSF10b] and also has shown good results in empirical tests
among other distributions [Tao06, Nil08]. The Nakagami distribution pro-
posed by Shankar for the case US characterization [Sha00] is also a two-
parameter distribution which generalizes the Rayleigh distribution. This
distribution was adopted from the models proposed to describe the statis-
tics of the returned echo radar.

The capability of the Nakagami distribution to model the backscatter-
ing from tissues for fully resolved and fully formed speckle made it become
the most commonly accepted model for tissue characterization. However,
the tails of the probabilistic density functions of Nakagami, K, Rayleigh or
Gamma do not show the impulsive response of speckle which originate heav-
ier tails. In order to describe this impulsive response, a generalized Nak-
agami distribution was proposed by Shankar in [Sha01]. This is a three-
parameter model which has shown a better behavior than the Nakagami or
Rayleigh, an expected result since it is a generalization of the other mod-
els. However, the generalized Nakagami distribution does not have closed-
form Maximum Likelihood estimates (MLE) and, thus, it makes their use
difficult. Note that, though Shankar in [Sha01] said that the MLE can
be obtained, the equations used were based in the results from Stacy and
Mihram [Sta65], which were calculated by the methods of moments and
they also expressed the difficulties of obtaining a MLE: “Closed expressions
for solutions to the maximum likelihood equations are highly unlikely”. It is
important to note that the results of [Sta65] were obtained for the estimation
of the Generalized Gamma (GG) distribution which is essentially the same
as the Generalized Nakagami Distribution but with another parametriza-
tion.

The different nature of tissues is reflected in a different response of the
speckle. Hence, a mixture model has shown to be a natural strategy for
statistically describing the features of tissues. This approach has been pre-
viously used for segmentation purposes in the case of Nakagami Mixture
Models (NMM) by Destrempes in [Des09], for classification with Rayleigh
Mixture Models by Seabra et al. in [Sea11], and for filtering with a mixture
of Gamma and Gaussian Mixture Models in [VSF10b, VSF10a]. All these
approaches make use of the Expectation-Maximization (EM) [Moo96] algo-
rithm to calculate the parameters that better fit the empirical probability
distribution function (PDF). This method is particularly useful when the
MLE exists since it maximizes the expected value of the log-likelihood func-
tion with respect to the condition of the belonging to each tissue class for a
given data.

The EM algorithm cannot be easily applied for the calculation of a Gen-
eralized Gamma Mixture Model (GGMM) without a MLE. However, some
interesting results have been recently published on the calculation of the
MLE of the Generalized Gamma which permit and efficient computation of
the GGMM.
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The aim of this work is to revitalize the use of the Generalized Gamma
distribution (also called, Generalized Nakagami Distribution) for tissue char-
acterization. For this purpose, we present two main contributions: first,
we propose a simple methodology to calculate the ML estimate which offers
robust results comparing to the methods in the literature [Sta65, Gom08,
Nou12]. Second, two different methods were proposed for the calculation of
the GGMM parameters. Both were developed by applying the EM method in
the derivation of the proposed ML method. Results when comparing both
methods to the GMM and NMM in real images showed the better fitting
of the GGMM. The GGMM provides a posterior probability of belonging to
each tissue class which can be of help for further filtering, segmenting or
classifying methods.

The rest of the paper is structured as follows: In section 4.2.1 we in-
troduce the distributions most commonly used for characterizing speckle
of ultrasonic images. There, the GG distribution is motivated as a suit-
able generalization of the Gamma and Nakagami distributions which fail
in describing the impulsive response of speckle. Then, in section 4.2.2 we
analyze the methods proposed in the literature for estimating the param-
eters of the GG distribution and a simple but robust method is proposed
(section 4.2.2). One of the advantages of this method is that it can be eas-
ily extended to estimate the parameters of a GGMM by means of the EM
algorithm. Section 4.2.3 is devoted to the extension of the ML method to
obtain the parameters of the GGMM where two algorithms are proposed.
The performance of the ML estimate derived in section 4.2.2 is compared
to other state-of-the-art methods in section 4.3.1 for synthetic data and for
real cases in section 4.3.2. The performance of the GGMM is analyzed in
section 4.3.3, where the GGMM is compared to NMM and GMM. Finally, we
propose some applications for the GGMM in section 4.3.4. In section 4.4
we conclude.

4.2 Materials and Methods

4.2.1 Statistical models for describing the nature of speckle

The formation of US images begins with the emission of a pulse packet
which travels through the tissue. The backscattering produced by the scat-
terers in the resolution cell contribute to the change of the pulse shape
according to the characteristics of the media, i.e. the number of scatterers
as well as their size [VSF10b,Sea11,Sha00].

The contribution of the backscattered echo, s(t) can be treated as a ran-
dom walk due to the random location of the scatterers in the resolution
cell [Sha00]

s(t) =
N∑
n=1

αn cos(ω0t+ φn), (4.1)
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where ω0 is the mean frequency of excitation andN is the number of effective
scatterers in the resolution cell. The phases, φn, are usually modeled as
uniformly distributed in [0, 2π] and the amplitude is usually considered to
be Normal distributed.

The fully formed speckle model assumes a high number of scatterers,
so the Central Limit Theorem applies and the backscattered echo can be
expressed as

s(t) = X cos(ω0t) + Y sin(ω0t), (4.2)

where X and Y are zero mean identically distributed Gaussian distribu-
tions.

Then, the envelop of the backscattered signal echo, R =
√
X2 + Y 2 is

Rayleigh distributed [Goo75,Wag83]

fR(r) =
r

σ2
e−

r2

2σ2 u(r), (4.3)

where u(·) is the Heaviside step function defined as

u(x) =

{
0, x < 0
1, x ≥ 0.

(4.4)

Under the assumption of a high number of effective scatterers but with
the presence of resolvable structures in the resolution cell (specular com-
ponent, C), X and Y become non-zero Gaussian distributions. The envelop
does no longer follow a Rayleigh distribution but a Rician one [Wag83]

fR(r) =
r

σ2
e−

r2+C2

2σ2 I0

(
rC

σ2

)
u(r), (4.5)

where I0(·) where is the modified Bessel function of first kind.

When the number of scatterers decreases and the Central Limit Theorem
cannot be applied, more complicated distributions are proposed to model
the distribution of the envelope. Concretely, the K distribution models the
case when the number of scatterers is a random variable itself, which is
modeled as a Poisson whose local mean is Gamma distributed, this is equiv-
alent to consider σ as gamma distributed [Elt06]

fR(r|σ) =
r

σ2
e−

r2

2σ2 u(r) (4.6)

and
fσ(σ) =

1

2b2
1

Γ(ν + 1)

( σ

2b2

)
e−

σ
2b2 u(σ), (4.7)

so, the PDF of R is

fR(r) =

∫
fR(r|σ)fσ(σ)dσ =

2

bΓ(ν + 1)

( σ

2b2

)ν+1

Kν

(r
b

)
u(r), (4.8)
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where Kν(·) is the modified Bessel function of the second kind.

A generalization of the previous models appears when a specular compo-
nent is considered and the number of scatterers, N follows a negative bino-
mial distribution. This is the case of the homodyned-K distribution [Dut94]

fR(r) = r

(∫
x

1 + x2σ2/2ν
J0(xC)J0(xr)dx

)
u(r). (4.9)

This PDF has no closed expression and this limits its use.

On a completely different approach, Shankar in [Sha00] proposed a Nak-
agami distribution as a “simpler universal model for tissue characteriza-
tion”. Unlike the previously reviewed models, the Nakagami is not based on
physical arguments or on a bottom-up modeling of the scattering process.
However, it has empirically shown a better performance than the Rayleigh
and Rice distributions.

The Nakagami PDF is as follows

fR(r) =
2mmr2m−1

Γ(m)(2Ω)m
e−

m
2Ω
r2
u(r). (4.10)

This distribution offers good properties to describe the backscattered echo:
the Rayleigh distribution is a particular case of the Nakagami (m = 1) and,
additionally, when m > 1 is similar to the Rice distribution. However, this
distribution has some limitations. The Nakagami model can not fit the
heavier tails of the empirical PDFs due to the impulsive nature of scat-
terers [Sha01].

In order to describe the impulsive response of scatterers, Shankar pro-
posed in [Sha01] a generalized Nakagami distribution which is essentially
the same as a Generalized Gamma distribution [Sta65]. However, this dis-
tribution presents some difficulties in the estimation of its parameters,
since there are no closed equations for the ML estimates.

In the next section we describe some methods that have been used in the
literature with special attention to methods that provide a ML estimate of
the GG parameters. Additionally, we propose a simple method to calculate
the ML estimates of the parameters. The results obtained in the deriva-
tion of this ML method provide the foundations for the development of the
Generalized Gamma Mixture Model, which is the main contribution of this
work.

4.2.2 Estimation of parameters of the Generalized Gamma

Moments method

This method was proposed by Stacy in [Sta65]. For the derivation of the
method the following parametrization was adopted

f(x|a, ν, p) = p
xpν−1

apνΓ(ν)
e−(x

a
)pu(x), (4.11)
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where the parameters (a, ν, p) are all positive. This is the definition of the
GG distribution hereafter. For a given p > 0, all moments E{Xr} exist. Now,
let Z be the random variable (RV) defined as

Z = log(X/a)p = p(log(X)− log(a)). (4.12)

For this RV, the central moments, µr(·), of r-th order are

µr(Z) = prµr(logX), (4.13)

Additionally, it is easy to show that, given a RV, X, which follows a GG
distribution (X ∼ GG(a, ν, p)), the following properties hold

kX ∼ GG(ka, ν, p), k > 0

Xm ∼ GG(am, ν, p/m), m 6= 0. (4.14)

So, a new RV Z can be defined as Z = log(X/a)p where (X/a)p follows a
Gamma distribution of parameter ν. Hence, the log-transformed distribu-
tion of the Gamma RV is the following

fZ(z) = fGG(ez|1, ν, 1)ez =
1

Γ(ν)
exp(νz − exp(z)), (4.15)

where z ∈ R.

The moment generating function of Z is easily calculated asE{etZ} = t+ν
ν .

Where E{·} is the expectation operator. So, the r-th moment of Z is the
following

E{Zr} =
Γ(r)(ν)

Γ(ν)
= Ψ(r)(ν), (4.16)

where Ψ(r) is the polygamma function defined as

Ψ(r)(x) =
dm+1

dx
log Γ(x). (4.17)

Finally, the three first central moments are defined as

pE{logX − log a} = Ψ(0)

p2µ2(logX) = Ψ(1) (4.18)
p3µ3(logX) = Ψ(2).

These equations can be used to estimate the parameters of the GG(a, ν, p);
â, ν̂, p̂, by approximating the moments by means of the sample moments

â = exp(ȳ −Ψ(0)(ν̂))

p̂ = −sign(gy)

√
Ψ(1)(ν̂)

Sy
(4.19)

−|gy| =
Ψ(2)(ν̂)

(Ψ(1)(ν̂))3/2
,

where ȳ = 1
N

∑N
i=1 log xi, with {xi}Ni=1 the set of samples of X; S2

y is the sample
variance of {yi}Ni=1 = {log xi}Ni=1, and gy its sample skewness.
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The estimates are derived by means of calculating the value ν̂ from the
last equation of eq. (4.19). So, a numerical calculation needs to be per-
formed. In the original article [Sta65], Stacy and Mihran provided a graph
representing Ψ(2)(ν)

(Ψ(1)(ν))3/2 for a range ν ∈ [0.1, 5].

This method, though provides a quite straight-forward calculation of the
parameters, can provide estimates which are outside the parameter space.
Yet, it is highly sensitive to the number of samples.

Heuristic approaches

In order to avoid the problems associated to the moments method, some
heuristic methods have been proposed in the literature. As examples, Gomes
et al. [Gom08] proposed an iterative method which evaluates the best per-
formance of the χ2 goodness-of-fit test for a fixed p (see the parametrization
of Eq. (4.11)). The parameters of the transformed samples Y = Xp, which
are Gamma distributed, were calculated by the moments method. At the
end of the loop, the set of parameters with least p-value is chosen.

This method, present some shortcomings. First, the parameters of the
Gamma distributed data were calculated by the moments method, so the
problems associated to the moments method are not circumvent. However,
even if a good estimate is calculated, the χ2 goodness-of-fit test depends on
the calculation of the estimated PDF which strongly depends on the number
of bins considered and the assumption of a sample with sufficient large size.

Other heuristic method is the one presented by Wingo in [Win87]. This
method, based on the one proposed by Hager and Bain [Hag70], tries to
solve the maximum likelihood equations for the GG distribution. The log-
likelihood, LL, of a RV X ∼ GG(a, ν, p) for the parametrization presented in
Eq. (4.11) is

LL(a, ν, p|x) = log

((
p

apνΓ(ν)

)n n∏
i=1

xpν−1i e−
∑n
i=1(xi/a)

p

)
=

= n log(p)− npν log(a)− n log(Γ(ν))+

(pν − 1)

n∑
i=1

log xi −
n∑
i=1

(xi
a

)p
, (4.20)

where x = {xi}ni=1 is the set of samples.

Now, calculating the derivatives with respect the parameters and setting
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it equal to zero, one can obtain the ML equations

ap =
1

nν

n∑
i=1

xpi

p
n∑
i=1

log
(xi
a

)
− nΨ(ν) = 0 (4.21)

n

p
+ ν

n∑
i=1

log
(xi
a

)
−

n∑
i=1

(xi
a

)p
log
(xi
a

)
= 0,

where Ψ(x) ≡ Ψ(0)(x) = Γ′(x)
Γ(x) .

This system of equations can be reduced to a single non-linear equation
with p as the single unknown

−Ψ(ν) +
p

n

n∑
i=1

log(xi)− log

(
n∑
i=1

xpi

)
+ log(nν) = 0, (4.22)

where

ν = −

(
p

n

n∑
i=1

log(xi)− p
∑n

i=1 x
p
i log(xi)∑n
i=1 x

p
i

)−1

(4.23)

and

a =

(
1

nν

n∑
i=1

xpi

)1/p

. (4.24)

So, the problem is reduced to calculate p from Eq. (4.22). Some authors
reported the difficulty of solving this equation with the conventional nu-
merical methods such as Newton-Raphson [Hag70] and conclude that the
MLE may not exist.

In [Win87], the author faced the problem by analyzing the effect of in-
appropriate zero finding algorithms. So, an heuristic method for isolating
roots of a general scalar nonlinear equation was proposed. This method
makes use of the root-isolation technique proposed in [Jon78], which uses
only function values to isolate the roots in a compact interval of the real
line.

Though this method can provide a ML estimate of the parameter by solv-
ing Eq. (4.22), it has to heuristically divide the intervals where p is searched
and calculate whether a root is in it or not by means of the mean value and
variance of the function in each of the intervals, so many evaluation of the
function are required.

ML approach

A very interesting analysis was recently published by Noufaily and Jones
in [Nou12], where an iterative approach is proposed to solve the likelihood
equations, Eqs. (4.21), in a way that the individual equations are uniquely
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solvable. This result provides a very promising technique for calculating
the MLE parameters of the GG.

In that work, the log-likelihood equations were calculated following the
reparameterization proposed in [Law80]. Concretely, for a RV X which is
distributed, X ∼ GG(a, ν, p), the new RV Y = logX is calculated, whose PDF
is the following

fY (y) =
p

Γ(ν)

eypν

apν
exp(−e

yp

ap
) =

νν−1/2

σΓ(ν)
exp(
√
νw − νew/

√
ν), (4.25)

where y ∈ R, w = y−µ
σ , σ = 1

p
√
ν

and µ = log(a) + 1
p log(ν).

So, in the end, the following equations have to be solved

µ = σ
√
ν logS0 (4.26)

R(σ) ≡ S0

S1
− Ȳ − σ√

ν
= 0 (4.27)

T (ν) ≡ log(ν)−Ψ(ν)− L√
ν

= 0, (4.28)

where L = µ−Ȳ
σ and Sj = 1

n

∑n
i=1 y

j
i exp( yi

σ
√
ν
).

The important result of [Nou12] is the demonstration that both Eqs.
(4.27) and (4.28) are well-behaved with unique solutions in σ and ν respec-
tively. So, an iterative method can be developed to calculate ν̂ by Eq. (4.28)
from an initial guest of the parameters and then σ̂ by solving Eq. (4.27).
Finally, µ̂ is calculated by replacing the previous estimates in Eq. (4.26).
These estimates can be used to calculate a new L to compute the new log-
likelihood function. By repeating these steps until a desired accuracy, the
estimates are achieved [Law80].

This method provides a fundamental result about the behavior of the log-
likelihood equations, and guarantees their solution. However, the method
does not provide any proof concerning its convergence or the uniqueness of
the ML. Yet, this method needs to solve two non-linear equations by numer-
ical techniques whereas the method proposed by Wingo in [Win87], previ-
ously described, only needs to solve a linear equation.

The proposed approach

We propose a simple but efficient method to calculate the ML estimates of
the GG distribution. The main advantage of the method is that it can be
easily implemented and has the same properties of the method of [Nou12],
i.e. the equation to solve are well-behaved with unique solution. Addition-
ally, the method just need the calculation of just one non-linear equation
and, thus, the computing time is considerably reduced.

The method consists in transforming the RV, X ∼ GG(a, ν, p) by the fol-
lowing transformation Y = Xp0 where p0 is a positive real number. So, the
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new PDF of Y is the following

fY (y) =
p

p0

y
p
p0
ν−1

apνΓ(ν)
exp

(
−y

p
p0

ap

)
u(y). (4.29)

Note that this PDF follows a Gamma PDF when p0 = p. Hence, a reasonable
way to find the p value is to find the value of p0 that maximizes the Likelihood
of the GG distribution and also maximizes the Gamma distributed RV Y =
Xp0.

In order to see if this method provides a proper solution, we first demon-
strate that the ML estimate of the parameters of the new random variable
Y also maximizes the Likelihood of the GG distribution when p0 = p.

First, we calculate the ML estimates of the parameters of Eq. (4.29) for
p0 = p, whose log-likelihood is the following

LLY = −npν log(a)− n log(Γ(ν)) + (ν − 1)

n∑
i=1

log(yi)−
n∑
i=1

yi
ap
. (4.30)

The maximum with respect to the parameter a is easily calculated by taking
the derivative with respect to a and setting it equal to zero

ap0 =
1

nν

n∑
i=1

yi. (4.31)

Finally, the EQ. (4.30) can be maximized with respect ν by introducing the
value of a0

log(ν)−Ψ(ν) = log

(
1

n

n∑
i=1

yi

)
− 1

n

n∑
i=1

log(yi). (4.32)

Now, by introducing a0 in the log-likelihood function of the GG distribution,
Eq. (4.20)

LLX = n log(p)− nv log

(
1

nv

n∑
i=1

yi

)
− n log(Γ(ν)) + (ν − 1

p
)

n∑
i=1

log(yi)− nν. (4.33)

Now, by maximizing with respect ν, we obtain the following equation

∂LLX
∂ν

≡ −n log

(
1

n

n∑
i=1

yi

)
+ n log(ν) +

n∑
i=1

log(yi) − nΨ(ν) = 0 (4.34)

and finally, reordering terms, we obtain the same equation for which ν0 is
also a solution.

This result guarantees that there exist always a solution for the ML es-
timate of the GG distribution (â, ν̂, p̂) and the parameters â and ν̂ are those
obtained for the ML estimate for the transformed RV Y = X p̂. Hence, there
is always a solution for the MLE for a GG.

Additionally, since the MLE of a Gamma distribution always exist for
whatever positive yi values (the Eq. (4.32) is well-behaved), the problem is
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reduced to finding the value p that maximizes LLX among the ones that
maximize LLY .

The search method for p was implemented by the Nelder-Mead method
[Nel65] while the Brent’s algorithm was applied for calculating ν [Bre73].

This method does not demonstrate the uniqueness of p as did not any
of the methods in the literature. However, in our experience, we agree with
Noufaily and Jones [Nou12] that the global maximum of the LLX appears
to be distant to any other local maximum.

The main advantage of the method here proposed is that it is easy to
implement and only one non-linear equation has to be solved, whereas the
method of [Nou12] needs to solve two non-linear equations in each iteration
and [Win87] method needs several calculations of non-linear equations for
each interval considered for the isolation root technique.

4.2.3 Generalized Gamma Mixture Model

An additional advantage of the proposed method for the calculation of the
MLE parameters for the GG distribution is that it can be easily adapted for
the calculation of the parameters of GG Mixture Models (GGMM).

There were some attempts in the literature to obtain the parameters of
a GGMM. Concretely, in [Wah11] they calculated the GGMM by means of
the Nelder-Mead and Gradient descent methods for maximizing the log-
likelihood. However, that method is strongly sensitive to the number of
mixtures since it is just a direct optimization of the log-likelihood score
equations of the mixture model.

In this section we derive the GGMM by applying the Expectation-Maximi-
zation methodology [Moo96] and combining them with the method used to
calculated the MLE of the GG distribution.

Let X = {xi}, 1 ≥ i ≥ N be a set of samples. These samples are con-
sidered to be independent and identically distributed (IID) RVs. Now, the
GGMM considers that these samples result from the contributions of J dis-
tributions

p(xi|Θ) =
J∑
j=1

πjfX(xi|Φj), (4.35)

where Φ is a vector of the parameters of the GGMM (π1, · · · , πJ ,Θ1, · · · ,ΘJ)
and Θj are the parameters of the PDF (in our case the parameters of the
GG, represented as ai, νj, pj).

The joint distribution of IID samples is given by

p(X|Θ) =

N∏
i=1

p(xi|Θ). (4.36)
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The EM is applied here to maximize the log-likelihood function when
some hidden discrete random variables Z = {Zi}, are introduced into the
model. These RVs take values in {1, · · · , J} and indicate the class for which
each sample xi belongs.

Now, defining Θ(n) as an estimate of the parameters of the mixture in the
n-th iteration, the expectation step is performed by calculating the expected
value of the log-likelihood LL(Θ|X,Z)

Q(Θ|Θ(n)) = EZ|Θ(n){LL(Θ|X,Z)}. (4.37)

In the maximization step the new estimate Θ(n) is obtained by maximiz-
ing the expectation of the log-likelihood function Q(Θ|Θ(n)). These steps are
iterated until a stop criterion such as Q(Θ|Θ(n+1))−Q(Θ|Θ(n)) < Tol for some
pre-established tolerance (Tol) is reached.

The application of the EM algorithm for estimating the parameters of
mixture models has been applied for several distributions, see for example
[Moo96,Fig02]. However, to the best of our knowledge, this is the first time
a mixture model is presented for GG distributions.

In order to derive the estimates of the parameters in each iteration, we
first define the joint distribution of IID samples X and the hidden random
variables, Z as

p(X,Z|Θ) =
N∏
i=1

p(xi, zi|Θ), (4.38)

where p(xi, zi|Θ) = p(xi|zi,Θ)p(zi|Θ).

Now, the log-likelihood function can be defined in the following way

LL(Θ|X,Z) = log(p(X,Z|Θ)) =
N∑
i=1

log p(xi, zi|Θ)

=

N∑
i=1

log p(xi|zi,Θ) +

N∑
i=1

log p(zi|Θ) (4.39)

=
N∑
i=1

log fX(xi|zi,Θ) +
N∑
i=1

log πzi .

The expectation of the log-likelihood function with respect to the hidden
RVs when data {xi} and the previous estimate Θ(n) are known is

Q(Θ|Θ(n)) = EZ|Θ(n){LL(Θ|X,Z)}

=
N∑
i=1

EZ|Θ(n),xi
{log fX(xi|Θ) + log p(zi|Θ)} (4.40)

=

N∑
i=1

J∑
j=1

p(Zi = j|xi,Θ(n))(log fX(xi|Θzi) + log πj),
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where πj = p(Zi = j|Θ) is the probability of xi to belong to the class j.

The probability p(Zi = j|xi,Θ(n)) can be calculated by applying the Bayes
theorem as

p(Zi = j|xi,Θ(n)) =
fX(xi|Θ(n))p(Zi = j|Θ(n))

p(xi|Θ(n))
. (4.41)

Note that the Eq. (4.39) is composed of two terms, so the maximization
step can be done to each term independently. For the term depending on the
πj some constraints have to be considered since they must hold

∑J
j=1 πj = 1.

An optimization via Lagrange multipliers can be done in a straightforward
way and they guarantee a necessary condition for optimality in this prob-
lem. The new Lagrange function with λ as the Lagrange multiplier is the
following

Λ(π, λ) =
N∑
i=1

J∑
j=1

γi,j log πj + λ

 J∑
j=1

πj − 1

 , (4.42)

where we introduced γi,j = p(Zi = j|xi,Θ(n)) to simplify notation.

Now, calculating the derivative with respect each πj and setting it equal
to 0, the following expression is derived

N∑
i=1

γi,j = −λπ̂j . (4.43)

By summing both terms of the equation over j, we obtain

λ = −
N∑
i=1

J∑
j=1

γi,j = −N

and the estimates for the parameters πj that maximize the Lagrange func-
tion (and the likelihood function) are

π̂j =
1

N

N∑
i=1

γi,j =
1

N

N∑
i=1

p(Zi = j|xi,Θ(n)). (4.44)

For the calculation of the maximum of Eq. (4.39) with respect Θj =
(aj , νj , pj), we first calculate the derivative with respect aj

∂

∂aj


N∑
i=1

J∑
j=1

γi,j log fX(xi|Θj)

 = 0, (4.45)

where the log-likelihood of p(xi|Θj) is the one described in Eq. (4.20) for one
sample xi

log fX(xi|Θj) = log p− pν log(a)− log Γ(ν)

+(pν − 1) log xi −
(xi
a

)p
. (4.46)
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The result is

âpj =

∑N
i=1 γi,jx

pj
i

νj
∑N

i=1 γi,j
. (4.47)

Now, plugging Eq. (4.47) into Eq. (4.39) and deriving with respect to νj and
setting it equal to 0

∂

∂νj


N∑
i=1

J∑
j=1

γi,j log fX

(
xi|
∑N

i=1 γi,jx
pj
i

νj
∑N

i=1 γi,j
, νj , pj

) = 0. (4.48)

It results in the following equality

log(νj)−Ψ(νj) = log

(∑N
i=1 γi,jx

p
i∑N

i=1 γi,j

)
+

∑N
i=1 γi,j log(x

pj
i )∑N

i=1 γi,j
. (4.49)

Note that Eq. (4.49) is essentially the same as Eq. (4.32), which is well-
behaved and always has a unique solution. Thus, this non-linear equation
can be solved by numerical methods in the same way as was performed
in the MLE of the GG parameters. In our case, we also used the Brent’s
algorithm [Bre73].

The interval where the Brent’s algorithm is performed can be derived by
means of the following property

1

2νj
< log(νj)−Ψ(νj) <

1

νj
. (4.50)

So, the desired value of v̂j in the interval

1

2A
< ν̂j <

1

A
, (4.51)

where

A = log

(∑N
i=1 γi,jx

pj
i∑N

i=1 γi,j

)
+

∑N
i=1 γi,j log(x

pj
i )∑N

i=1 γi,j
. (4.52)

This property can be found in [Alz97] and was also used in [Nou12] for the
calculation of the ML estimates of the GG.

Now, the problem can be stated in the same way as was done for the ML
estimate proposed in section 4.2.2. We are interested in the parameter pj
which maximizes the likelihood for the component j ∈ [1, J ]. So, for each pj,
the Eqs. (4.47) and (4.49) provides the estimate of aj and νj respectively. By
applying the Nelder-Mead algorithm to maximize the log-likelihood function
for each component j, as was done for the ML estimates in section 4.2.2,
one can obtain the desired ML estimates. We will refer to this method as
the GGMM1 method.

It is important to note that the parameter estimates can be also solved by
extending the ML method of [Nou12]. For this purpose, the parametrization
proposed by Lawless [Law80] can be applied to the mixture model as was
explained in section 4.2.2.
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The log-likelihood equations to be solved are completely equivalent to
Eqs. (4.47) and (4.49) due to the invariance of the ML estimates to the
transformation Y = log(X). However, Lawless’ parametrization allows us to
extend the results of [Nou12] to the case of GGMM. For the sake of clarity,
we rewrite the parametrization

σj =
1

pj
√
νj

µj = log(aj) +
1

pj
log(νj) (4.53)

kj = νj .

With this parametrization, Eq.(4.47) becomes

µ̂j =
√
kjσj log(S̃0), (4.54)

where

S̃r =

∑N
i=1 γi,jy

r
i e

(
yi

σj
√
kj

)
∑N

i=1 γi,j
. (4.55)

So, in the case of the parameter σj which maximizes the log-likelihood of
Y = log(X)

∂

∂σj


N∑
i=1

J∑
j=1

γi,j log fY (yi|µ̂j , σj , kj)

 = 0. (4.56)

It results in
S̃1

S̃0

− σj√
kj
−
∑N

i=1 γi,jyi∑N
i=1 γi,j

= 0. (4.57)

This equations is well-behaved and all the theoretical demonstrations ob-
tained in [Nou12] still hold: it is monotone decreasing and, when limσj → 0,
the function takes the value

ymax −
∑N

i=1 γi,jyi∑N
i=1 γi,j

> 0. (4.58)

As a conclusion, Eq. (4.57) has always a positive solution for any µj and
kj. Additionally, due to the invariance of the ML estimates for the transfor-
mation Y = log(X), there always exist a pj for any aj and νj.

The solution is in the interval

0 < σ̂j <
√
kj

(
ymax −

∑N
i=1 γi,jyi∑N
i=1 γi,j

)
, (4.59)

so, the value can be calculated by any numerical method. We used here
also the Brent’s algorithm.

Finally, from an initial guess of pj one can calculate kj ≡ νj from Eq.
(4.49) and then use it to calculate the estimate of σj from Eq. (4.57), in an
iterative way until a desired tolerance is reached.
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This methodology generalizes the proposed method of [Nou12] for the
case of GGMM and we will refer to it as the GGMM2 method.

4.2.4 Implementation Generalized Gamma Mixture Model

In this section we detail the implementation of both of the proposed methods
for the GGMM.

In the algorithm 3 the Nelder-Mead method [Nel65] was used for the
calculation of p(n)

j and the Brent’s algorithm [Bre73] for ν(n)
j in the interval

given in Eq. (4.51).

In the case of Algorithm 4, the Brent’s algorithm [Bre73] was used for
calculating σ and k in the intervals of Eqs. (4.59) and (4.51) respectively.

The computational complexity of the previous GGMM methods when
compared to the calculation of a simple GG depends on the number of com-
ponents, J , assumed by the model. In each iteration of the EM algorithm,
the expected parameters of each component have to be calculated. So, if
the time consumed to estimate a GG is T , the calculation of the expected
parameters of the mixture is J × T .

When other mixture models such as RMM, NMM and GMM are consid-

Algorithm 3 Implementation of the GGMM1 method.
{x}Ni=1 ← Samples
J ← Number of components
Θ(0) ≡ {π(0)

j , a
(0)
j , ν

(0)
j , p

(0)
j }

J
j=1 ← Initial guess of parameters for each component

γ
(0)
i,j ← p(Zi = j|xi,Θ(0))
maxIter ← Maximum number of iterations
Tol← Tolerance
err ←∞
n← 0 Iterations counter
while err > Tol & n < maxIter do
n← n+ 1
for j = 1→ J do

p
(n)
j ← arg max

pj

{
N∑
i=1

γ
(n−1)
i,j log fX

(
xi|

∑N
i=1 γi,jx

pj
i

νj(pj)
∑N
i=1 γi,j

)}

ν
(n)
j ← log(νj)−Ψ(νj) = log

∑N
i=1 γi,jx

p
(n)
j

i∑N
i=1 γi,j

+

∑N
i=1 γi,j log(x

p
(n)
j

i )∑N
i=1 γi,j

a
(n)
j ←

∑N
i=1 γi,jx

p
(n)
j

i

ν
(n)
j

∑N
i=1 γi,j

1/p
(n)
j

π
(n)
j ← 1

N

N∑
i=1

γ
(n−1)
i,j

γ
(n)
i,j ← p(Zi = j|xi,Θ(n))

end for
err ← ‖Θ(n) −Θ(n−1)‖/‖Θ(n−1)‖ Evaluate the relative tolerance

end while
return Θ(n)
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Algorithm 4 Implementation of the GGMM2 method.
{x}Ni=1 ← Samples
{y}Ni=1 ← {log(xi)}Ni=1 Transformed samples
J ← Number of components
Θ(0) ≡ {π(0)

j , a
(0)
j , ν

(0)
j , p

(0)
j }

J
j=1 ← Initial guess of parameters for each component

γ
(0)
i,j ← p(Zi = j|xi,Θ(0))
maxIter ← Maximum number of iterations
Tol← Tolerance
err ←∞
n← 0 Iterations counter
maxIterML← Maximum number of iterations for the ML algorithm
TolML← Tolerance for the ML
while err > Tol & n < maxIter do
n← n+ 1
for j = 1→ J do

(aaux, νaux, paux)← (a
(n−1)
j , ν

(n−1)
j , p

(n−1)
j )

errML←∞
m← 0 Iterations counter for ML
LL(0)

j ← Calculate the log-likelihood for the j-th component
while errML > TolML & m < maxIterML do
m← m+ 1
σ = 1/(paux

√
νaux)

k ← log(νj)−Ψ(νj) = log

(∑N
i=1 γi,jx

paux
i∑N

i=1 γi,j

)
+

∑N
i=1 γi,j log(xpauxi )∑N

i=1 γi,j

S̃0 ←

∑N
i=1 γi,j exp

(
yi
σ
√
k

)
∑N
i=1 γi,j

S̃1 ←

∑N
i=1 γi,jyi exp

(
yi
σ
√
k

)
∑N
i=1 γi,j

σ ← S̃1

S̃0

− σ√
k
−
∑N
i=1 γi,jyi∑N
i=1 γi,j

= 0

νaux ← k
paux ← 1/(σ

√
k)

aaux ←

(∑N
i=1 γi,jx

paux
i

νaux
∑N
i=1 γi,j

)1/paux

LL(m)
j ← Calculate the log-likelihood for the j-th component

errML← ‖LL(m)
j − LL(m−1)

j ‖/‖LL(m−1)
j ‖

end while
(a

(n)
j , ν

(n)
j , p

(n)
j )← (aaux, νaux, paux)

π
(n)
j ← 1

N

N∑
i=1

γ
(n−1)
i,j

γ
(n)
i,j ← p(Zi = j|xi,Θ(n))

end for
err ← ‖Θ(n) −Θ(n−1)‖/‖Θ(n−1)‖ Evaluate the relative tolerance

end while

ered, the complexity of the EM method is similar to the GGMM. Note that
both the GMM and the NMM need to solve a non-linear equation similar to
Eq. (4.49) so the consumed time of the solution is the same. The additional
cost of calculating the GGMM parameters is due to the calculation of the
estimate of the parameter p(n)

j . If we define the time to solve Eqs. (4.49) and
(4.47) as T1, and T2 as the time consumed for solving p(n)

j , the computational
time for a simple GG (TGG) and a GGMM of J components (TGGMM ) would
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be

TGG = T1 + T2

TGGMM = J · (T1 + T2).

The estimated times in a Matlab (R2011a) implementation running in
an ASUS G53SW laptop (Intel Core i7 2630QM Processor, 2.2 GHz, 8 GB
RAM) were: T1 = 1.637 ms and T2 = 0.2056 s.

4.3 Results and Discussion

4.3.1 Performance of the ML method

In this section we show the performance of the proposed methods for cal-
culating the parameters of a GG distribution. For this purpose, we per-
formed 200 synthetic experiments and tested the methods presented in sec-
tion 4.2.2. Concretely, we tested the method of Stacy and Mihram [Sta65],
Gomes et al. [Gom08], Noufaily and Jones [Nou12], and our proposed method
of section 4.2.2. We will refer to them as Stacy, Gomes, Noufaily and pro-
posed methods respectively.

The synthetic data was calculated in the same way as was done in
[Nou12]: a set of gamma-distributed random samples are generated by
means of the method proposed in [Mar00] and the GG-distributed data
are obtained by taking the 1/p-th power of the samples. The parameters
of the GG distribution were also calculated from sets of parameters in a
reasonable dynamic range. The scale parameter a was set to 1 in all the
experiments since this parameter just affects to the scale of the data. Both,
the p parameter and the ν parameter were obtained from random samples
of a uniform RV in the interval [0.3, 5].

We choose this interval since lower values than 0.3 make the distribution
to take values that tend to infinity as ν get closer to 0. This is an unreal-
istic situation when real images are considered. Additionally, when p takes
lower values, the tail becomes heavier and the shape of the distribution
also becomes unrealistic. These effects are shown in Fig. 4.1, where some
examples of the PDFs of the GG distribution are depicted.

The number of iterations for the proposed method and for the method
of [Nou12] was set to 100 and the tolerance function to 10−8. The number
of bins where the χ2-test was performed in the method of [Gom08] was 150
and the number of samples per experiment was 104. The comparisons of
the methods were performed by comparing the goodness-to-fit of each dis-
tribution by means of two different measures: Kullback-Leibler divergence
(KL) and Kolmogorov-Smirnov (KS) statistic. The former is a non-symmetric
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Figure 4.1: Some examples of the GG distribution for the parameters of the synthetic
dataset.

measure of the difference between two probability distributions defined as

DKL(pn, fX) =
N∑
i=1

pn(i) log
pn(i)

fX(i)
, (4.60)

where pn is the empirical PDF estimate and fX is the theoretical distribution
(the GG distribution). For the empirical estimate of the PDF, the number of
bins of the histogram was set to 150.

The Kolmogorov-Smirnov statistic is the uniform norm of the cumulative
distribution function (CDF), defined as

DKS = sup |F̂ (i)− FX(i)|, (4.61)

where F̂ is the empirical CDF of data and FX the theoretical CDF. The KS
measure was chosen since it does not depend on the PDF estimate and can
be calculated with a few number of samples. Additionally, the Glivenko-
Cantelli theorem states that, if the samples are drawn from distribution
FX, then DKS converges to 0 almost surely [Dud99].

In Fig. 4.2 the results for both measures are depicted. It is clear that
the moments method of Stacy gives poorer results than the other methods
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Figure 4.2: Results for DKL and DKS for 104 samples. Methods: Stacy [Sta65], Gomes et
al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2.

for both measures. This result was expected since the moments method de-
pends on moments of third order, so the variance of the estimates becomes
higher. The rest of the methods performed well for both measures. In the
case of the DKL they fit practically the same while, in the case of DKS, there
are some better results for the method of Noufaily and the proposed one.
This is the effect of the approximation of the PDF for the χ2 test performed
by the method of Gomes: it calculates the best set of parameters for an
approximation of the empirical PDF which depends on the number of bins
and the number of samples of the dataset. So, as the number of samples
is reduced or the number of bins is reduced, the estimate becomes worse.

In order to see the effect of this we also show in Fig. 4.3 the relative
error1 of the estimates for all the methods. In the figure, the whiskers show
the dynamic range of the data which is not consider an outlier. So, though
the method of Gomes provides good fitting, the variance of the estimates is
higher than the method of Noufaily and the proposed one. At first sight,
the results of Fig. 4.3 demonstrate the better performance of the proposed
method in terms of variance of the ML estimates with no appreciable bias
in the estimates.

An example of the fitting performance of the methods is shown in Fig.
4.4 where the PDFs obtained with the methods are depicted as well as the
absolute error and the relative error of the PDFs.

Following, we analyze the dependence of the estimates with the number
of samples. The same experiment is repeated considering 500 samples.
The results of both goodness-to-fit measures are shown in Fig. 4.5, and the
relative error of the estimates are depicted in Fig. 4.6. The performance
for the DKL measure is similar for all the methods. However, note that the
value is considerably higher than the obtained for the case of 104 samples,
this effect is caused by the difficulties of estimating the PDF with so few
samples. Since the Gomes algorithm is based in the χ2 test, it is expected
that its performance decreases and the variance of the parameter estimates

1The relative error of an estimate θ̂ is calculated as εrel = ‖θ−θ̂‖
θ

, while the absolute error
is εabs = ‖θ − θ̂‖.
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Figure 4.3: Results for the relative error of the estimates for 104 samples. Methods: Stacy
[Sta65], Gomes et al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2.
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increases. In the case of the DKS measure, the performance of all methods
is comparatively equal to the case of 104 samples but a higher variability
is observed in the Gomes method due to the sensitivity to the number of
samples.

The better performance of Noufaily and the proposed methods is seen in
Fig. 4.6 where the variability of the Noufaily method did not increase dra-
matically as the Gomes method did. The proposed method also presented
a very low variance of the parameter estimates with no appreciable bias.
In the light of these results we can conclude that the proposed method is
robust with respect the number of samples and it does not introduce any
appreciable bias in the parameter estimates. The goodness-of-fit perfor-
mance of both the Noufaily and the proposed method are similar, though
the estimates are more accurate with the proposed method. This can be due
to the better convergence of the Nelder-Mead method than the algorithm of
the Noufaily method.

4.3.2 Tissue characterization in real US images

In this section we test the performance of the GG distribution for charac-
terizing tissues of real images. For this purpose, we used a set of 518 real
US images (584×145, 8 bits) obtained from 3 human subjects by means of a
clinical machine GE Vivid 7 echographic system (GE Vingmed Ultrasound
A.S., Horten, Norway). The images were acquired before the Cartesian re-
arrangement2.

In Fig. 4.7, an example of a real US images is shown with its Cartesian
rearrangement. The red contour is the segmented areas of blood which are
considered in the study, while the green contour is the segmented areas of
tissue. The intersection of both regions was rejected in the study.

Additionally, the histogram of the image was depicted for the blood re-
gion as well as the fitted distributions most commonly used to characterize
tissue. From the whole data set, a total number of 3185 regions were seg-
mented for myocardial tissue while 1960 were segmented as blood. The sizes
of regions vary depending on the tissue. However, it is high enough to pro-
vide a good estimate of the parameters. For instance, the segmented region
of Fig. 4.7 has 18250 samples for blood and 5529 for tissue.

In the case of Fig. 4.7, the lower value of the histogram shown is 19
since the intensity values in the blood area was in the interval [19, 156]. The
number of bins used for the representation of the histogram was set to 20
equally spaced in that interval.

2The image collection was supervised by specialists Marta Sitges and Etelvino Silva from
(Hospital Clinic; IDIBAPS; Universitat de Barcelona, Spain). The subjects were volunteers
for a study of the reconstruction process of ultrasonic images. The acquisition was done
in the Hospital Clinic of Barcelona with its approval. The images were provided by Nicolas
Duchateau (CISTIB - Universitat Pompeu Fabra, Ciber-BBN, Barcelona, Spain) and Bart
Bijnens (Instituco Catalana de Recerca i Estudis Avan cats (ICREA), Spain). The authors
want to thank all of them for providing the images.
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Figure 4.4: Example of the fitting performance for 104 samples. Methods: Stacy [Sta65],
Gomes et al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2. (a) Probability
Density Functions, (b) Absolute error of the PDFs, (c) Relative error of the PDFs.
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Figure 4.5: Results for DKL and DKS for 500 samples. Methods: Stacy [Sta65], Gomes et
al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2.

The performance of the GG distributions was tested by estimating the
PDFs for both tissue classes (myocardial tissue and blood) for the following
distributions: Exponential, Rayleigh, Weibull, Normal, Nakagami , Gamma,
GG. The PDFs were compared by means of both the DKL and the DKS mea-
sures. The results of the comparison is depicted in Fig. 4.8 where the better
performance of the Gamma, Nakagami and GG becomes clear. In order to
see whether these measures are statistically significant we carried out a
Welch t-test for the Gamma, Nakagami and GG distributions for the DKS

measures. This test was chosen since no equal variance should be assumed
and the DKS since it does not depends on the empirical PDF estimate but
just on the samples. The assumed hypothesis H0 is that “both distributions
have the same mean”, H1 indicates that the null hypothesis can be rejected
at a 5% of significance level.

The results are shown in tables 4.1 and 4.2. Note that all the null hy-
pothesis were rejected but just one: Myocardial Tissue. In that case, the
difference of the mean value of the Gamma and the GG is not statistically
significant. The mean values of the DKS are represented in table 4.3 where
the lower mean value of the GG for both tissues can be appreciated. The
results of the t-test of tables 4.1 and 4.2, and the lower mean values of
the DKS evidence the better performance of the GG than the rest of the
distributions, with the exception of the myocardial tissue, where a Gamma
distribution offers the same performance.

Blood p-value Hypothesis
Nakagami vs. Gamma < 10−15 H1

Gamma vs. GG 3.38 · 10−7 H1

Nakagami vs. GG < 10−15 H1

Table 4.1: Results of the t-test for Blood.
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Figure 4.6: Results for the relative error of the estimates for 500 samples. Methods: Stacy
[Sta65], Gomes et al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2.

4.3.3 Performance of the GGMM methods

In this section we test the performance of the proposed GGMM methods in
three different scenarios. First we test the necessity of using more than a
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Figure 4.7: Example of an image of the data set. The red contour is the segmented areas
of blood which are considered in the study, while the green contour is the segmented areas
of tissue. The intersection of both regions was rejected in the study.

Myocardial Tissue p-value Hypothesis
Nakagami vs. Gamma 3.2410−4 H1

Gamma vs. GG 0.96 H0

Nakagami vs. GG 2.7410−4 H1

Table 4.2: Results of the t-test for Myocardial Tissue.

Nakagami Gamma Generalized Gamma
Blood 5.5626 · 10−2 4.4970 · 10−2 4.2860 · 10−2

Myocardial 5.7711 · 10−2 5.5665 · 10−2 5.5644 · 10−2

Table 4.3: Mean values for DKS.

simple GG for describing tissues with an increasing echolucent response of
the effective scatterers. The case of a variation of the number of effective
scatterers is also considered. This behavior can be found in structures with
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Figure 4.8: Results for the relative error of the estimates for 500 samples. Methods: Stacy
[Sta65], Gomes et al. [Gom08], Noufaily [Nou12] and the proposed one of section 4.2.2.

an increasing deterministic response that changes the speckle nature from
fully formed speckle to fully resolved speckle. The variation of the number of
effective scatterers can be found in structures which change their scattering
cross section.

In order to simulate B-mode US images, we followed the same method-
ology proposed in [VSF10b]. This method scans an image and records the
data in a matrix which is corrupted by means of the speckle formation model
of Eq. (4.1) where the tissue is modeled as a collection of scatters of size
comparable to the wavelength. The speckle pattern is obtained by means
of random walk which does not assume any statistical distribution in order
to avoid any bias of the results. The Cartesian arrangement is obtained by
means of linear interpolation of the corrupted samples.

As a first example, we simulate an increasing echolucent tissue which
varies its intensity from 0 to 255 from left to right. The sampling process
and the resulting B-mode image are shown in Fig. 4.9.(b). The number
of samples were set to 50 angular samples and 100 radial samples, repre-
sented as red points. The amplitude of each scatterer is defined as a Normal
distributed RV with zero mean and σ = 8. Note that, along with the vari-
ation of intensities from left to right, a specular component of the speckle
will appear. The number of scatterers was set 20 in order to simulate fully
formed speckle in regions with low echolucent response and fully resolved
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(a) Sampling (b) Resulting B-mode image
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Figure 4.9: Simulation of spatial variant echolucent response of tissue. (a) Sampling of
an increasing echolucent tissue. (b) Resulting B-mode image obtained by corrupting the
samples by a random walk process of 20 scatterers per resolution cell,in order to simulate
fully formed speckle in regions with low echolucent response and fully resolved speckle in
regions with high echolucent response. (c) Histogram of (b) and a GG and GGMM with 2
components.

speckle in regions with high echolucent response. The resulting B-mode
image is represented in 4.9.(b).

The fitted GG and GGMM with 2 components depicted in Fig. 4.9.(c)
show that one simple GG fails to model the the probabilistic behavior of
a spatially variant echolucent tissue, while a GGMM with 2 components
properly describes the echolucent variation.

As an additional experiment, in Fig. 4.10 we represent the spatial vari-
ation of the number of effective scatterers. The simulation was performed
with the same sampling parameters as was done in the previous experi-
ment. In this case the echolucid response was set to be homogeneous with
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Figure 4.10: Simulation of spatial variant density of scatterers. The number of scatterers
per resolution cell decreases from left to right in order to simulate fully formed speckle in
regions with low density and partially resolved speckle in regions with high density.

no deterministic component. Thus, the nature of the speckle changes from
fully formed speckle to partially formed speckle. The number of scatterers
decreases from left to right from 256 to 1. The amplitude of each scatterer
is defined as a Normal distributed RV with zero mean and σ = 8.

The speckle PDF in this case becomes more impulsive in areas with more
effective scatterers (left part of Fig. 4.10.(a)), this behavior is observed in a
lower decay of the tail. Both the simple GG and GGMM with 2 components
were calculated from the data and are depicted in Fig. 4.10.(b). In that
figure, the fitting of a simple GG clearly shows that one component does
not suffice to describe a spatial variation of number of effective scatterers.

In last synthetic experiment for testing the necessity of GGMM we sim-
ulate an anatomic phantom of a kidney scan. For this purpose, we used
the artificial kidney scan proposed by Jensen [Jen96]. The image can be
downloaded from the Field II website3. The sampling of the kidney and the
resulting B-mode image are represented in Fig. 4.11. In this case, a GGMM
with 4 components was used to fit the PDF of the image. The probability of
belonging to each component is represented in Fig. 4.12 where the differ-
entiation of tissues can be easily observed. In this case, a lower number of
components fail to describe the kidney and the surrounding tissue which
have a similar speckle response.

For testing the performance of the proposed GGMM methods with real
data, we use the same data set used in the previous section. The number of
components is set to two: blood and myocardial tissue. In order to compare
the performance of the GGMM methods, we also fit a Gamma Mixture Model
and a Nakagami Mixture model to the data [Des09,Web00,Cop03]. Both the
DKL and the DKS where calculated for the mixture models in each image.
The number of iterations for each mixture model was set to 100 and the

3http://field-ii.dk/
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(a) Anatomic phantom of a kidney (b) Simulated B-mode image
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(b) GG and GGMM fitted to data

Figure 4.11: Simulation of an anatomic phantom of a kidney scan.

tolerance to 10−8.

The lower values of DKL and DKS shown in Fig. 4.13 evidences the
better characterization of the GGMM when compared to the NMM or the
GMM. These results were expected due to the results of the previous section.
Again, the t-tests were performed to the DKS measure of the data. All the
mixtures were statistically different with the exception of the GGMM1 and
GGMM2. In that case, a p-value of 0.4906 was obtained. These results
show once more that the GG can characterize better than other commonly
accepted distributions and the differences are significant.

4.3.4 Potential Applications of the GGMM

A proper characterization of the speckle by means of suitable distributions
can be used to guide segmentation algorithms as the one in [Des09]. The
parameters of the mixture model can be used as features for developing a
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Figure 4.12: Probability of belonging to each component of the GGMM fitted to the image
in Fig. 4.11.(b). The components are sorted in increasing mean value.
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Figure 4.13: Results for DKL and DKS of the Mixture Models: GGMM1, GGMM2, GMM
and NMM .

classifier as was done in [Sea11]. Furthermore, some filters use the proba-
bility of belonging to each tissue class. As an example of the performance of
the GGMM, we show the some results of the Probabilistic-Driven Oriented
Speckle Reducing Anisotropic Diffusion (POSRAD) [VSF10a].

This last filter includes the probability of belonging the each tissue class
and adapts the diffusion tensor. Concretely, it calculates the structure ten-
sor of the posterior probability and detects the most probable edges of the
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image. This information is used to define the diffusion tensor which pro-
vides a better behavior in the boundaries of the image.

The structure tensor of the probability density function for each tissue
class is calculated as

Tj(xi) = Gσ ∗ (∇σp(Zi = j|xi,Θ) · ∇σp(Zi = j|xi,Θ)T ), (4.62)

where Gσ is a Gaussian kernel of standard deviation σ, and∇σp(Zi = j|xi,Θ)
is the gradient of the probability density function for each tissue class fil-
tered with a Gaussian kernel of standard deviation σ. Finally, let λj1 ≥ λ

j
2 be

the eigenvalues and (vj1,v
j
2) their respective eigenvectors. The local orien-

tation of the maximal variation of probability of the class Cj is given by vj1,
and the local orientation of the minimal variation is given by vk2 .

Let consider the following diffusion equation{
u(x, 0) = u0

∂u

∂t
= div(D∇u),

(4.63)

where the matrix D is the diffusion tensor which can be described by its
eigenvectors (v1,v2) and eigenvalues λ1, λ2.

Given a diffusion tensor, D, the diffusion of the intensity values of the
image is performed in the direction of eigenvectors with different diffusion
coefficients. For each eigenvector, its eigenvalue defines the diffusion coef-
ficient and, thus, an anisotropic diffusion can be achieved.

As an example, when one eigenvalue is equal to 1 and the other one is 0,
a complete anisotropic diffusion is obtained, since the intensity values dif-
fuse in the direction of the eigenvector associated to the eigenvalue equal to
1. This would be the desired behavior of a filter in regions where structures
must be preserved. When both eigenvalues are equal to 1, the diffusion
process becomes isotropic and the intensity levels diffuse equally in all di-
rections. This case would be the desired behavior for homogeneous regions
where no structures must be preserved.

The POSRAD philosophy makes use of the structure tensors determined
out of the probability maps to obtain the most probable structures. In that
case, the diffusion filter should be anisotropic. When no probable struc-
tures are detected, the diffusion should be isotropic.

Since we have J structure tensors (each tissue class with probability
density function), we choose the eigenbase of the structure tensor with
maximal λj1: ĵ = arg maxj(λ

j
1). This base gives the orientation of the maximal

variation of probability among all the classes.

The interpretation of this choice is that we choose as boundary the one
with the maximal gradient of the probability density function over all tissue
classes. This way, the most probable boundary is preserved in the filtering
process. In the basis of Tĵ, namely (e1, e2), the diffusion matrix D is defined
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(a) p(Zi = 0|xi,Θ) (b) p(Zi = 1|xi,Θ)

Figure 4.14: Probability of belonging to each tissue class, where the class 0 describes the
blood and the class 1 describes the myocardial tissue.

as
D = E

(
λ1 0
0 λ2

)
ET (4.64)

where
λ1 = 1 −||∇e1,σp(Zi = j|xi,Θ)||2
λ2 = 1

(4.65)

and || · ||2 is the 2-norm, ∇ei,σ is the directional derivative in the direction
ei filtered with a Gaussian kernel with a standard deviation σ, and E is the
matrix whose columns are the eigenvectors (e1, e2). This definition performs
a diffusion filtering in the direction of the minimal variation of probability
(e2) while preserves the maximal variation of probability since ||∇e1,σp(Zi =
j|xi,Θ)||2 will have a value closed to 1. Note that the discrete approximations
of ||∇e1,σp(Zi = j|xi,Θ)||2 is bounded in [0, 1], thus λ1 ∈ [0, 1].

In Fig. 4.14 we show the probability of belonging to each tissue class,
p(Zi = j|xi,Θ), provided by the GGMM method (the GGMM2 was used for
this example). All the figures of the example are represented in their Carte-
sian arrangement in order to ease visualization of fine structures. Note that
the structures are clearly identified by each posterior probability of each tis-
sue class and the filter can perform an efficient anisotropic diffusion. To
see this, in Fig. 4.15 we represent λ1, which describes the anisotropic be-
havior of the filter. When λ1 = 1, the filter acts like a conventional isotropic
filter whereas the pure anisotropic behavior is carried out when λ1 = 0.

Finally, the resulting image after 40 iterations is depicted in Fig. 4.16 in
comparison to the original one.

As a final application of the GGMM, one can make use of the pixel-wise
probability of belonging to each tissue class to obtain a spatially coherent
probability by introducing a undirected graph where the nodes (each pixel of
the image) represent a random variable and the edges of the graph represent
the relationships between nodes as it is represented in Fig. 4.17. The prob-
lem is reduced to find the labels for each node by taking into account the
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Figure 4.15: Anisotropic behavior of the filter. The most probably edges of the image are
described by the lower values of λ1 ∈ [0, 1].

(a)Original image (b) Filtered image

Figure 4.16: Results of the POSRAD filter. The anisotropic behavior of the filter is appreci-
ated in the preserved details of the myocardial tissues.

relationships between nodes of the local neighborhood (the Markov property
is assumed). This problem, though is intractable in terms of direct prob-
abilistic inference, can be solved by means of the Loopy Belief Propagation
(LBP) algorithm introduce by Pear in [Pea82]. This algorithm performs ap-
proximate inference of a graphical model. Although LBP does not guarantee
to converge due to the presence of loops in the graph, however it has shown
good experimental results and is commonly used [Ksc01].

In the end, the problem is faced as a discrete MRF where the labels, Z,
are each tissue class and the nodes are the pixels of the image. The energy
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Figure 4.17: Undirected graph. The nodes represent a random variable X and the edges
relationships between nodes. Each random variable can be classified as a tissue class J.

to be minimize by the LBP method can be defined as

V (Z) =

N∑
i=1

V1(Zi) +
∑
k∈η(i)

V2(Zi, Zk), (4.66)

where η(i) is the neighborhood of the i-th node, V1(Zi) = − log p(Zi = j|xi,Θ)
and

V2(Zi, Zk) = −
∑
k∈η(i)

log p(Zk = zi|xk,Θ). (4.67)

The output of the LBP is a belief of node i belongs to class Z = j. Thus,
the probability with spatial coherence can be directly obtained from the
outputs of the LBP algorithm. In Fig. 4.18 are represented the probability
of each tissue class when the spatial coherence is introduced.

(a) p(Zi = 0|xi,Θ) (b) p(Zi = 1|xi,Θ)

Figure 4.18: Probability of belonging to each tissue class after the LBP, where the class 0
describes the blood and the class 1 the myocardial tissue.



Generalized Gamma Mixture Model 95

This coherent probability maps can be of help for classifying purposes
or as prior information for segmentation algorithms. The valuable infor-
mation that they provide can be seen in a simple experiment in which we
consider the classification of two tissues (blood and myocardial tissue) and
we compare the results with the k-means algorithm applied to the original
image and a simple classifier consisting in assign the class with maximum
posterior probability. The results of this example are shown in Fig. 4.19
where the identification of the myocardial tissue is clearly obtained by the
posterior probability of the GGMM whereas the k-means method cannot
properly define a contour of each tissue.

(a) (b)

Figure 4.19: Simple example of the valuable information of the posterior probability ob-
tained from the GGMM with spatial coherence. (a) Classification with k-means, (b) Classi-
fication with the GGMM probability maps after LBP.

4.4 Conclusions

Throughout this work we have analyzed the advantages of using a GG dis-
tribution for characterizing the speckle in ultrasound images. This distri-
bution offers a suitable way to deal with the impulsive behavior of speckle
which causes heavier tails in the distributions. Additionally, the GG is a
natural generalization for many distributions commonly used to charac-
terize the speckle: Rayleigh, Gamma, Nakagami, Weibull, Exponential, Ri-
cian [Sha01]. Thus, it has all the advantages of these distributions and
avoids some of their generalization problems.

Although some approaches have used this distribution in the literature,
the inconveniences of estimating its parameters make this option thorny
and not attractive. The problems stems from the inaccurate estimate of the
moments method proposed in [Sta65] and the impossibility of obtaining
a closed-form ML estimates. Some solutions have been recently proposed
such as heuristic methods [Gom08], which are strongly dependent on the
number of samples, and iterative methods [Nou12] which depends on the
initial condition.
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In this work we have proposed a simple methodology to calculate the ML
estimate which offers robust results comparing to the methods in the liter-
ature [Sta65,Gom08,Nou12]. It is worth to mention that the fundamentals
of the ML method of [Nou12] and the proposed one are the same since both
try to find the solution of three simultaneous non-linear equations. How-
ever, the different optimization technique makes the proposed method more
robust. Additionally, the performance for describing speckle was tested in a
set of 518 real US images of the heart, in which 3185 regions were manually
segmented for myocardial tissue and 1960 for blood.

Results with t-tests applied to the DKS goodness-of-fit measure demon-
strated the better behavior of the GG en most of the cases and in those
cases where there were not statistical difference, the other distribution is a
particularization of the GG.

The formulation of the proposed method allows to generalize this method-
ology to a GGMM. These mixture models are of great value due to the
different nature of the echogenic response of tissues in the received sig-
nal. Two different methods were proposed for the calculation of the GGMM
parameters GGMM1 and GGMM2. Both were developed by applying the
EM method in the derivation of the proposed ML method, the optimization
technique for GGMM1 follows the same approach used for the proposed ML
method. The GGMM2 method makes use of the optimization technique pro-
posed by [Nou12]. Results when comparing both methods to the GMM and
NMM in real images showed the better fitting of the GGMM. No statistical
differences were detected between GGMM1 and GGMM2.

Through this article we showed the better behavior of the GGMM meth-
ods when compared to the RMM, NMM and GMM for the case of cardiac
imaging. The potentials of mixture models have proven a good classifi-
cation performance in intravascular ultrasonic images for RMM [Sea11].
Additionally, the NMM showed good results for segmentation in carotid ar-
teries [Des09]. In the case of filtering Cardiac imaging, the mixture models
have also shown good results [VSF10b].

We think the GGMM methods here proposed can be used with good re-
sults in the aforementioned modalities since they generalize the RMM, NMM
and GMM in a natural way and allow to describe heavier tails of the PDFs
that the RMM, NMM and GMM fail to fit. Many other US modalities such
as breast, liver and kidney should be considered. We hope the proposed
GGMM methods can encourage future research for tissue characterization
in those different US modalities.

Finally, we want to recall that the potential applications of GGMM do not
confine to those proposed in this paper. We hope the results of this work
can revive the use of the GG distribution and its extension, the GGMM, in
many other areas.



5
Speckle characterization with Heavy-Tailed Models

All possible definitions of probability
fall short of the actual practice.

William Feller, 1906–1970.

Abstract– Several probabilistic models have been used in the
last decades to describe the speckle pattern of US images. The
most common accepted models have been the Rayleigh because
of its simplicity and the Nakagami due to its better empirical
goodness-of-fit performance. However, these models fail to fit the
heavy tailed behavior of the probability distributions due to the
highly impulsive response of scatterers. In this work, a proba-
bilist model, which describes the heavy tailed behavior of speckle
and considers the specular component, is presented. Results
show that the hypotheses considered in this work fit remarkably
better than those of other models.

Adapted from: G. Vegas-Sánchez-Ferrero1, F. Simmross Wattenberg1, M. Martı́n-
Fernández1, C. Palencia2, C. Alberola-López1, Caracterización de Speckle con Mod-
elos de Cola Pesada, XXX Congreso Anual de la Sociedad Española de Ingenierı́a
Biomédica (CASEIB), San Sebastián, Spain, November 2012.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
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5.1 Introduction

Among non-invasive techniques, ultrasonic imaging is probably the most
extended. The main reason of its success stems from its low cost for diag-
nostic support and its wide use in medical protocols. However, US images
show an intrinsic granular pattern in this modality which make its interpre-
tation difficult. It is the so-called speckle. This pattern is due to the random
interferences of multiple coherent components produced by microscopic el-
ements into the medium. Concretely, in the case of US, the resolution cell,
the number of effective scatterers and the acquisition protocol are the ele-
ments which participate in the speckle formation [Sha00].

The analysis of the incoming echo wave leads to a characterization of tis-
sues for medical analysis. Thus, and due to the random nature of speckle,
several probabilistic models have been proposed in the literature. This char-
acterization has been successfully used in applications such as segmenta-
tion, classification and filtering. However, the performance of these meth-
ods strongly depends on the probabilistic model used for describing tissues
in US. For this reason, probabilistic modeling of amplitude signals in US
has been a prolific topic in the last years.

Probably, the most celebrated model has been the one-parameter Ray-
leigh distribution, which describes the so-called fully formed speckle. This
pattern appears whenever there are a high number of effective scatterers in
the resolution cell. However, real images show a deviation from this theo-
retical model due to a lower number of scatterers in the resolution cell or
the predominance of some components in the cell. The distributions most
commonly used are the Rice distribution, when specular component is con-
sidered (fully resolved), K distribution (partially formed) and K-homodyne
(partially resolved).

Though all these models stems from physical suppositions on the scat-
tering phenomena of random media, other distributions have shown its em-
pirical effectiveness in real images. This is the case of Gamma [VSF10b] and
Nakagami [Sha00] distributions. The Gamma is a two-parameter distribu-
tion which describes the resulting distribution of interpolated fully formed
speckle. The Nakagami was proposed as a two-parameter distribution that
generalizes the Rayleigh and approximates the Rice distribution.

The capability of the Nakagami distribution to model fully formed and
fully resolved speckle make it the most accepted model. However, the tails
of the Nakagami, K, Rayleigh or Gamma distributions do not show the im-
pulsive response which appears in speckle. This response is produced as a
result of the highly impulsive nature of scatterers causing the huge dynamic
range of the signal, which is appreciated in the heavy tails of distribution
of the amplitude signal.

One of the distributions proposed to fit the impulsive response of speckle
is the Heavy-tailed Rayleigh model (HT-Rayleigh) [Kur04]. Nevertheless, this
model does not consider the presence of specular scattering and, thus, it is
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not able to describe the fully resolved speckle.

In this work, we propose an α-stable (AS) model which describes the im-
pulsive behavior that causes the heavy tails and also takes into account the
specular components of fully resolved speckle. Thus, it is a generalization
of the HT-Rayleigh model proposed in [Kur04] and also generalizes in a nat-
ural way the Rayleigh and Rice models, since the Gaussian hypothesis is a
particular case of the proposed.

The main contribution of this work is two-fold: 1) We show that the AS
hypothesis can be applied to US real images and it fits remarkably better
than the Gaussian hypothesis commonly used. 2) We show that the HT-
Rayleigh model is insufficient for characterizing fully resolved speckle, since
the null specular component is not always admissible.

The experiments were carried out using 30 plaques of coronary arteries
which were histologically analyzed and classified as calcified tissue, where
the specular component is not negligible. Additionally, 50 Lumen regions
were analyzed, where there are no relevant specular structures.

5.2 Probabilistic Models

5.2.1 Classical Models

Image acquisition in US begins with the emission of packets of echo pulses
that travel along the tissue. The scattering phenomena is produced by the
effective number of scatterers in the resolution cell. They contribute in the
change of shape of the pulse depending on the tissue characteristics such
as the number of effective scatterers and their shapes [Sha00,VSF10b].

The echo model after the scattering, s(t), is usually treated as a “random
walk” process due to the random location of scatterers in the resolution
cell [Sha00]

s(t) =

N∑
n=1

αn cos(ω0t+ φn), (5.1)

where ω0 is the average excitation frequency and N is the effective number
of scatterers within the resolution cell. The phases, φn, are usually modeled
as uniform distributed in [0, 2π] and the amplitude is considered to follow a
Normal distribution.

Fully formed speckle considers a high number of scatterers in the reso-
lution cell and, by applying the Central Limit Theorem, the signal after the
scattering can be expressed as

s(t) = Xr cos(ω0t) +Xi sin(ω0t), (5.2)

where Xr and Xi are the in-phase and quadrature components respectively
and follow independent and identically distributed Gaussian distributions
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of zero mean. Thus, the envelop of the received signal is calculated as
R =

√
X2
r +X2

i and follows a Rayleigh distribution [Wag83]

fR(r) =
r

σ2
e−

r2

2σ2 , r ≥ 0. (5.3)

On the other hand, following a different argument, Shankar in [Sha00]
proposed a Nakagami distribution as a “simple and universal model for tis-
sue characterization”. This model is not based on physical assumptions as
those mentioned in the introduction. It is based on an empirical goodness-
of-fit performance compared to the Rayleigh and Rice.

The PDF of the Nakagami distribution is the following

fR(r) =
2mmr2m−1

Γ(m)(2Ω)m
e−

m
2Ω
r2
u(r). (5.4)

This distribution shows good properties for describing the behavior of speckle
because the Rayleigh is a particular case of it (m = 1). Additionally, when
m > 1 it is similar to the Rice distribution. However, this distribution shows
also some limitations since it is not able to fit the heavy tails appearing in
real images due to the impulsive nature of speckle [Sha01].

5.2.2 HT-Rayleigh Model

This model was firstly proposed for the case of synthetic aperture radar im-
ages and was extended to the case of US images because both modalities are
based on similar assumptions [Kur04]. The main advantage of this model
is that it tries to describe the impulsive response of speckle by applying the
AS hypothesis to the in-phase and quadrature components received in the
probe.

Its derivation starts from the characteristic function of a bi-variant two-
parameter AS distribution

ψ(t1, t2) = e−γ|t|
α
, (5.5)

where t1 and t2 are the elements of the vector t, and |t| =
√
t21 + t22. The

relation between the characteristic function and the PDF can be established
by means of its Fourier transform

fX1,X2
(x1, x2) =

1

(2π)2

∫
t1

∫
t2

e−γ|t|
α

e−j2π(x1t1+x2t2)dt1dt2. (5.6)

Finally, the PDF of the envelop obtained from the random variable X =
(X1, X2) can be calculated by using polar coordinates and marginalizing
with respect the angular variables

fR(r) =

∫ 2π

0
rfX1,X2(r cosφ, r sinφ)dφ, (5.7)
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where X1 = R cos(Φ) and X2 = R cos(Φ). In [Kur04] this expression is calcu-
lated by means of numerical quadrature methods, since the series expan-
sion are unstable.

This model solves the main problem showed by the Rayleigh and Nak-
agami models, since it considers the highly impulsive response of speckle
which originates heavy tails. However, it does not consider the specular
component in the scattering model and, thus, shows an important draw-
back for tissue characterization with a relevant specular component; which
is the case of muscular or calcified tissues.

5.3 α-Stable model for Fully Resolved Speckle

In this section we propose a more general α-stable distribution which ac-
counts for the specular contribution of tissues.

The underlying hypothesis of classical models is the Gaussianity in the
real and imaginary components of the random walk model. In the case of
the HT-Rayleigh, both the real and imaginary components are supposed to
be IID with a null specular component. In order to avoid this assumptions
and to analyze the assessment of the hypothesis, we propose a model that
generalizes the one proposed in [Kur04]. We consider specular components
and different scattering parameters for each component. The characteristic
function of an α-stable random variable of 4 parameters is the following

ψ(t) =

{
ejδt−γ

α|t|α(1+jβsign(t) tan(απ/2)), si α 6= 1

ejδt−γ
α|t|α(1+jβsign(t) 2

π
log |t|), si α = 1,

(5.8)

where δ is the localization parameter, which models the specular component
of the random variable and α takes values in (0, 2]. In the case of α = 2
the distribution becomes Gaussian and, thus, this model generalizes in a
natural way the Gaussian hypothesis. The parameter β is the asymmetry
parameter and takes values in [−1, 1]. This value is expected to be around
zero since no anisotropic response is assumed. The γ parameter is the
so-called dispersion parameter, which is the counterpart of the standard
deviation of the Gaussian case.

If the asymmetry parameter, β, is shown to be negligible and the disper-
sion of both real and imaginary components are the same. Thus, we can
consider the characteristic function of a bi-variant and symmetric α-stable

ψ(t1, t2) = ejδ1t1+jδ2t2−γα|t|α . (5.9)

This expression generalizes the HT-Rayleigh distribution since it considers
the specular component of Xr and Xi. The derivation of the PDF for this
case can be calculated by means of the Fourier transform

fXr,Xi(x1, x2) =
1

(2π)2

∫
t1

∫
t2

ψ(t1, t2)e−jx1t1−jx2t2dt1dt2. (5.10)
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Finally, the envelop of the PDF of the random variable X = (Xr, Xi) can be
calculated by using polar coordinates and marginalizing with respect the
angular variable

fR(r) =

∫ 2π

0
rfXr,Xi(r cosφ, r sinφ)dφ, (5.11)

where Xr = R cos(Φ) and Xi = R cos(Φ). This expression can be calculated
by numerical methods in the same way as was done in [Kur04].

5.4 Results

The experiments were carried out using intra-vascular US signals from
coronary arteries acquired after the gain compensation step. These sig-
nals were directly take from the probe before the envelop calculation and,
thus, no log-compression or interpolation to Cartesian coordinates was per-
formed1. A set of 30 calcified plaques with histological validation and 50
lumen regions were considered in the study. They were acquired with an
IVUS Galaxy II device (Boston Scientific) by using an Atlantis SR Pro 40MHz
catheter (Boston Scientific). The sampling of data was performed at 200
MHz with an acquisition 12-bit Acquiris card.

We performed two different experiments for two different objectives:

1) To test the AS hypothesis in real data. For this purpose, we use
the general model stated in Eq. (5.8) for each component (in-phase and
quadrature) of the acquired signal. In doing so, the AS model of Eq. (5.8)
is fitted to each component by means of the Nolan’s algorithm [Nol97]. The
parameters obtained for both components are compared in order to test
the isotropic nature of data (i.e. same α and γ for both components) and
the Gaussian model is also tested. This experiment allow us to test if the
Gaussianity hypothesis is reasonable and if the proposed model of Eq. (5.9)
is consistent.

2) To test the goodness-of-fit of the proposed model in both kinds
of tissues. The model of Eq. (5.11) is compared to the HT-Rayleigh and
the Nakagami models. This experiment will show if a significant difference
between fitting PDFs of tissues by using the α−stable hypothesis versus the
Gaussian hypothesis exists.

As a result of the first experiment, in table 5.1 the difference between
parameters α of the in-phase and quadrature components is shown. That
table shows the high similarity between AS parameters of both components.
An unpaired student’s t-test was performed with equal mean values as the
null hypothesis, H0. The statistical significance was set to 5%. P-values and
the accepted hypothesis is shown in table 5.2, where one can appreciate

1The images belong to post-mortem arteries acquired in the Hospital Germans Trias i
Pujol of Badalona, Spain, with its approval under the supervision of Dr. Josepa Mauri.
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Figure 5.1: Comparison between the proposed AS model and the Gaussian model for the
in-phase and quadrature signals for the case of Lumen.

Lumen Calcified Plaque
Xr Xi Xr Xi

α 1.18 ± 0.18 1.18 ± 0.18 1.16 ± 0.22 1.13 ± 0.19
β -0.01 ± 0.01 -0.01 ± 0.0 -0.001 ± 0.02 -0.005 ± 0.02
γ 30.48 ± 26.38 30.42 ± 26.30 341.62 ± 408.17 337.96 ± 406.44
δ 0.09 ± 0.17 0.14 ± 0.24 -0.53 ± 7.36 0.75 ± 6.77

Table 5.1: Parameters obtained for the AS distribution (mean ± standard deviation).

Lumen Calcified Plaque
p-value Hypothesis p-value Hypothesis

α 0.9519 H0 0.6084 H0

β 0.3316 H0 0.4869 H0

γ 0.9906 H0 0.9642 H0

Table 5.2: P-values for the unpaired student’s t-test.

that all the null hypotheses were accepted. Thus, same mean value should
be assumed.

On the other hand, the parameter β obtained for both tissues shows, in
the worst case, a relative error of 0.3% with respect to the null value, which
makes the symmetric assumption reasonable with an error lower than 1%.
This result evidences that the bivariant PDF of the received signal shows a
radial symmetry with respect the mean and, thus, the proposed model of
Eq. (5.9) is consistent in both kinds of tissues.

The Gaussian hypothesis was tested by using the Kullback-Leibler di-
vergence (DKL). This measure take lower values when the PDFs are similar.
The results are shown in Fig. 5.1 for the case of Lumen. In the case of
calcified plaque, the fitting is similar and we omit it. The results obtained
for the DKL are shown in table 5.3 where the better performance of the AS
hypothesis becomes evident when compared to the Gaussian hypothesis.

The influence of the specular component was tested by means of a t-test
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Lumen Calcified Plaque
Xr Xi Xr Xi

Gaussian 0.4392 0.3727 0.2221 0.2170
α-stable 0.0191 0.0237 0.0476 0.0445

Table 5.3: Kullback-Leibler divergence for each signal component.

where the null hypothesis consists in considering a δ =
√
δ2
r + δ2

i equal to
zero, where δr and δi are location parameters for both components (this pa-
rameter is the deviation from the null specular component of the amplitude
signal and, thus, is equivalent to the amplitude of the specular component
in the resolution cell).

Results obtained rejected the null hypothesis with p-values 2.21 · 10−6 in
the case of Lumen and 3.19 · 10−6 in the case of calcified plaque. This result
evidences that the specular component must be considered and, concretely,
in the case of calcified plaque doubles that one of lumen.

Finally, the proposed model was fitted to the PDF envelope of the signal
as well as the HT-Rayleigh and the Nakagami. They were compared by using
the DKL measure. Results are shown in Fig. 5.2 where the better results
of the proposed method can be appreciated.
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Figure 5.2: Kullback-Leibler for amplitude signal fitted with HT-Rayleigh, Nakagami and
the proposed method.

5.5 Conclusion

In this work we present a new distribution which models the fully resolved
speckle based on the envelop of AS distributions with specular component.
This model is the generalization of classical models and the HT-Rayleigh.
Results demonstrate that the proposed model is consistent with real data
and improves the goodness-of-fit in comparison to models which make use
of the Gaussian hypothesis and do not consider the specular component.

In our opinion, this work proposes a very versatile family of distributions



Speckle characterization with Heavy-Tailed Models 105

which accurately model the probabilistic behavior of speckle in US images
and, due to its capability to describe tissue characteristics, may be used in
potential applications such as filtering, segmentation or classification.
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Applications
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Gamma Mixture Classifier for Plaque Detection in

Intravascular Ultrasonic Images

Evolution is a change from an indefinite incoherent
homogeneity to a definite coherent heterogeneity.

Herbert Spencer, 1820–1903

Abstract– Carotid and coronary vascular accidents are mostly
caused by vulnerable plaques. Detection and characterization of
vulnerable plaques are important for early disease diagnosis and
treatment. For this purpose, the echo-morphology and composi-
tion have been studied. Several distributions have been used to
describe ultrasonic data depending on tissues, acquisition con-
ditions and equipment. Among them, The Rayleigh distribution
is the one-parameter model used to describe the raw envelope
RF Ultrasound signal for its simplicity, whereas the Nakagami
distribution (a generalization of the Rayleigh distribution) is the
two-parameter model which is commonly accepted. However, it
fails to describe B-Mode images or Cartesian interpolated or sub-
sampled RF images because linear filtering changes the statistics
of the signal.

In this work a Gamma Mixture Model (GMM) is proposed to de-
scribe the sub-sampled/interpolated RF images and it is shown
that the parameters and coefficients of the mixture are useful de-
scriptors of speckle pattern for different types of plaque tissues.
This new model outperforms recently proposed probabilistic and
textural methods with respect to plaque description and char-
acterization of echogenic contents. Classification results pro-
vide an overall accuracy of 86.56% for four classes and 95.16% for
three classes. These results evidence the classifier usefulness
for plaque characterization. Additionally, the classifier provides
probability maps according to each tissue type, which can be dis-
played for inspecting local tissue composition, or used for auto-
matic filtering and segmentation.
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6.1 Introduction

Vulnerable plaque consists of a collection of blood cells and cholesterol in
the wall artery which is prone to cause cardiovascular problems such as
heart attack and brain stroke [Spa04,Esc06]. Generally, these lesions fea-
ture a thin fibrous cap over a soft lipid pool. The presence of these struc-
tures in the arterial wall causes a high mechanical stress in the arterial
wall and, eventually, leads to rupture of the vulnerable plaque and clots.
Stenosis is also one of the problems derived from the presence of plaques.

Among the imaging techniques commonly used for detecting atheroscle-
rotic plaques in the coronary arteries, the invasive coronary angiography
has been considered as the standard. However, most patients with acute
coronary syndromes have minimal or mild coronary lumen obstruction de-
tected by angiography and this modality has proved to have a limited ability
to accurately measure the degree of stenosis and to characterize plaque
morphology [Esc06]. Given these limitations, the importance of detecting
stenosis areas and the presence of different kinds of plaque becomes evi-
dent. Instead of angiography, Invatravascular Ultrasonography (IVUS) has
demonstrated to provide clear visualization of arterial wall inner morphol-
ogy and turns out to be a convenient alternative method for assessing the
severity of morphology lesions [Esc06].

The technical procedure of acquiring IVUS data consists of introducing
a catheter similar to the standard catheters employed in coronary angio-
plasty. The catheter is inserted inside the artery and moved until it reaches
the artery segment to be studied. A rotating piezoelectric transducer trans-
mits acoustic pulses and collects the A-lines that correspond to the reflected
echoes along the depth, ρ, for each direction θ. The result is a polar rep-
resentation of a 360o cross-sectional view. This image is interpolated and
geometrically arranged to build the Cartesian image. In Fig. 6.1 an exam-
ple of an IVUS image in polar and Cartesian coordinates is depicted.

The acoustic response of different kinds of plaque is qualitatively known:
Lipidic plaque presents low echolucent response; Fibrous plaque presents
intermediate level echogenicity; Calcified plaque is hyperechogenic and usu-
ally presents an acoustic shadow due to the series of echoes created by
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Figure 6.1: IVUS image in polar coordinates (a) and Cartesian coordinates (b) with the
presence of lipidic (LIP) and calcified (CAL) plaques that were histologically identified.

multiple reflections within a small but highly reflective tissue [Esc06,Wil98,
EB95,EB96].

Although this qualitative characterization of the plaques offers an intu-
itive interpretation of IVUS images, an important effort has been done to un-
derstand the echo-morphology and pathological evolution [Mat00]. Quan-
titative characterization of plaques allows developing or refining methods
for plaque detection, risk predictions and potentially suggesting different
therapies.

In order to obtain a quantitative characterization of the ultrasonic re-
sponse of plaques, the physics of ultrasound imaging should be taken into
account. Basically, the process of image formation in medical ultrasound
begins with a pulse packet emission which travels along the beam vector
axis and changes shape according to characteristics of the media.

The traveling pulse is scattered by objects placed at different scattering
depths and cause delays in the pulse. The backscattered (received) signal is
corrupted by a characteristic granular pattern noise called speckle which
depends on the number of scatterers per resolution cell as well as their
size [VSF10b,Sea10b]. This type of multiplicative noise, in the sense that its
variance depends on the underlying signal, is observed in other modalities
using coherent radiation such as LASER [Goo75] and Synthetic-aperture
Radar (SAR) [Cop03].

Speckle mainly depends on the micro-structure of the tissues and thus
its statistics can be used as tissue histological descriptors [Thi03]. These
statistics strongly depend on the effective scatter density, that is, on the ef-
fective number and intensity distribution of the scatters in each resolution
cell, their size, their shape, their spatial organization as well as the acqui-
sition instrumentation and the tissue attenuation [Sha93, Sha00, Des10].
The resulting speckle noise can be grouped in the following main classes:
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• Fully developed: infinite effective number of scatterers per resolution
cell and no deterministic component, modeled by Rayleigh distribu-
tion in the case of one-parameter distribution [Wag87,Ray80,Wag83,
Bur78].

• Possibly fully resolved: infinite effective number of scatterers per reso-
lution cell and existence or not of a deterministic component, modeled
by Rice distribution [Ric45,Nak40,Tut88].

• Possibly partially developed: arbitrary effective number of scatterers
per resolution cell and no deterministic component, modeled by K dis-
tribution [Jak84,Jak80,Sha93].

• Possibly partially resolved: arbitrary effective number of scatterers per
resolution cell and existence or not of a deterministic component, mod-
eled by K-Homodyne distribution [Dut94,Jak87].

Fully developed speckle is the most common model for speckle forma-
tion. It considers a tissue or region composed of a large number of scatter-
ers, acting as echo diffusers. These scatterers arise from inhomogeneity and
structures approximately equal to or smaller in size than the wavelength
of the ultrasound, such as tissue parenchyma, where there are changes
in acoustic impedance on a microscopic level within the tissue. Under
this condition, pixel intensities in envelope data were usually modeled by
Rayleigh probability density functions (PDFs) [VSF10b,Bur78,Elt06].

Note that the most general case of speckle is the Possibly partially re-
solved, which is modeled by a K-Homodyne distribution. The K-distribution
is a special case of the K-Homodyne distribution with no deterministic com-
ponent. The Rice distribution is the limiting case corresponding to an infi-
nite effective density. The Rayleigh distribution is a special case of the Rice
distribution with no deterministic component.

Other distributions have been proposed for speckle characterization.
Probably, the most noticeable distribution is the Nakagami proposed in
[Nak60]. This distribution has two parameters and can be considered as
a generalization of the Rayleigh distribution. In [Sha00], a model based on
Nakagami distributions is proposed for the characterization of backscat-
tered echo. This model is motivated from the fact that the Nakagami dis-
tribution generalizes the Rayleigh distribution and also appears to be sim-
ilar to Rician distribution, which is also a generalization of the Rayleigh
(see [Sha00]). This is the reason that makes the Nakagami distribution the
commonly accepted distribution for developed speckle and it is also con-
sidered as the two-parameter approximation of the true distribution for all
the cases (without log-compression or application of filters) [Des11,Sha00,
Des10,Sah11].

The distribution of speckle depends not only on the tissues but on the
acquisition process and the post-processing. The transducer center fre-
quency also affects to the distributions. Note that, as the central frequency
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increases, the size of the range cell shrinks and, thus, the number of scat-
terers in the range cell go down and one must expect non-Rayleigh statistics.
This can be seen as an additional reason for the better fitting of other two-
parameter distributions such as the Gamma distribution. Additionally the
post-processing techniques as log-compression and filtering also affects to
the probability distributions of speckle.

Plaque echo-morphology is the contribution result of different tissue
types (components). The lipidic plaque usually presents a fibrotic cap which
has different acoustic response and thus different distributions [Esc06].
Additionally, accumulation of blood cells (macrophages) within plaques may
change their probabilistic models. Hence, a mixture model becomes an
opportune strategy for statistically describing the echo-morphology of the
plaque.

The Rayleigh mixture model (RMM) was first proposed in [Sea11,Sea10b]
for plaque characterization and classification. In that work, a RMM was ob-
tained by Expectation-Maximization method [Dem77,Moo96]. Three kinds
of plaque were considered in that study: Fibrotic, Lipidic and Calcified. The
RMM parameters were estimated for each kind of plaque and were used, in
combination to other textural features, to provide a descriptor of plaque
composition. On the other hand, a Nakagami mixture model (NMM) was
proposed in [Des11] for segmentation of arteries. This approach uses the
Nakagami as a generalization of Rayleigh distribution as a good candidate
to characterize the speckle.

The Rayleigh has been an accepted assumption for fully developed speckle
[Sha00, Elt06, Tao06, Nil08]. Its generalization by means of the Nakagami
distribution has been used as an approximate general model for the echo
envelope [Sha00]. However, in the presence of down-sampling with interpo-
lation, the reported tests indicate that Rayleigh or Nakagami models do not
fit as well the data as the Gamma distribution.

In [Tao06,Nil08], many distributions were empirically fitted to real data
and it is shown that speckle is better described by the Gamma distribution.
In those works generic B-mode images having undergone log-compression
and filtering were considered [Clo11], though no theoretical justifications
were provided for this better fitting.

In [VSF10b] the Gamma performance was compared to other distribu-
tions when interpolated fully developed speckle was considered. Experi-
mental tests have shown the superiority of the Gamma distribution over
the Rayleigh and Nakagami for describing US data - 85% of the fully de-
veloped speckle areas passed the χ2 test when a Gamma distribution was
fitted, whereas 70% and less than 10% passed in the Nakagami and Rayleigh
cases respectively.

The interpolation operation performed in the A-lines of the raw RF sig-
nal to re-sample the data and equalize the resolution in both dimensions,
angle and depth seems to be the key element to explain why Gamma de-
scribes better the data than the Rayleigh or Nakagami distributions. The
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interpolation process can be formulated as linear filter that linearly com-
bines different pixels that are Rayleigh distributed. As shown in [VSF10b],
a linear combination of Rayleigh random variables can be accurately fitted
by Gamma distributions.

Note that the interpolation process consists of a weighted sum of values
that, in the case of Rayleigh distributed data, results in a different random
variable. Hence, not only interpolation processes but every linear filter ap-
plied to a Rayleigh distributed data is a weighted sum of Rayleigh random
variables, which is better described by a Gamma random variable than a
Rayleigh.

In [Sha03] the authors presented a bimodal gamma distribution with five
parameters to model the statistics of the pixels in the gray-level (B-mode)
images. The parameters of the distribution were evaluated for regions con-
taining plaque using curve-fitting techniques. In that work just two gamma
distributions were used due to the limitations of curve fitting techniques ap-
plied. The model showed good fitting properties for “hard” (calcified) plaque
and soft plaque (“lipids, cellular components, loose connective tissue”).

In [Ata11], some mixtures of Gamma distributions are also suggested,
this time for wireless channels, where they show a better fitting results than
Rayleigh or Nakagami distributions.

A common stage of the acquisition process of US images is to down-
sample the acquired signal in order to provide an isotropic image resolution.
This re-sampling stage usually involves an interpolation stage where linear
filtering is applied. In these conditions, the results obtained in [VSF10b,
Elt06,Tao06] still hold and the Gamma distribution better describe US RF
envelope down-sampled data than the Rayleigh or Nakagami distributions.

The aim of this work is threefold: i) Propose a Gamma Mixture Model
(GMM) to describe the interpolated/re-sampled RF envelope US data; ii)
Based on the parameters and coefficients of this mixture, design and train
a classifier to discriminate Calcified, Lipidic, Fibrotic and Lumen regions
within atherosclerotic plaques. iii) Provide probability maps which can be
of help for physicians or for automatic post-processing techniques such as
filtering or segmenting methods.

GMM and a method based on RMM [Sea11] are compared in terms of
goodness of fit and classification accuracy. Comparison results showed
that the GMM outperforms the RMM in terms of goodness of fit as well as
accuracy. Besides the approaches by probabilistic speckle characterization,
some methods have been proposed based on textural analysis. These meth-
ods usually consider Autoregressive Models, spectral features or wavelet co-
efficients [Tak10,Cio10,Sea11,Nai02]. The proposed classifier is also com-
pared with a recently published method based on textural features [Cio10].
Results showed that the proposed method outperforms both the textural-
based and the RMM classifier in 5% and 22.7% of accuracy respectively.

The rest of the paper is structured as follows: In Section 6.2 we describe
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the dataset, the acquisition protocols and histological validation for plaques.
In Section 6.3, we test the capability of the most commonly used distribu-
tions for describing the probabilistic behavior of speckle (i.e. Rayleigh, Nak-
agami, Gamma). In Section 6.4, the Gamma Mixture Model is proposed.
Section 6.5 is devoted to the GMM classifier, where the mixture of GMMs is
proposed and derived. The experiments are presented in Section 6.6; first,
the optimal number of component for each tissue class is analyzed; sec-
ond, the proposed classification method is compared with those of [Sea11]
and [Cio10]; third, the statistical significance of the classification results
is tested by means of the Friedman test and Bonferroni-Dunn test; fourth,
probability maps are presented. Finally, we conclude in Section 6.7.

6.2 Materials

Having a golden standard to test the performance of classifiers is of great
importance, however the only way to assess the nature of plaques and its
location is by histological validation. In this work, the classification is tested
with the golden standard obtained with the methodology recently presented
in [Cio10]. The IVUS dataset consists of 9 post-mortem coronary arteries
obtained from 9 different patients. All the patients died for accidental death,
so there was not indication about cardiac problems. The relatives of the de-
ceased gave the consent to use their arteries. The samples of the coronary
arteries were obtained in the University Hospital “Germans Trias i Pujol”
(Badalona, Spain) with the approval of the its ethical committee. The anal-
ysis of the post-mortem arteries was performed at the “hemodynamic” de-
partment of the same hospital, under the supervision of Dr. Josepa Mauri
and Dr. Oriol Rodriguez-Leor.

From these arteries, 50 different images with the presence of plaques
of different nature were selected. Then, the arteries are sliced in order to
characterize plaques by histological analysis. The histological analysis was
performed in the General Hospital of Granollers (Spain) by the pathologist
Dr. Angel Serrano-Vida.

The acquisition of the images was performed in the following way: The
artery is separated from the heart fixed in a mid-soft plane and filled (using
a catheter) with physiological saline solution at constant pressure (around
120 mmHg), simulating blood pressure. References of distal, proximal,
left and right positions are marked. The probe is introduced through the
catheter and RF data are acquired in correspondence of plaques.

Real-time Radio-Frequency (RF) data acquisition was performed with the
Galaxy II IVUS Imaging System (BostonScientific) using a catheter Atlantis
SR Pro 40MHz (Boston Scientific). To collect and store the RF data, the
imaging system has been connected to a workstation equipped with a 12-
bit Acquiris acquisition card with a sampling rate of 200MHz.

The RF data for each frame is arranged in a matrix of N ×M samples,
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where M = 1024 is the number of samples per A-line, and N = 256 is the
number of positions assumed by the rotational ultrasound probe.

The histological validation of plaques comprises the following steps: Ves-
sels are cut in correspondence with previously marked positions and plaque
composition is determined by histological analysis. A correspondence be-
tween detected plaques by histology and respective IVUS image is estab-
lished by means of reference positions set by an expert interventionist (Dr.
Oriol Rodriguez-Leor) in cooperation with the pathologist (Dr. Angel Serrano-
Vida).

With the purpose of preserving a reliable correspondence between his-
tological tissue and regions of the IVUS image, the medical team manually
performs the plaque labeling task discarding pairs of images in which a
correspondence can not be obtained.

Finally, the dataset comprises 50 different images obtained from 9 dif-
ferent arteries (patients). All of them present a segmentation of the Lumen
(50 Lumen regions, one per image), a set of 69 plaques was identified in the
images and histologically characterized in the following types: 30 Calcified,
14 Lipidic, 25 fibrotic. Table 6.1 shows the distribution of plaques among
the patients (arteries) in the dataset.

Patient (Artery) # Images Lipidic Fibrotic Calcified Lumen
1 8 5 0 5 8
2 6 2 0 6 6
3 8 0 7 3 8
4 2 2 1 2 2
5 5 0 3 5 5
6 2 2 0 0 2
7 3 2 2 1 3
8 10 1 6 8 10
9 6 0 6 0 6

TOTAL: 50 14 25 30 50

Table 6.1: Data set of 50 different images acquired from 9 different patients.

In order to provide comparable features between patients, we applied
the following acquisition protocol: the IVUS images have been directly re-
constructed from the raw RF signals rather than using the ones produced
by the IVUS equipment. The image reconstruction algorithm used in this
work is the one described in [Cio10] and it is shown in Fig. 6.2. The process
comprises the following stages:

1. Time Gain Compensation, with TGC(r) = 1−e−βr where β = log 10αf/20,
α parameters is the attenuation coefficient for biological soft tissues
(α ≈ 0.8dB/MHz.cm for f = 40MHz [Cio10]), f is the central frequency
of the transducer in MHz and r is the radial distance from the catheter
in cm.;
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Figure 6.2: Image reconstruction process. A Time Gain Compensation (TGC) operation is
applied to the RF IVUS data acquired. The Envelope is recovered by a Hilbert Transform.
A down-sample stage is applied to obtain isotropic resolution, all the analysis of this work
is applied after this stage where the Gamma assumption is applied. Log-compression and
Digital Development Process (DDP) stages are usually applied for visualization.

2. Butterworth Band pass filter with cut frequencies fL = 20MHz and
fu = 60MHz.

3. Envelope recovering with Hilbert Transform.

4. Down-sampling of the image in order to obtain isotropic resolution
with linear filtering.

5. Log-compression.

6. Digital Development Process (DDP). A non-linear adjustment of gain
and edge-emphasis process to enhance the tissue visualization.

After this reconstruction process, the IVUS displayed image can be eas-
ily obtained by interpolating polar coordinates into Cartesian coordinates,
resulting in a non-compressed, 256 × 256 pixels image (cf. Fig. 6.1.a where
the polar coordinate image is shown and Fig. 6.1.b where the interpolation
into Cartesian coordinates is depicted).

The traditional displayed IVUS image is obtained from the polar repre-
sentation (ρ, θ) by interpolating in a rectangular (Cartesian) grid, (i, j). How-
ever, in this work, the image used for feature extraction and classification is
the non-compressed polar one obtained after the Down-sampling step (c.f.
Fig. 6.2). This stage of the reconstruction process involves linear filtering
(in order to down-sample by factor without aliasing) and, thus, Rayleigh or
Nakagami models do not fit as well the data.
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Figure 6.3: Log-compressed representation of the envelope (a). Kullback-Leibler divergence
for Rayleigh (b), Nakagami (c) and Gamma (d) distributions. Uniform norm of the cumulative
distribution function for Rayleigh (e), Nakagami (f) and Gamma distributions (g). Box-plots
for both measures DKL and DKS are represented in (h) and (i) respectively. Welch t-test
results show that populations are statistically different and thus the Gamma Distributions
fits better than Rayleigh or Nakagami distributions.

6.3 Probabilistic model for envelope data

In this section the performance of Rayleigh, Nakagami and Gamma distri-
butions are tested as candidates for describing the probabilistic behavior of
speckle in the preprocessing stage of the envelope image formation process.

The performance test of both distributions is carried out after the down-
sampling stage (see Fig. 6.2), where the Nakagami distribution is commonly
accepted. All envelope images of the data set (50 in total) were tested with
two different measures: Kullback-Leibler divergence and Uniform Norm of
the cumulative distribution function (CDF). The former is a non-symmetric
measure of the difference between two probability distributions defined as

DKL(pn, fX) =

N∑
i=1

pn(i) log2

pn(i)

fX(i)
, (6.1)
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where pn is the empirical PDF estimate and fX is the theoretical distribution:
Rayleigh, Gamma or Nakagami.

Note that the binary logarithm was chosen in this definition. We decided
to use this base since the calculation of Kullback-Leibler divergence in other
works like [Sea11] was provided in that base.

Instead of using the formulation of Eq. (6.1) we used the following sym-
metrized form

DKL =
1

2
(DKL(pn, fX) +DKL(fX , pn)). (6.2)

The measure DKL provides a symmetric way to measure the similitude be-
tween both PDFs. Since both the DKL(pn, fX) and DKL(fX , pn) are non-
negative this measure is more restrictive than that one of Eq. (6.1).

The empirical PDF was estimated by means of the histogram of the neigh-
borhood of the pixel under study. The chosen neighborhood size is 11×11 the
number of bins of the histogram is n = 30 equally spaced and smoothed with
a Gaussian kernel (see [Har90] for more details). The smoothing process
reduces the dependence of the PDF approximation on the number of bins
used. Parameters of Rayleigh and Gamma PDFs correspond to the maxi-
mum likelihood estimates of the data in the neighborhood of the pixel stud-
ied, parameters of the Nakagami distribution were calculated as in [Des09].

The uniform norm of the cumulative distribution function, also called
Kolmogorov-Smirnov (KS) statistic, is defined as

DKS = sup |F̂ (i)− FX(i)|, (6.3)

where F̂n is the empirical CDF of data and FX is the CDF of the theoretical
distributions.

This last metric was chosen since it does not depend on the number of
bins used for the PDF estimate and can be calculated with a few number
of samples. Additionally, the Glivenko-Cantelli theorem states that, if the
samples are drawn from distribution FX , then DKS converges to 0 almost
surely [Dud99].

As an example, in Fig. 6.3.a a down-sampled envelope image is depicted
(it is log-compressed only for easing the visualization); Fig. 6.3.b-d show
the Kullback-Leibler divergence, DKL, computed for the Rayleigh, Nakagami
and Gamma distributions respectively. Fig. 6.3.e-g show the DKS measure
for Rayleigh, Nakagami and Gamma distributions respectively. This exam-
ple shows a better performance of Gamma distribution for both measures.
The darker the image, the better the performance for both measures.

In order to provide a quantitative result of the performance of the Gamma
distribution in contrast to the Rayleigh and Nakagami ones, a Welch t-test
was performed for both measures, DKL and DKS, in the following way: for
each of the images of the dataset, both measures were calculated in each
neighborhood (with size 11 × 11). For each image, the average value was
calculated and, thus, the Welch t-test is performed with 50 samples. This
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test was chosen since no equal variance should be assumed. This test is
performed considering pairs of distributions (Gamma vs. Rayleigh, Gamma
vs. Nakagami, and Rayleigh vs. Nakagami). The null hypothesis considers
that both population means are the same. The box-plot of both measures
is depicted in Fig. 6.3.h-i.

P-values of the Welch t-test for the case of KL divergence and uniform
norm of the CDF are shown in Table 6.2. Note that all values are negligible
and the null hypothesis has to be rejected in all cases. Consequently, these
three distributions fit in a different way, and the Gamma is the one with
best fitting for both measures.

Rayleigh Nakagami Gamma 
Rayleigh 

Nakagami 
Gamma 

-35107.54 ⋅ -38107.9 ⋅
-46103.67 ⋅-17107.6 ⋅

-17103.47 ⋅ -16101.69 ⋅
Kullback-Leibler Divergence Kolmogorov-Smirnov Statistic 

Table 6.2: P-values of the Welch t-test for the case of DKL and DKL.

This result is a strong confirmation that Gamma Distribution better de-
scribes the probabilistic nature of speckle when internal preprocessing such
as linear filtering (to avoid aliasing in the down-sampling stage) are taking
place and confirms the result obtained in [VSF10b,Elt06,Tao06]. Note that
the Nakagami distribution was introduced as an approximate model for the
echo envelope.

6.4 Gamma Mixture Model

In this section the Gamma Mixture Model is proposed and the method for
the computation of its parameters and coefficients is described. The aim of
using GMMs is that the echo-morphology may result from the contribution
of different echogenic components of the plaque that follow different dis-
tributions. Under the assumption of gamma distributed speckle, the GMM
arises in a natural way.

Let X = {xi}, 1 ≤ i ≤ N be a set of samples (pixel intensities) of a given
region of the ultrasound image. These samples can be considered as in-
dependent and identically distributed (IID) random variables (RVs). This
assumption is taken since the down-sampling stage reduces the possible
correlation between neighboring pixels. The GMM considers that these vari-
ables result from the contributions of J distributions1

p(xi|Θ) =

J∑
j=1

πjfX(xi|Θj), (6.4)

1The notation used, from here forth, refers to random variables in capital letters and
samples of random variables in lower case letters. The expectation operator is denoted as
E{·}.
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where Θ is a vector of the parameters of the GMM (π1, · · · , πJ ,Θ1, · · · ,ΘJ) and
Θj are the parameters of the PDF (in our case the parameters of a Gamma
distribution are represented as αj and βj). The Gamma PDF is defined as

fX(x|α, β) =
xα−1

βαΓ(α)
e
− x
β , x ≥ 0 and α, β > 0, (6.5)

where Γ(x) is the Euler Gamma function defined as Γ(x) =
∫∞

0 tx−1e−tdt, for
x > 0. The condition

∑J
j=1 πj = 1 must hold to guarantee that p(xi|Θ) is a

well defined probability distribution.

The joint distribution of IID samples is given by

p(X|Θ) =

N∏
i=1

p(xi|Θ). (6.6)

The Expectation-Maximization method is applied here to maximize the
log-likelihood function when some hidden discrete random variables, Z =
{Zi}, are introduced to the model. These RVs take values in {1, · · · , J},
their meaning is that the sample xi belongs to the distribution class j when
Zi = j.

Now, let Θ(n) be an estimate of the parameters of the mixture in the n-
th iteration, the expectation step is performed by calculating the expected
value of the log-likelihood L(Θ|X,Z)

Q(Θ|Θ(n),X) = EZ|Θ(n),X{L(Θ|X,Z)}. (6.7)

In the maximization step the new estimate Θ(n+1) is obtained by maxi-
mizing the expectation of the likelihood function Q(Θ|Θ(n),X). These steps
are iterated until a stop criterion such as ||Θ(n+1) −Θ(n)|| < TOL for some
pre-established threshold (TOL) is reached.

The application of the EM algorithm for general distributions is not new,
see for example [Moo96, Fig02]. In the case of a Gamma Mixture Model,
if was firstly derived by Webb in [Web00]; another similar derivation were
obtained in [Des09,Des11]. For the sake of completeness and to introduce
the notation used to derive the classifier, the EM algorithm is explained in
[Des11] and [Web00] which results in the following equality for the weights

π̂j =
1

N

N∑
i=1

γi,j =
1

N

N∑
i=1

p(Zi = j|xi,Θ(n)), (6.8)

where γi,j = p(Zi = j|xi,Θ(n)) to make notation simpler, and it can be derived
by the Bayes theorem as

γi,j = p(Zi = j|xi,Θ(n)) =
p(xi|Θ(n)

j )p(Zi = j|Θ(n))

p(xi|Θ(n))
, (6.9)
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Figure 6.4: Gamma, Nakagami and Rayleigh mixture models fitting for different kinds of
tissue. In both methods the tolerance was fixed to ||Θ(n+1)−Θ(n)|| < 10−4 with a maximum
number of iterations of 1000 and three components in each mixture.

where p(Zi = j|Θ(n)) = π
(n)
j .

The estimates of the Gamma distribution parameters results in the fol-
lowing equalities (see [Des09,Web00])

log(α̂j)− ψ(α̂j) = log

(∑N
i γi,jxi∑N
i γi,j

)
−
∑N

i γi,j log xi∑N
i γi,j

. (6.10)

Note that this is the case of uniform prior weights proposed in [Web00],
which is a special case of the Dirichlet prior weights proposed in [Des09]

β̂j =
1

α̂j

∑N
i=1 γi,jxi∑N
i=1 γi,j

, (6.11)

where ψ(x) is the Digamma function defined as ψ(x) = Γ′(x)
Γ(x) .

The method is applied in the following way:

1. A first estimate of the hidden variables is obtained by means of any
clustering method (k-means for example). For each cluster j = {1, . . . , J},
the parameters of the distribution Θ

(0)
j can be calculated by means of

the moments method or Maximum likelihood methods. Weights, π̂(0)
j ,
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can calculated either as 1/J or as the number of elements of each
cluster divided by the total number of elements. Set n = 0.

2. Expectation Step. γi,j is calculated from eq. (6.9).

3. Maximization Step. The estimate for α̂j is calculated from eq. (6.10).
and β̂j is calculated from eq. (6.11). π̂j is calculated from eq. (6.8).

4. n = n+ 1

5. Go to step 2 until ||Θ(n) −Θ(n−1)|| < TOL is satisfied.

As an example, in Fig. 6.4, the GMM is used to fit different tissue types
and compared to the output of the NMM proposed in [Des09] and the RMM
proposed in [Sea10b]. Specifically, three mixture components were used
in the fitting process for GMM, NMM and RMM. At first sight, the perfor-
mance of the gamma mixture is better. Quantitative results calculated with
DKL and DKS for all the data set are provided in Table 6.3. In this case,
numerical results show that plaques, which can be composed by different
echolucent sources or echogenic structures such as fibrous caps, are prop-
erly fitted with a gamma mixture model and, potentially, the parameters
of the mixture model could be a good descriptor of the tissue class under
the operations of down-sampling and interpolation. Nevertheless, an ex-
tended study of the behavior of the GMM, NMM and RMM is presented in
section 6.6.

DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 4.37 · 10−5 1.06 · 10−4 2.65 · 10−4 0.0080 0.0180 0.0359
Lipidic 3.29 · 10−3 5.03 · 10−3 5.78 · 10−3 0.0054 0.0114 0.0161
Fibrotic 3.97 · 10−3 4.57 · 10−3 4.91 · 10−3 0.0038 0.0078 0.0117
Lumen 1.13 · 10−2 2.41 · 10−2 4.85 · 10−2 0.0167 0.0341 0.0894

Table 6.3: Fitting of different types of tissues using GMM, NMM and RMM.

6.5 GMM Classifier

In this section a Classifier based on GMMs priors is derived. This classi-
fier is inspired in the work of [Cop03], where a Bayesian gamma mixture
model approach is proposed. There are some important differences be-
tween that method and the one here presented. The first one is that the
method in [Cop03] adopted a Bayesian approach for deriving the model.
This methodology considers the parameters of the GMMs as random vari-
ables and thus needs the definition of some prior distributions to charac-
terize them. These distributions require their parameters to be manually
initialized which clearly affects, and may bias, the mixture model.
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Instead of considering prior distributions which can be inaccurate and
may bias the results of the model, we apply an Expectation-Maximization
approach without prior on the parameters. The initial values of the GMMs
parameters are obtained from the training set according to each tissue class.
The final labeling of the GMMs is then obtained according to the closest ini-
tial GMMs (with respect to the DKS) for each tissue class and the probability
of belonging to each tissue class is obtained by the Bayes Theorem.

6.5.1 Formulation

We state the problem as a mixture model of GMMs in the following way: Let
X = {xi}, 1 ≤ i ≤ N be a set of samples (pixel intensities) of a given region of
the ultrasound image. These samples are IID random variables. The GMM
considers that these variables result from the contributions of J tissue
classes and each PDF comprises Rj components for each j ∈ {1, 2, . . . , J}.
This mixture model takes into account the presence of different echolucent
responses of plaques

p(xi|Θ) =
J∑
j=1

νj

Rj∑
r=1

πj,rfX(xi|Θj,r), (6.12)

where Θ is a vector consisting of all the GMMs parameters, i.e. νj, πj,r and
Θj,r = (αj,r, βj,r).

In eq. (6.12), two conditions must be imposed to the component weights
in order to assure that eq. (6.12) is well defined as a true PDF

J∑
j=1

νj = 1 and
Rj∑
r=1

πj,r = 1, for each j = {1, · · · , J}. (6.13)

Now, the joint distribution, under the assumption of IID random variables
is the product over all the samples as in eq. (6.6).

In order to apply the expectation-maximization method, two hidden dis-
crete RVs vectors are introduced Z = {Zi} and W = {Wi,j}. The former, Z
, takes values onto the set of all possible tissue classes, i.e. {1, · · · , J} and
Zi = j means that sample xi belongs to the tissue class j. The latter, Wi,j,
takes values over {1, . . . , Rj} and the meaning of Wi,j = r is that sample xi
belongs to the r component of the j class tissue.

Both RVs are defined in such a way that there is an implicit relationship
which makes sense from the point of view of conditional probability. For
instance, p(Zi = j|Θ) is the probability of belonging to tissue class j when
the parameters of the mixtures are known and, in the mixture model of
eq. (6.12), can be identified as νj. On the other hand, p(Wi,j = r|Zi = j,Θ)
is identified as πj,r. The hierarchical relationship between Zi and Wi,j is
shown in Fig. 6.5 where tissue classes are denoted as Cj and each com-
ponent of each tissue class is Bj,r. Note that this relationship allows to
consider the sample xi as a contribution of each component within each
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Figure 6.5: Conditional probability scheme. Each sample xi may belong to tissue class,
Cj with probability p(Zi = j|Θ), and to the component Bj,r with probability p(Wi,j = r|Zi =
j,Θ)p(Zi = j|Θ).

tissue class, which is a desired property in order to reflect the mixed com-
position of plaques. A detailed explanation on the EM method is presented
in Appendix 6.A.

Supposing the previous estimate for the parameters of the mixture model
(Θ(n)) is known, the log-likelihood function with both hidden variables is the
following (see Appendix 6.A)

L(Θ|X,Z,W) =
N∑
i=1

log fX(xi|Θzi,wi,zi
) +

N∑
i=1

log p(wi,zi |Θ)p(zi|Θ). (6.14)

In the expectation step, the expectation is calculated over Z and W for
known data x and a previous estimate Θ(n)

Q(Θ|Θ(n),X) = EZ,W|Θ(n),X{L(Θ|X,Z,W)} =

N∑
i=1

J∑
j=1

Rj∑
r=1

γi,j,r (log fX(xi|αj,r, βj,r) + log(νjπj,r)) , (6.15)

where γi,j,r = p(Zi = j,Wi,j = r|xi,Θ(n)), which can be easily calculated by
means of the Bayes theorem

γi,j,r =
fX(xi|Θ(n)

j,r )ν
(n)
j π

(n)
j,r∑J

k=1

∑Rj
s=1 fX(xi|Θ(n)

k,s )ν
(n)
k π

(n)
k,s

. (6.16)

The updated weights can be calculated by the following equations

ν̂j =
1

N

N∑
i=1

Rj∑
r=1

γi,j,r, π̂j,r =

∑N
i=1 γi,j,r∑N

i=1

∑Rj
s=1 γi,j,s

. (6.17)
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The updated parameters of the Gamma mixtures can be calculated with the
following equations

log(α̂j,r)− ψ(α̂j,r) = log

(∑N
i=1 γi,j,rxi∑N
i=1 γi,j,r

)
−
∑N

i=1 γi,j,r log(xi)∑N
i=1 γi,j,r

(6.18)

β̂j,r =
1

α̂j,r

∑N
i=1 γi,j,rxi∑N
i=1 γi,j,r

(6.19)

6.5.2 Training and Classifying

The training process is performed by estimating the prior parameters, Θ
(0)
j,r

for the training set by fitting the GMMs explained in section 6.4 for each
tissue class. Then, the mixtures of GMMs are fitted to the test set, y = {yi}
by the method explained in section 6.5.1 in the following way

1. Set Θ
(0)
j,r the prior parameters obtained by fitting the GMMs for the

training set and for each tissue class. Initial weights are calculated as
π̂

(0)
j,r = 1

Rj
and ν̂

(0)
j = 1

J . Set n = 0.

2. Expectation Step. γi,j,r is calculated from eq. (6.16).

3. Maximization Step. β̂j,r and α̂i,j are calculated from eq. (6.19) and
eq. (6.18). ν̂j and π̂j,r are calculated from eq. (6.17).

4. n = n+ 1.

5. Go to step 2 until ||Θ(n) −Θ(n−1)|| < TOL is satisfied.

The GMMs fitting can have more than one solution [Tit92]. Actually, the
parameters of the GMMs can be interchanged without affecting the fit with
the data. To circumvent this problem, we compare by DKS with respect
the initial one for each tissue class. Finally, the labels are assigned by
considering the lower DKS between the final distributions and the initial
ones.

The posterior probability of belonging to each tissue class is then ob-
tained by simply calculating the probability of Zi = j in the test set

p(Z = j|Θ,y) =
N∏
i=1

∑Rj
r=1 πj,rfX(yi|Θj,r)νj∑J

k=1

∑Rk
r=1 πk,rfX(yi|Θk,r)νk

. (6.20)

Finally, the selected class is that one with the highest posterior probability.
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6.6 Experimental Results

In this section, two experiments are described. The first one is related to
the selection of the number of elements of the GMM which better fits to
each tissue class. This experiment is also performed with RMM and NMM
in order to see which one of the Gamma, Nakagami or Rayleigh distribution
better fits the ultrasound data under the operations of down-sampling with
interpolation.

The second experiment aims at classifying plaques into four different
tissue classes: Calcified, Lipidic, Fibrotic and Lumen.

At the end of these tests, some examples of probability maps for each
tissue class are shown. We believe that these maps provide useful informa-
tion for manual analysis of plaque composition and we foresee its usage as
a pre-processing step for automatic segmentation.

6.6.1 Optimal number of components for each Class

Here, the GMM, NMM and RMM have been applied to every pre-segmented
plaque using an increasing number of components. We have used DKL and
DKS to investigate the performance of GMM, NMM and RMM with respect to
the number of components for each class. Results are shown in Table 6.4.

Note that results of both measures evidence a better fit for the GMM for
every tissue class. In all cases (GMM, RMM and NMM) the performance is
better as the number of components increases but the GMM approach still
remains as a better approach in nearly all the cases.

These results can be used in order to select the number of components
of the mixture models. Note that, as the number of components increases,
the measure decreases with a slower rate. In Fig. 6.6 the rate of decreasing
of both measures for GMM, RMM and NMM are depicted for each tissue
class. This rate is calculated as frate(n) = D(n − 1) − D(n) where D(n) is
DKL or DKS measures and n is the number of components of the mixture
model. This criterion takes into account the lowest number of components
per tissue class for which the goodness of fit does not significantly improve
when another component is added to the mixture model. Note that the
global maximum is obtained for n = 3. From that value, the differences are
lower than that observed for 3 components.

Other selection criterion could be applied. We also applied the Bayesian
Information Criterion (BIC) [Sch78] to determine the preferred number of
components for each tissue class. This criterion provides the preferred
model for a finite set of models, which is the case. It is based on calcu-
lating the log-likelihood and penalizing distributions with a higher number
of free parameters to avoid over-fitting.

The number of free parameters used for the RMM is 2×#components−1,
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2 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 6.22 · 10−5 2.26 · 10−4 9.23 · 10−4 0.0126 0.0331 0.1087
Lipidic 6.32 · 10−3 1.26 · 10−2 3.36 · 10−2 0.0198 0.0410 0.1059
Fibrotic 4.26 · 10−3 7.58 · 10−3 1.21 · 10−2 0.0085 0.0257 0.0445
Lumen 1.73 · 10−2 5.71 · 10−2 3.94 · 10−1 0.0277 0.0768 0.4110

3 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 4.37 · 10−5 1.06 · 10−4 2.65 · 10−4 0.0080 0.0180 0.0359
Lipidic 3.29 · 10−3 5.03 · 10−3 5.78 · 10−3 0.0054 0.0114 0.0161
Fibrotic 3.97 · 10−3 4.57 · 10−3 4.91 · 10−3 0.0038 0.0078 0.0117
Lumen 1.13 · 10−2 2.41 · 10−2 4.85 · 10−2 0.0167 0.0341 0.0894

4 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 4.24 · 10−5 4.46 · 10−5 9.89 · 10−5 0.0079 0.0072 0.0141
Lipidic 3.29 · 10−3 3.98 · 10−3 4.26 · 10−3 0.0055 0.0076 0.0083
Fibrotic 3.96 · 10−3 4.23 · 10−3 4.07 · 10−3 0.0032 0.0062 0.0036
Lumen 6.44 · 10−3 2.39 · 10−2 1.18 · 10−2 0.0043 0.0339 0.0126

5 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 3.08 · 10−5 4.36 · 10−5 9.89 · 10−5 0.0042 0.0071 0.0141
Lipidic 3.09 · 10−3 3.79 · 10−3 3.88 · 10−3 0.0044 0.0070 0.0060
Fibrotic 3.95 · 10−3 4.23 · 10−3 4.03 · 10−3 0.0029 0.0062 0.0033
Lumen 6.44 · 10−3 9.76 · 10−3 1.12 · 10−2 0.0044 0.0117 0.0110

6 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 3.07 · 10−5 4.25 · 10−5 4.77 · 10−5 0.0041 0.0068 0.0036
Lipidic 2.94 · 10−3 3.39 · 10−3 3.68 · 10−3 0.0029 0.0057 0.0065
Fibrotic 3.95 · 10−3 4.13 · 10−3 4.01 · 10−3 0.0031 0.0054 0.0031
Lumen 6.18 · 10−3 9.39 · 10−3 8.90 · 10−3 0.0031 0.0110 0.0118

7 components DKL DKS

Tissue GMM NMM RMM GMM NMM RMM
Calcified 3.08 · 10−5 4.30 · 10−5 4.77 · 10−5 0.0041 0.0069 0.0036
Lipidic 2.93 · 10−3 3.40 · 10−3 3.66 · 10−3 0.0026 0.0059 0.0066
Fibrotic 3.94 · 10−3 4.07 · 10−3 4.00 · 10−3 0.0024 0.0047 0.0029
Lumen 6.18 · 10−3 6.83 · 10−3 8.90 · 10−3 0.0031 0.0052 0.0118

Table 6.4: Gamma mixture model, Nakagami mixture model and Rayleigh mixture model
fitting for different kinds of tissue.

since each Rayleigh has one parameter and the number of free weights is
#components−1 because the sum of weights must be 1. In the case of GMM
and NMM, it is 3×#components− 1 for the same reason (both Gamma and
Nakagami have 2 parameters).

The BIC criterion is obtained by means of the following formula

BIC = −2 log(L) + k log(n), (6.21)
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Calcified GMM NMM RMM
Components 5 5 6

Free Parameters 14 14 11

DKL 3.08 · 10−5 4.36 · 10−5 4.77 · 10−5

Lipidic GMM NMM RMM
Components 3 6 6

Free Parameters 8 17 11
DKL 3.29 · 10−3 3.39 · 10−3 3.68 · 10−3

Fibrotic GMM NMM RMM
Components 3 4 4

Free Parameters 8 11 7

DKL 3.97 · 10−3 4.23 · 10−3 4.07 · 10−3

Lumen GMM NMM RMM
Components 4 6 7

Free Parameters 11 17 13
DKL 6.44 · 10−3 9.39 · 10−3 8.9 · 10−3

Table 6.5: Preferred number of components and free parameters for each tissue class cal-
culated by using the Bayesian information criterion.

where L is Likelihood function for the estimated model, k is the number of
free parameters of the model and n is the number of samples.

The obtained preferences for each tissue class are shown in Table 6.5 as
well as the number of free parameters and the DKL. These results show the
goodness of fit of the mixture models penalizing loss of degree of freedom by
having more parameters in the fitted model. In all the cases theDKL is lower
than that obtained by the NMM and the RMM. The Gamma distribution
provides the least number of components for describing all tissue classes.
It also provides the least number of free parameters with the exception of
Calcified and Fibrotic tissues. In the case of Calcified tissue, one can choose
a GMM of 3 components (8 free parameters) which provides a DKL = 4.37 ·
10−5. This value is still lower than the one obtained for the RMM and almost
equal to NMM and allows us to simplify the mixture model to prevent from
over-fitting in the training step. If we decrease the number of components
(and free parameters) of NMM and RMM, the DKL considerably increases
(see Table 6.4) and the results are worse than the ones obtained for the
GMM.

For the case of Fibrotic tissue, the RMM requires less free parameters
to be calculated. However, the lower number of components of the GMM
avoids the effect over-fitting during the classification step as we show in a
classification experiment presented in a following section (Table 6.6).

The lower preferred number of components in the GMM and NMM mod-
els compared to the RMM show the better fitting to the data. However,
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Figure 6.6: Difference rate of DKL and DKS for GMM, RMM and NMM models.

considering the pictures shown in Fig. 6.6 the incremental gain of the fit-
ting measures is negligible for so many components and the BIC criterion
can be relaxed to 3 components. Nevertheless, in the next section we clas-
sify with an increasing number of components and the best cases of each
mixture model are considered for comparisons.

6.6.2 Plaque classification according to tissue type

In this experiment, the classifier explained in section 6.6 is applied for
the whole data with the leave-one-patient-out (LOPO) cross-validation tech-
nique. This method performs the classification by excluding all the images
that come from the same patient of the plaque which is being classified.
This is a technique for assessing the statistical independence of classifica-
tion and, thus, avoids the problem of correlation between images from the
same patient in the validation stage.

The classification is performed by partitioning the data into two com-
plementary subsets. One of the sets contains all the images from the same
patient and it is used for validation (validation set), while its complementary
subset (the rest of patients) is considered as the analysis set and is used for
the training step (training set).
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Components (Free Parameters)
GMM 2 (5) 3 (8) 4 (11) 5 (14) 6 (17) 7 (20)

Performance 73.95% 86.56% 82.35% 81.51% 73.11% 75.63%
NMM 2 (5) 3 (8) 4 (11) 5 (14) 6 (17) 7 (20)

Performance 77.31% 83.19% 79.83% 78.15% 78.99% 76.13%
RMM 2 (3) 3 (5) 4 (7) 5 (9) 6 (11) 7 (13)

Performance 31.93% 63.86% 68.07% 71.42% 71.27% 70.79%

Table 6.6: Classification Performance for an increasing number of components and free
parameters per tissue of GMM, NMM and RMM.

The training set is used to obtain the initial values of the GMMs param-
eters according to each tissue class. Then, the Expectation-Maximization
method is applied to the image under study which belongs to the validation
set and the GMMs fit to the whole image. The resulting GMMs are used to
obtain the probability of belonging to each tissue class, which is obtained
by the Bayes Theorem.

Table 6.6 shows the classification performance for an increasing num-
ber of components and free parameters for each mixture model in terms
of global accuracy, A = TP+TN

TP+TN+FP+FN , where FN and FP stand for False
Negatives and False Positives respectively; TN and TP stand for True Nega-
tives and True Positives. Note that the highest value of accuracy is reached
for three components both for the GMM and the NMM. This confirms the
relation between the classification and the fitting measures and evidences
that the GMMs and NMMs are good descriptors of the behavior of the prob-
abilistic nature of speckle in each tissue class for classification purposes. It
also confirms the selection of number of components and free parameters
performed in the previous section.

In order to provide a comparison between the proposed method (GMM
Classifier) and other methodologies, three more methods are considered for
plaque classification. The first one is a Rayleigh Mixture classifier which
can be easily derived following the formulation of section 6.5.1, we will refer
to this method as the RMM Classifier. This classifier does not exactly follow
the same philosophy as the proposed in [Sea11], the reason is that we are
interested not only in the classification but also in providing probability
maps for further post-processing and can be of help for physicians in their
plaque detections or diagnosis. The RMM classifier presented in [Sea11]
does not adapt the RMMs to each tissue class in the image under study and,
thus, the reliability of the fitting is reduced. The second is the Nakagami
Mixture Model classifier (NMM Classifier ) obtained in the same way as the
RMM Classifier. A comparison between the GMM Classifier vs. the RMM
and the NMM ones will confirm once more that GMM not only describes
better the speckle patterns but also provides more discriminative power as
a classifier.

The third method considered for comparison is the one of [Cio10] where a
set of 35 textural features directly extracted from the envelope data are used.
The multi-class classification is tackle by a combination of binary classifiers
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RMM NMM Textural GMM
Classifier Classifier Classifier Classifier

A 71.42 83.19 81.51 86.56
SCal 96.67 96.67 96.67 96.67
SLip 50.00 35.71 57.14 42.86
SFib 20.00 72.00 48.00 76.00
SLum 88.00 94.00 96.00 98.00
KCal 93.33 94.59 98.55 96.10
KLip 81.25 93.07 87.25 95.10
KFib 88.89 94.19 93.41 93.33
KLum 95.35 92.86 96.08 96.43
PCal 87.88 87.88 96.67 90.63
PLip 28.00 41.67 38.10 54.55
PFib 33.33 78.26 66.67 76.00
PLum 95.65 92.16 96.00 96.08

Table 6.7: Performance of tissue classification (Accuracy (A), Sensitivity (S), Specificity (K),
Precision (P)).

into the Error-Correcting Output Codes (ECOC) framework [Die95]. Each bi-
nary classification is obtained by means of Adaptive Boosting [Sch97] where
the weak classifiers are decisions stumps [Sea11]. We refer to this classifier
as Textural Classifier.

Results of the classification are shown in table VI. This table was cal-
culated by considering the whole data set for classification. Specificity was
calculated as K = TN

TN+FP ; Sensitivity, S = TP
TP+FN and Precision P = TP

TP+FP .
Note that in all the classifiers the performance of detecting lipidic plaque is
poorer than the others. In order to see better the differences between the
methods, the confusion matrices are shown in table 6.8.

The good performance for Calcified classification becomes clear for all
the classifiers since all of them classify correctly 29 out of 30 Calcified plaques.
Regarding Lumen, the best are the Textural and GMM classifiers with a cor-
rect classification of 48 and 49 out of 50 respectively.

In the case of Fibrotic plaques, the best classifications are obtained with
the NMM and GMM classifiers with a noticeable difference respect to the
Textural classifier and RMM classifier. This result evidences the discrimi-
native power of the GMM and NMM classifiers between Fibrotic and Lipidic
tissues and how the GMM and NMM properly describe the nature of the
speckle in both cases.

A very interesting case appears with RMM classifier for Fibrotic tissue.
Note that this classifier shows a clear bias to the Lipidic tissue. The rea-
son is that the PDF of Lumen shows a heavy tailed distribution which is
very difficult to model with Rayleigh distributions. Thus, more Rayleigh
components are needed for modeling the tail and those of Lipidic and Fi-
brotic tissues contribute for that purpose. This results in 6 Lumen plaques
misclassified as Fibrotic and 18 Fibrotic plaques misclassified as Lipidic.
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Predicted
Actual Calcified Lipidic Fibrotic Lumen

Calcified 29 0 1 0
Lipidic 2 7 3 2
Fibrotic 2 18 5 0
Lumen 0 0 6 44

(a) RMM Classifier
Predicted

Actual Calcified Lipidic Fibrotic Lumen
Calcified 29 0 1 0
Lipidic 2 5 4 3
Fibrotic 2 4 18 1
Lumen 0 3 0 47

(b) NMM Classifier
Predicted

Actual Calcified Lipidic Fibrotic Lumen
Calcified 29 0 1 0
Lipidic 1 8 4 1
Fibrotic 0 12 12 1
Lumen 0 1 1 48

(c) Textural Classifier
Predicted

Actual Calcified Lipidic Fibrotic Lumen
Calcified 29 0 1 0
Lipidic 1 6 5 2
Fibrotic 2 4 19 0
Lumen 0 1 0 49

(d) GMM Classifier

Table 6.8: Confusion Matrices.

Regarding Lipidic plaques, poorer results are observed for all the classi-
fiers. The best performances are obtained by the Textural classifier. How-
ever, all classifiers present some difficulties in distinguishing between Li-
pidic and Fibrotic. This is an expected result since plaques usually present
a mixed nature.

The overall accuracy shows that the GMM classifier provides an increase
of 5% with respect to the Textural classifier and 3% with respect the NMM
classifier.
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Classifier RMM NMM Textural GMM
Mean rank 3.2 2.3 2.6 1.9

Table 6.9: Mean Rank for the Accuracy of the Classifiers.

6.6.3 Statistical Significance

The statistical significance of these results is studied by means of the Fried-
man and Bonferroni-Dunn tests [Dem06]. These tests were selected since no
equal variance between results can be assumed and the Gaussian hypoth-
esis is not guaranteed.

The fractional ranking of each separate classification test for each plaque
is shown in Table 6.9. Fractional ranking consists of assigning distinct ordi-
nal numbers to each classifier even if they are equal (where the assignment
is arbitrarily done). Then, for those classifiers that are compared equally,
the rank average is assigned to each one. Note that the best rank is ob-
tained for the GMM classifier followed by the Textural classifier, the GMM
and finally the RMM classifier. This result holds with the overall accuracy
results of Table 6.7.

The Friedman test states that the null-hypothesis is that the differences
on the measured classification performance are due to randomness. In or-
der to reject or not this hypothesis, the Friedman statistic value is calculated
as

χ2
F =

12N

k(k + 1)

∑
j

r2
j −

k(k + 1)2

4

 , (6.22)

where k = 4 is the number of classifiers and N = 119 is the number of
samples. In our case the result is χ2

F = 64.26. However, a more thorough
statistic is obtained by means of the Iman-Davenport correction of the Fried-
man statistic

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

. (6.23)

In this case, the value obtained is FF = 25.90. The statistic FF is dis-
tributed by a Fisher-Snedecor distribution with parameters (k − 1) = 3 and
(k − 1)(N − 1) = 354, so the critical value of F3,∞ for a confidence of 95% is
2.68. The statistic value obtained is much higher than this critical value so
the null-hypothesis can be rejected and we can conclude that differences
of the classifications are not due to randomness.

In order to see whether the GMM classifier statistically improves the
results of the Textural classifier, the Bonferroni-Dunn test is applied. This
test states that the performance of two classifiers is significantly different
if the corresponding average ranks are higher than the following critical
difference

CD = qα

√
k(k + 1)

6N
, (6.24)

where critical values qα are based on the Studentized range statistic [Dem06].
In our case, qα = 2.128 for a confidence of 90% and qα = 2.394 for a confi-
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dence of 95%. Then, the critical difference is CD90 = 0.36 and CD95 = 0.40
for a confidence of 90% and 95% respectively. This distance is smaller than
the differences between the GMM and the NMM so we can conclude that
the GMM is significantly better than the others with a confidence of 95%.
The NMM and the Textural classifiers are not significantly different between
each other and all of them are significantly better than the RMM classifier.

6.6.4 Probability Maps

Two examples of the probability of belonging to each tissue class are ana-
lyzed. Both examples are depicted in Fig. 6.7. These examples show the way
the plaques are represented in polar images. Note that the lipidic and fi-
brotic cases are difficult to be identified since both represent similar speckle
pattern. Calcified plaques present a shadow below them and their identifi-
cation is easier.

 

 

CAL
LIP
LUM

 

 

CAL
FIB
LUM

(a) (b)

Figure 6.7: Examples of pre-segmented IVUS images. Log compression was applied for a
better visualization. The example image (a) shows two calcified plaques and a small lipidic
plaque. The example (b) presents a fibrotic and a calcified plaque.

The probability of belonging to each tissue class for the example shown
in Fig. 6.7.a are depicted in Fig. 6.8. Note that in Fig. 6.8.a, the probability
of belonging to the calcified tissue is almost 1 in all the regions labeled as
calcified. The upper region with high probability of belonging to calcified
class is due to the artifacts of the catheter. These artifacts do not suppose
a problem since they can be easily detected or each image can be cropped
according to the diameter of the catheter. Lumen tissue has also high prob-
abilities through the whole segmented area and thus it is almost always
correctly classified. The most problematic tissues are the fibrotic and li-
pidic ones. In these cases the distributions of tissues are quite overlapped
and, for these two tissues, the probabilities are comparable. These effects
are shown in table 6.10, where the classification was performed with three
components and three tissue classes: Calcified, lipidic/fibrotic and Lumen.



136 Conclusions

 

 

CAL
LIP
LUM

 

 

CAL
LIP
LUM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Calcified (b) Lipidic

 

 

CAL
LIP
LUM

 

 

CAL
LIP
LUM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Fibrotic (d) Lumen

Figure 6.8: Probability maps of belonging to each tissue class in the polar image of the
example in Fig. 6.7.(a).

] components = 3 Calcified Lipidic/Fibrotic Lumen
Precision 92.59 93.94 97.67

Sensitivity 96.15 91.18 97.67
Total Accuracy: 95.1456

Table 6.10: Classification Performance for three components of the GMM into three classes.

The same observation is reinforced by considering the probability maps
computed from the example depicted in Fig. 6.7.(b). These are shown in
Fig. 6.9.

6.7 Conclusions

This work proposes a plaque characterization method for IVUS images based
on the probabilistic behavior of speckle in each tissue class in different
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Figure 6.9: Probability maps of belonging to each tissue class in the polar image of the
example in Fig. 6.7.(b).

tissue types. A Gamma distribution is assumed for the probabilistic de-
scription of the speckle because it has shown better performance than
the Rayleigh and Nakagami distributions under the operations of down-
sampling and interpolation of the echo envelope. Since each plaque type
may present different echogenic content, a GMM is adopted for modeling
each class. It was shown that the proposed GMM outperforms the Rayleigh
mixture approach of [Sea11].

A classifier is proposed in order to obtain the posterior probability ac-
cording to each tissue class. This classifier makes use of the GMM ob-
tained for each test data which has been previously initialized with the
GMM obtained during training. Four tissue classes were considered in
this study: Calcified, lipidic, fibrotic and lumen. A leave-one-patient-out
cross-validation technique was applied for validating the performance of
the classifier providing an overall accuracy of 86.56%. Statistical compari-
son with other methods showed that the proposed classifier is significantly
better than the others. The overall gain of accuracy of the proposed method
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compared to the best of the others is about 5%.

The most problematic classes for classifying were Lipidic and Fibrotic
tissues. This is due to the similarity between both speckle patterns. A
classification using three classes was also provided, considering fibrotic
and lipidic as a joint class. In that case, an overall accuracy of 95.15% was
obtained. This result evidences that the proposed classifier offers a useful
way to help physicians for detecting and diagnosing plaques.

Apart from the classification results, this classification scheme offers
the possibility of representing probability maps of belonging to each tissue
class. These probability maps can be codified into color-maps in order to
offer useful information for physicians. Additionally, probability maps can
be useful for filtering and automatic segmentation purposes [VSF10a].

It is important to notice that this work performs the validation with his-
tological validated plaque. It would be desirable to complete the study with
the analysis of plaque in live subjects. However, due to the difficulties of
having a golden standard in live subjects this study, the study with live
subjects will be carried out as a future work.

6.A Expectation Maximization for Mixtures of GMM

The joint distribution of IID samples X and the hidden random variables,
Z and W is given by

p(X,Z,W|Θ) =
N∏
i=1

p(xi, zi, wi,j |Θ), (6.25)

where

p(xi, zi, wi,j |Θ) = p(xi|zi, wi,j ,Θ)p(wi,j |zi,Θ)p(zi|Θ)

= p(xi|wi,zi ,Θ)p(wi,zi |Θ)p(zi|Θ)

= fX(xi|Θzi,wi,zi
)πzi,wi,ziνzi . (6.26)

Note that, the following equation holds

p(xi,Θ) =
∑
zi

∑
wi,zi

fX(xi|Θzi,wi,zi
)πzi,wi,ziνzi =

J∑
j=1

νj

Rj∑
r=1

πj,rfX(xi|Θj,r). (6.27)

Now, the log-likelihood function function can be defined in the following way

L(Θ|X,Z,W) =

N∑
i=1

log p(xi, zi, wi,j |Θ)

=
N∑
i=1

log p(xi|Θzi,wi,zi
) +

N∑
i=1

log p(wi,zi |Θ)p(zi|Θ)

=
N∑
i=1

log fX(xi|Θzi,wi,zi
) +

N∑
i=1

log πzi,wi,zi +
N∑
i=1

log νzi . (6.28)
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The expectation of the log-likelihood function with respect to the hidden
RVs when data x and the previous estimate Θ(n) are known is

Q(Θ|Θ(n),X) = EZ,W|Θ(n),X{L(Θ|X,Z,W)} =

N∑
i=1

J∑
j=1

Rj∑
r=1

γi,j,r (log p(xi|αj,r, βj,r) + log(νjπj,r)) , (6.29)

where γi,j,r = p(Zi = j,Wi,j = r|xi,Θ(n)), which can be easily calculated by
means of the Bayes theorem

γi,j,r =
fX(xi|Θ(n)

j,r )ν
(n)
j π

(n)
j,r∑J

s=1

∑Rj
r=1 fX(xi|Θ(n)

s,r )ν
(n)
s π

(n)
s,r

. (6.30)

The maximization process can be done in each of two terms separately.
Then, the maximization step can be performed in the same way as was
done in section 6.4. So, for the term with a dependence on the parameters
νj and πj,r in eq. (6.29), one can establish a Lagrange function with Lagrange
multipliers λ, µj for j = {1, · · · , J}. The constraints are those expressed in
eq. (6.13). The Lagrange function is the following

Λ(ν, π, λ, µ) =

N∑
i=1

J∑
j=1

Rj∑
r=1

γi,j,r log(νjπj,r)

+ λ

 J∑
j=1

νj − 1

+
J∑
j=1

µj

 Rj∑
r=1

πj,r − 1

 . (6.31)

Taking the derivative with respect to νj, for a fixed j, the following relation
is deduced

νjλ = −
N∑
i

Rj∑
r

γi,j,r, (6.32)

so, summing over j = {1, · · · , J}, one gets λ = −N . So the value of νj that
maximizes Λ(ν, π, λ, µ) is

ν
(n+1)
j =

1

N

N∑
i=1

Rj∑
r=1

γi,j,r. (6.33)

The calculation of πj,r is performed in the same way, the result is

π
(n+1)
j,r =

∑N
i=1 γi,j,r∑N

i=1

∑Rj
s=1 γi,j,s

. (6.34)

Now, regarding the term of eq. (6.29) which depends on the parameters of
the distribution αj,r and βj,r, the process of deriving these parameters is
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analog to the GMM model explained in section 6.4. It consists in solving
the following equations

β̂j,r = 1
α̂j,r

∑N
i γi,j,rxi∑N
i γi,j,r

log(α̂j,r)− ψ(α̂j,r) = log
(∑N

i γi,j,rxi∑N
i γi,j,r

)
−
∑N
i γi,j,r log(xi)∑N

i γi,j,r
.

(6.35)

From the estimated value α̂j,r that maximizes the log-likelihood, the esti-
mate of β̂j,r can be calculated. See Appendix 6.B for solving this equation.

6.B Solving ψ(x)− log(x) = K

In this appendix we demonstrate that th function g(x) = ψ(x) − log(x) is
a strictly increasing function when x > 0. For this purpose we make use
of the demonstration of the convexity of f(x) = log Γ(x) − x log x for x > 0
(see [Mer96]).

The property of convexity of f(x) just guarantees that the first derivative
of f(x) is monotonically non-decreasing. Thus, a more detailed analysis
should be done. To this end, we recall the well known expansion of the
second derivative of log Γ(x) (see [Mer96])

d2

dx2
log Γ(x) =

1

x2
+

1

(x+ 1)2
+

1

(x+ 2)2
+ · · · , (6.36)

with x 6= 0,−1,−2, · · · .

Making use of eq. (6.36), the second derivative of f(x) can be expressed
as

f ′′(x) =
d2

dx2
log Γ(x)− 1

x
=
∞∑
k=0

1

(x+ k)2
− 1

x
. (6.37)

The second term can be introduce in the sum by means of expressing it
as the following telescoping series

1

x
=
∞∑
k=0

1

x+ k
− 1

x+ k + 1
. (6.38)

This yields the following result

f ′′(x) =
∞∑
k=0

1

(x+ k)2
− 1

x+ k
+

1

x+ k + 1
=
∞∑
k=0

1

(k + x)2(1 + k + x)
> 0, (6.39)

for x > 0. This result demonstrates the convexity of f(x) and also that
f ′(x) = ψ(x)− log(x)− 1 is a strictly monotonic increasing function and so it
is g(x) = ψ(x)− log(x).

We are interested in calculating the value x̂ that follows eq. (6.35) that,
without loss of generality, can be stated as

log(x)− ψ(x) = K, (6.40)
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where K is the second term of the eq. (6.35). Note that this constant K is
positive unless all elements xi are identical (a case that does not occur in
practice) due to the Jensen’s inequality

log

(∑N
i γixi∑N
i γi

)
≥
∑N

i γi log(xi)∑N
i γi

, (6.41)

for any xi > 0 and γi > 0.

An interval where the function x→ log(x)−ψ(x)−K changes its sign can
be derived just by applying the following result (see [Alz97])

1

2x
< log(x)− ψ(x) <

1

x
. (6.42)

Hence, the solution x̂ ∈ ( 1
2K ,

1
K ) and any root-finding method can be effi-

ciently used.
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Probabilistic-Driven Oriented Speckle Reducing

Anisotropic Diffusion with Application to Cardiac
Ultrasonic Images

The law of conservation of energy tells us we can’t
get something for nothing, but we refuse to believe it.

Isaac Asimov, 1920–1992.

Abstract– A novel anisotropic diffusion filter is proposed in this
work with application to cardiac ultrasonic images. It includes
probabilistic models which describe the probability density func-
tion (PDF) of tissues and adapts the diffusion tensor to the image
iteratively. For this purpose, a preliminary study is performed in
order to select the probability models that best fit the statistical
behavior of each tissue class in cardiac ultrasonic images. Then,
the parameters of the diffusion tensor are defined taking into ac-
count the statistical properties of the image at each voxel. When
the structure tensor of the probability of belonging to each tis-
sue is included in the diffusion tensor definition, a better bound-
aries estimates can be obtained instead of calculating directly the
boundaries from the image. This is the main contribution of this
work. Additionally, the proposed method follows the statistical
properties of the image in each iteration. This is considered as a
second contribution since state-of-the-art methods suppose that
noise or statistical properties of the image do not change during
the filter process.

Adapted from: G. Vegas-Sánchez-Ferrero1, S. Aja-Fernández1, M. Martı́n-Fernán-
dez1, A. F. Frangi2 and C. Palencia3, Probabilistic-Driven Oriented Speckle Reducing
Anisotropic Diffusion with Application to Cardiac Ultrasonic Images, In 13th Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), Beijing, China, Lecture Notes in Computer Science, Vol. 6361,
pp. 518–525, September 2010.
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7.1 Introduction

Ultrasound is a non-invasive imaging modality and a low-cost way to help
diagnosing, which is widespread for many medical applications. However,
ultrasonic (US) images are characterized by the presence of speckle, which
is a granular pattern that degrades resolution and adds spatial noise to the
image [Nil08]. Therefore, many speckle removal filters have been proposed
in the literature [Yu02,AF06,Kri07].

Speckle in ultrasound images can be seen as a random process whose
statistical features depend on the tissue class. The existence of a determin-
istic component due to specular reflections of the echo-pulse depends on
the number of obstacles of the tissue (scatters) into the resolution cell and
their size in comparison with the wavelength of ultrasound signal. Thus,
many of the speckle removal filters are based on local statistics.

Among those filters, we focus on anisotropic diffusion based filters since
the proposed filter can be considered as a probabilistic extension of them.
One of the most popular approaches is Speckle Reducing Anisotropic Dif-
fusion (SRAD) [Yu02], which extends the well known Perona and Malik’s
anisotropic diffusion avoiding to threshold the norm of the gradient. In-
stead of that threshold, an estimate of the coefficient of variation of noise
is used. Results and stability depends on a good estimation of the local
statistics as it was demonstrated in [AF06].

In the case of Oriented Speckle Reducing Anisotropic Diffusion (OSRAD)
[Kri07], no logarithmic compression is supposed and the speckle statistics
are assumed to be modeled by a Rician distribution. In the case of high
SNR, speckle statistics are approximated by a Gaussian distribution. This
is a reasonable assumption when resolution cells have a large number of
scatters and there exists a deterministic component, which is the case of the
myocardial tissue for the raw signal obtained by the transducer. However,
besides logarithmic compression, an interpolation process is performed to
reconstruct the image and, therefore, the probabilistic model is affected.
Additionally, the diffusion schemes are iterative, so the Rician distribution
supposition does not hold in each iteration. So, because of logarithmic
compression and interpolation, the statistics of speckle in reconstructed
images do not follow the original distributions of the raw signal. Hence,
many recent works study different probability models in order to obtain
a suitable model to describe the statistical behavior of the speckle [Nil08,
Tao06,Elt06].

In this work, we propose a novel anisotropic diffusion filter with appli-
cation to cardiac ultrasonic images, which includes the probability models
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that describe PDFs of different tissue classes and adapt iteratively to the
filtered image. Probability models for each tissue class were selected from a
training database using real-life cases for cardiac ultrasonic images. A mix-
ture PDF model is adopted for fitting probabilistic models of tissue classes
to the histogram of the whole image. With this methodology, a Bayesian
scheme can be applied to estimate the probability of belonging to each of
the tissue classes for every image voxel.

When the structure tensor of the probability of belonging to each tissue
is combined in the definition of the diffusion tensor, better boundaries esti-
mates can be obtained instead of directly calculating them from the image.
The structure tensor of the probability of belonging to each tissue allows
defining a diffusion tensor, which takes into consideration the boundaries
between different tissue classes for filtering purposes. This is the main con-
tribution of this work and, to the best of our knowledge, no similar approach
has been considered in the literature for this purpose.

The paper is organized as follows. In section 7.2, the statistical study
is explained and the distributions are selected. Section 7.3 describes the
filtering method. Section 7.4 presents some experiments and results on
synthetic and real images. In section 7.5, we conclude analyzing the results.

7.2 Probabilistic Estimation of Tissue Classes in US Im-
ages

In this section, the goodness-of-fit of several probabilistic distributions is
presented. The study is extended to a representative set of distributions
that were proposed in the literature: Gamma [Nil08, Tao06], Log-Normal
[Tao06], Rayleigh [Nil08, Tao06, Elt06], Normal [Tao06], Nakagami [Nil08,
Elt06], Beta, Rician Inverse Gaussian (RiIG) [Elt06], Rice [Wag83], Expo-
nential and K [Nil08]. A set of 120 two-dimensional images of size 1024×768
and 8 bits per pixel were obtained from a clinical machine Philips iE33 ultra-
sonographic system1 with the software PMS5.1 Ultrasound iE33 4.0.1.357
scanned from human subjects.

The methodology used to carry out the study is the same used in [Nil08,
Tao06] where a χ2 goodness-to-fit test is performed. We used a significance
value α = 0.05 for the test. In order to avoid spatial correlation, the image is
sub-sampled by a factor of 6. Two different tissue classes were considered:
blood and myocardium.

In Fig. 7.1, an example of the analyzed tissues is presented as well as
the results of passing the goodness-of-fit test for blood an myocardial tissue.
In Fig. 7.1.b we can see the better performance of the gamma distribution
in the case of blood, this result holds with that one obtained in [Tao06]. In
the case of the myocardial tissue (Fig. 7.1.c), Rice distribution and Normal
distributions are the ones with the best fit. This result is coherent to the in-

1Philips Healthcare, Andover, MA, USA.
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Figure 7.1: (a) Example of the regions for blood and myocardial tissue. (b) Blood. (c)
Myocardial Tissue. For blood tissue class, the Gamma distribution performs best. For
myocardial tissue, the best performance is achieved for Rice or normal distributions.

terpretation of quasi periodic scatterers, which gives rise to a Rician model
of speckle [Wag83] and confirms the hypothesis of the OSRAD filter [Kri07].
Due to the simplicity of estimating Normal parameters for estimating mix-
tures of PDFs, we chose the Normal distribution as a good candidate for
this tissue class.

7.3 Probabilistic Directional SRAD

When the histogram of the ultrasonic image is considered as the contribu-
tion of different kinds of tissues which follow different PDFs, the mixture of
PDFs arises as a natural way to fit the histogram. This way, when paramet-
ric distributions are considered, the parameters of each independent vari-
able have to be calculated. The most widespread method for this purpose is
the Expectation-Maximization (EM) algorithm, which allows estimating the
parameters of the mixture. We decided to adopt the unsupervised learning
of mixture models method [Fig02], since it is capable of selecting the num-
ber of mixture components from a maximum (kmax) and it simultaneously
integrates model selection and estimation.

Let X be a random variable (and x a sample) that follows a finite mixture
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Figure 7.2: (a) Clinical ultrasound image. (b) Finite Mixture Model. (c) Tissue class prob-
ability map for each voxel of the image. The good fit of the mixture model of the image (a)
becomes clear as well as the structure of the ownership to each class where the boundaries
of the left and right ventricles are clearly defined.

PDF of K components where K ∈ [1, kmax]. Its PDF can be written as follows

fX(x) =
K∑
k=1

akfXk(x|Θk), (7.1)

where ak > 0 and
∑K

k=1 ak = 1 are the probabilities of belonging to each class
of the mixture, and Θk are the parameters of the class Ck, which follow a
Gaussian or Gamma distribution. The probability of belonging to each class
for each voxel (i.e. each sample x) is the following

P (x ∈ Ck | X = x,Θk) =
P (X = x | x ∈ Ck,Θk)P (x ∈ Ck | Θk)∑K
i=1 P (X = x | x ∈ Ci,Θi)P (x ∈ Ci | Θi)

. (7.2)

This expression allows us to calculate a set of images that indicate the prob-
ability of belonging to each class for every voxel and can be seen as the par-
tial volume contribution of each class. Fig 7.2 shows an ultrasound image,
its finite mixture PDF, and the probability ownership to each class. In Fig
7.2.b a good fit of the mixture model of the image in Fig. 7.2.a becomes
clear as well as the structure the ownership to each class (Fig. 7.2.c).
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The main advantage of this set of images is that a structure tensor can
be derived from each probability image, which is able to extract the direc-
tions of minimal probability change even when low gradients are presented.
This way, an anisotropic filter can be defined that takes the advantage of
these directions in the probability map for each tissue class. We will re-
fer to it as POSRAD (Probabilistic Oriented Speckle Reducing Anisotropic
Diffusion). This filter makes use of the extension of the scalar component
of the diffusion equation to a diffusion matrix which takes the advantage
of the local tissue orientation as it was proposed in [Kri07, Kri09a]. How-
ever, in our case we calculate the local orientation of the probability density
function for each tissue class and combine them in the following way.

As in [Kri09a], we calculate the structure tensor of the probability den-
sity function for each tissue class as

Tk = Gσ ∗ (∇σP (x ∈ Ck | X = x,Θk) · ∇σP (x ∈ Ck | X = x,Θk)
T ), (7.3)

whereGσ is a Gaussian kernel of standard deviation σ, and∇σP (x ∈ Ck |X =
x,Θk) is the gradient of the probability density function for each tissue class
filtered with a Gaussian kernel of standard deviation σ. Finally, let λk1 ≥ λk2 ≥
λk3 be the eigenvalues and (vk1 ,v

k
2 ,v

k
3) their respective eigenvectors. The local

orientation of the maximal variation of probability of the class Ck is given
by vk1 , and the local orientation of the minimal variation is given by vk3 .

Let consider the following diffusion equation{
u(x, 0) = u0

∂u

∂t
= div(D∇u),

(7.4)

where the matrix D is expressed in a diagonal form with the eigenvectors
(v1,v2,v3) and eigenvalues λ1, λ2, λ3. Since we have K structure tensors
(each tissue class with probability density function), we choose the eigen-
base of the structure tensor with maximal λk1: k̂ = arg maxk(λ

k
1). This base

gives the orientation of the maximal variation of probability among all the
classes. The interpretation of this choice is that we choose as boundary the
one with the maximal gradient of the probability density function over all
tissue classes. This way, the most probable boundary is preserved in the
filtering process. In the basis of Tk̂, namely (e1, e2, e3), the diffusion matrix
D is defined as

D = E

 λ1 0 0
0 λ2 0
0 0 λ3

ET where
λ1 = 1 −||∇e1,σP (x ∈ Ck̂ | X = x,Θk̂)||2
λ2 = 1 −||∇e2,σP (x ∈ Ck̂ | X = x,Θk̂)||2
λ3 = 1,

(7.5)
where || · ||2 is the 2-norm, ∇ei,σ is the directional derivative in the direc-
tion ei filtered with a Gaussian kernel with a standard deviation σ, and
E is the matrix whose columns are the eigenvectors (e1, e2, e3). Note that
this definition performs a diffusion filtering in the direction of the minimal
variation of probability (e3) while preserves the maximal variation of prob-
ability since ||∇e1,σP (x ∈ Ck̂ | X = x,Θk̂)||2 will have a value closed to 1.
Note that the discrete approximations of ||∇e1,σP (x ∈ Ck̂ | X = x,Θk̂)||2 and
||∇e2,σP (x ∈ Ck̂ | X = x,Θk̂)||2 are bounded in [0, 1], thus λ1, λ2 ∈ [0, 1].
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Figure 7.3: (a) Original synthetic image of [Kri07]. (b) Noisy image with multiplicative noise
with σ = 0.5. (c) Filtered image with the proposed filter.

The main advantage of this definition is that, in homogeneous areas
D becomes isotropic and in the presence of boundaries it becomes more
anisotropic and with a main orientation aligned along the boundaries thus
preserving the main contours. Additionally, the evolution of the probabilis-
tic models can be followed through the iterative process since the finite mix-
ture model is re-estimated in each iteration. This is an important advantage
of the presented methodology over other state-of-the-art filters, which as-
sume that the statistics of the image/noise do not change during the filter-
ing process. Since no assumptions can be made about the changes of the
statistics of the image, a finite mixture of Gaussian distributions is adopted
during the filtering process except for the first iteration.

7.4 Experiments and Results

In this section we present some experiments with synthetic and real ultra-
sound images in order to compare our technique to other state-of-the-art
algorithms. First we consider the 2D synthetic image presented in [Kri07]
which is publicly available2 and allows us to compare the proposed method
to other algorithms. This image is presented in Fig 7.3.a which has 6 regions
of constant intensity. The image is corrupted with a Gaussian multiplica-
tive noise with σn = 0.5 (Fig. 7.3.b). In Fig. 7.3.c the filtered image with
the proposed method is presented. The parameters of the filter were: 200
iterations, time step 0.5, σ = 1 and kmax = 6. No suppositions were made
concerning the probability distributions of the tissue classes, so a Gaussian
mixture model was used.

Since these parameters are the same used by OSRAD, a direct com-
parison with the results in [Kri07] can be established. We use the same
quality measures for validation: Mf and figure of merit (FOM)3, see [Kri07]
for more details. Both values are comprised between 0 and 1. The highest
the value, the better the filter. Results presented in Table 7.1 show that the

2http://serdis.dis.ulpgc.es/∼krissian/HomePage/Demos/OSRAD/OSRAD.html
3The quality measure Mf was recalculated since it measures the quality of the filter

compared to the others filters.
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best FOM and Mf is achieved by our method. These results show that a
better performance can be achieved when variations of the probability for
each class is taken into consideration since the diffusion tensor becomes
more anisotropic near the most probable edges while homogeneous regions
are filtered in an isotropic way.

We now consider a 3D ultrasound image of a liver generated using the
Stradwin v3.8 software (Cambridge University, Cambridge, UK), which has
been used commonly in the literature [Kri07]. These data were acquired by
a freehand system and are available on Cambridge University4. The image is
a volume with 201×193×142 voxels with an isotropic resolution of 0.5×0.5×0.5
mm3. Both, the original and the filtered image are presented in Fig 7.4.(a-
b). Visual inspection shows that a good edge preservation is obtained with
an efficient noise removal. The parameters for this experiment were: 200
iterations, time step 0.5, σ = 1 and kmax = 6 with a Gaussian mixture model.

As a final experiment, we consider a real 3D ultrasonic image of the heart
obtained with the same clinical machine of section 7.2. In this experiment
we use the finite mixture model of Gaussian and Gamma distributions,
100 iterations, time step 0.5, σ = 1 and kmax = 4. Results are presented in
Fig. 7.4.(c-d) were a good edge preservation is observed. An efficient noise
removal is achieved in the left ventricle when compared to the noisy image.

7.5 Conclusion

In this work we have presented a new diffusion filter that takes into ac-
count the statistical properties of the image. This methodology offers an
advantage over the follow-up of statistical properties of the image in each
iteration while preserving and enhancing the structures. Experiments on
synthetic and real images show that the proposed method preserves edges
of the structures better than others and performs a good restoration.

4http://mi.eng.cam.ac.uk/∼rwp/stradwin/
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(a) (c)

(b) (d)

Figure 7.4: (a) Noisy 3D ultrasound of a liver. (b) Filtered 3D ultrasound of a liver. (c) Noisy
3D ultrasound of a Heart. (d) Filtered 3D ultrasound of a Heart. The proposed method
achieve a good edge preservation with an efficient noise removal in both cases.
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Realistic Log-Compressed law for Ultrasound Image

Recovery

Dans les champs de l’observaction,
le hasard ne favorise que les esprits préparés.

Luis Pasteur, 1822–1895.

Abstract– A realistic log-compressed law for ultrasound images
based on a real device is proposed. The model takes into account
the linear behavior of the logarithmic amplifier for small signal
gain which transforms image values in a different way as the clas-
sical models do. Additionally, for recovery purposes, a method for
the estimation of the compression parameters is also proposed
when a realistic log-compressed law is considered. Results with
synthetic images show that the proposed method achieved a con-
sistent Rayleigh parameter estimate with a very low error. Exper-
iments with real images show that the inversion method is con-
sistent through the whole acquisition process when parameters
of the logarithmic amplifier are assumed constant.

Adapted from: G. Vegas-Sánchez-Ferrero1, D. Martı́n-Martı́nez1, Pablo Casaseca-
de-la-Higuera1, Lucilio Cordero-Grande1,S. Aja-Fernández1, M. Martı́n-Fernández1
and C. Palencia2, Realistic Log-Compressed Law for Ultrasound Image Recovery, In
18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium,
pp. 2029–2032, September 2011.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
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8.1 Introduction

Speckle in ultrasound images can be seen as a random process whose
statistical features depend on the tissue class. The existence of a deter-
ministic component due to specular reflections of the echo-pulse depends
on the number of obstacles of the tissue (scatters) into the resolution cell
and their size in comparison with the wavelength of ultrasound signal.
Thus, the estimation of the probability density function (PDF) of different
tissue classes can be practically applied in tissue filtering and segmen-
tation, using maximum likelihood and maximum a posteriori algorithms
[Sea10a, Sea10b, VSF10b, VSF10a]. These approaches are usually derived
from the analysis of acoustic physics and the information available of the ul-
trasound probe. However, the whole acquisition information is not usually
available and therefore suppositions must be made. For instance, images
provided by practitioners usually do not include parameters as gain and/or
contrast adjustment. Additionally, some of the steps of the acquisition pro-
cess are not known depending on the commercial firm of the ultrasound
machine.

Some approaches have been proposed in order to deal with this lack
of information on PDFs. The most widespread method is to use empirical
approximations for fitting speckle patterns accurately enough to provide
good results for filtering or segmentation. This methodology has been used
in [Tao06, Elt06] for different kind of distributions and extended to some
more distributions in [VSF10b].

In this article we focus on the influence of the log-compression step
on the probabilistic distributions of the speckle. This is a very impor-
tant problem since many filtering and segmentation methods are based
on PDF estimation and all the analysis of acoustic physics is lost in the
pre-processing steps. Some methods has been presented to overcome this
problem [Sea10b, Sea08, San03, Pra03]. These methods are based on the
supposition that fully formed speckle can be modeled by a Rayleigh distri-
bution. This is the case of large number of scatterers into the resolution cell
and non-existence of deterministic component, which is a common accepted
hypothesis which was first presented by Goodman in [Goo75].

The aforementioned works assume the following logarithmic law: y =
α log(1 + x) + β, where α and β are the unknown parameters which respec-
tively account for the contrast and brightness. When this transformation
is performed on a Rayleigh distributed data, the resultant distribution be-
comes a Fisher-Typpet distribution (double exponential) [San03].

However, in real cases, the behavior of the log-compressed fully formed
speckle regions is far from the Fisher-Typpet distribution and evidences
that the hypothesis of the compression law should be reconsidered care-
fully (Fig. 8.1.(b)). For instance, the Fisher-Typpet tail for lower values dis-
tribution does not appear in real cases. This is probably due to the non-
logarithmic behavior of the analog amplifiers for small voltage input. The
non-logarithmic response of the amplifier, which specially affects to fully
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Symbol Parameter Min. Typ. Max.
Rg(kΩ) 0 3.3 ∞
Vos(mV ) No input -60 40 140
Vout(mV ) Vin = 60µV 45 80 115

Vin = 400µV 200 245 290
Vin = 3mV 365 440 495
Vin = 25mV 530 610 690
Vin = 200mV 680 780 880
Vin = 300mV 710 820 930

Vin =
x ∈ (0, 60)µV

x45mV
60µV x80mV

60µV x115mV
60µV

Table 8.1: Response of the True logarithmic amplifier TDA8780M for small and large signal.

formed speckle, produces lower values of the signal.

The main contribution of this work is a realistic log-compression law
model for ultrasound images based on real amplifiers. The main advantage
of this model is that the non-logarithmic behavior of the amplifier is con-
sidered and, to the best of our knowledge, no similar approach has been
considered in the literature. Additionally, we present a method for esti-
mating the parameters of the model in order to recover the pre-compressed
image.

8.2 Log-compression Law Model

In this section we discuss the influence of the logarithmic compression on
the probabilistic model when fully formed speckle regions are observed and
a real logarithmic amplifier is considered. Specifically, the True logarithmic
amplifer TDA8780M1 is analyzed. It has a 72dB true logarithmic dynamic
range which is large enough for the dynamic range of the input signal and
the datasheet provides information for different values of gain and offset.

The logarithmic amplifier works as follows: the differential output from
the true logarithmic amplifier is converted internally to a single-ended out-
put in which the DC output level is set by an externally-supplied reference
voltage. The gain adjustment can be performed by an off-chip resistor, Rg.
The parameters provided by the datasheet are summarized in table 8.1.

In order to properly model the transfer characteristics of the amplifier,
a continuous model is defined that guarantees uniform convergence of the
values provided in the datasheet for Rg ∈ [0,∞). For this purpose, a least
squares approximation is performed for the transfer characteristics for each

1Available in http://www.alldatasheet.com/datasheet-pdf
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value of Rg provided in the datasheet for large signal gain2

J =

|Vin|∑
i=1

(als[Rg](Vin[i]− Vin[1]) + bls[Rg]− Vout[Rg, i])2 , (8.1)

so, the transfer characteristics for large signal is the following3

VRg ,out = als[Rg](Vin[i]− Vin[1]) + bls[Rg]

bls[Rg] = Vout[Rg, 1] (8.2)

als[Rg] = −
∑|Vin|

i=1 (bls[Rg]− Vout[Rg, i])(Vin[i]− Vin[1])∑|Vin|
i=1 (Vin[i]− Vin[1])2

.

Now, the generalized continuous model is defined as

Vout(Rg, x) =

{
asg(Rg)x, x ∈ [0, Vmax]µV

als(Rg)x
dBm + bls(Rg), xdBm ∈ (V dBm

max ,∞),
(8.3)

where xdBm is the input voltage in dBm which is calculated for R0 = 50Ω as
xdBm = 20 log(x) − 10 log(R0) + 30. Vmax = 60µV is the maximum voltage for
small signal gain. The slope value for small signal gain, asg(Rg), is defined
as

asg(Rg) =
K1

K2 +Rg
+K3

K1 =
(asg[0]− asg[∞])(asg[3.3kΩ]− asg[∞])

(asg[0]− asg[3.3kΩ])
3.3kΩ

K2 =
(asg[0]− asg[∞])

(a0 − aR0)
3.3kΩ (8.4)

K3 = asg[∞].

The slope of the large signal gain, als(Rg), and its offset bls(Rg) are calculated
in the same way

als(Rg) =
K4

K5 +Rg
+K6, bls(Rg) = K7

K8+Rg
+K9,

where the constants have the same expression as eqs. (8.4) calculated with
als[Rg]. The slope of small and large signal were defined in that way because
is the most common way to adapt gains in analog circuits by voltage dividers.

The transfer characteristics of the Log-Compression Law Model are pre-
sented in Fig. 8.1.(a). Additionally, Fig. 8.1.(b) shows the histogram of the
output voltage of the logarithmic amplifier calculated for a real image and it
turns out that 12% of the values of the output signal are in the small signal
gain area. This demonstrates that the compression law should be taken very
carefully since many values of the image are incorrectly decompressed when
ideal Log-Compression Laws, as the ones of [Sea10a,Sea08,San03,Pra03],
are considered.

2Rg = {0, 3.3kΩ,∞} and Vin = {60µV, 400µV, 3mV, 25mV, 200mV, 300mV }
3Note that discrete functions are represented with brackets whereas continuous functions

use parenthesis.
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Figure 8.1: Transfer characteristics of the Log-Compression Law Model. (a) Continuous
lines are the least squares aproximation of large signal gain for each Rg = {0, 3.3kΩ,∞}.
Black dotted lines are some examples of the continuous model for different values of Rg. (b)
Histogram of a fully formed speckle area of a real image. 12% of the values are below the
threshold of logarithmic compression.

8.3 Parameter Estimation

In this section a method for recovering the pre-compressed image is pre-
sented. Two values should be estimated to perform the inversion of the
transfer function of the continuous model presented in section 8.2: Rg and
Vos. However, Vos is the reference voltage and does not change the transfer
function so we can assume that Vos is the minimum value of the output
voltage before the analog-to-digital converter. Hence, Vout can be obtained
in the following way

Vout = I
DR

255
− Vos, (8.5)

where DR is the dynamic range of Vout (in our case 930− (−60)mV ), I is the
intensity value of the image and Vos = min(IDR255 ).

The inversion of the transfer characteristic function can be easily calcu-
lated by the following expression

f−1(Rg, x) =


x

asg(Rg)
x ∈ [0, Vmaxasg(Rg)]

10

x− bgs(Rg)
asg(Rg)

− 30 + 10log(50)

20 x ∈ (Vmaxasg(Rg),∞).

(8.6)

The inversion performed by this expression is showed in Fig. (8.2), where
one can see the real image before interpolation (a), the pre-compressed im-
age calculated for Rg = 3.3kΩ (b), the reconstructed image after the interpo-
lation stage (c) and PDF of the fully formed speckle area selected in (a).

The estimation is performed by minimizing the uniform norm of the dif-
ference between the Cumulative Distribution Function (CDF), FX(x), for the
Rayleigh distribution estimation and the empirical CDF, E(x|Rg)

R̂g = arg min
Rg

{||FX(x)− EX(x|Rg)||∞} . (8.7)
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Figure 8.2: (a) Real image before the interpolation stage, (b) pre-compressed image (Rg =
3.3kΩ), (c) Reconstructed image after the interpolation stage. (d) PDF of the fully formed
speckle area selected in (a) in the pre-compressed image.

We decide to minimize this norm since other measures, such as χ2 tests
or Kullback-Leibler divergence, need a good PDF estimate. A proper PDF is
difficult to obtain since the dynamic range of pre-compressed data is too
large and the histogram analysis becomes unfeasible. Instead of paramet-
ric approaches, a Kolmogorov-Smirnov test could be used since it is a gen-
eral nonparametric method for quantifying distance between the empirical
CDF and the CDF of the reference distribution. However, the Kolmogorov-
Smirnov test is biased when the parameter of the reference distribution is
also estimated. This norm provides a similarity measure between distribu-
tions which can be calculated in a non-parametric way.

8.4 Results

Our experiments were performed by using a data bank of 574 images (584×
145, 8 bits) images obtained from 4 patients by means of a clinical ma-
chine GE Vivid 7 echographic system (GE Vingmed Ultrasound A.S., Horten,
Norway). The images were obtained before the interpolation stage of the
acquisition process. All the fully formed speckle areas of the images were
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manually segmented4.

In this section we present two different experiments. First, we test the
performance of the estimators for synthetic images that are generated as
random Rayleigh distributed data with parameter σ. In order to choose the
σ parameter similar to real cases, the maximum and minimum mean value
(µmin and µmax respectively) of the fully formed speckle areas is calculated
for all the real images. The pre-compressed image is obtained for both ex-
treme values Rg = 0 and Rg = ∞. This way, the dynamic range of σ can be
estimated just knowing that the mean value of a Rayleigh random variable
is E{X} = σ

√
π
2 . Hence, dynamic range is σ ∈

[
µmin

√
2
π , µmax

√
2
π

]
. In our

case is
[
1.5 · 10−5, 8.7 · 10−4

]
.

In Fig. 8.3.(a), the relative error of σ, εσ = |σ−σ̂|
σ , is represented for Rg ∈

[0, 1000]kΩ and σ. Fig 8.3.(b) shows the uniform norm ||FX(x)−EX(x|Rg)||∞.
Note that the maximum relative error in the estimate is under 9%, which is
a very good estimation when we compare with the original PDF (see some
examples in Fig. 8.3.(c)). Additionally, the difference between empirical
and theoretical CDF is below 0.0049 which evidences the accuracy of the
inversion. In Fig 8.3.(d) the uniform norm is represented for the inverted
compression when the non-logarithmic regime is considered. Note that the
maximum error (0.1290) is 26 times higher than the obtained with the real-
istic compression and the minimum error is 0.0012, still higher. The impor-
tance of a realistic model for log-compressed data should remain evident in
the light of this result.

In the second experiment, all the data bank of real images was de-
compressed with the proposed method in order to see the consistence of
the parameters of the logarithmic amplifier through the whole acquisition.
This validation methodology was chosen since we have no pre-compressed
data yet, future work will deal with pre-compressed and compressed im-
ages. It is supposed that the logarithmic amplifier parameters are constant
through the whole acquisition, though may be different for each patient.
Results for each patient are shown in table 8.2. There one can see that the
low deviations of Rg and σ show stable values in the dynamic range of each
value [0,∞) and

[
1.5 · 10−5, 8.7 · 10−4

]
, respectively. This confirms that the

estimation method is consistent.

8.5 Conclusions

In this work we propose a realistic log-compressed law for ultrasound im-
ages based on a real device. This is the main contribution of this work and,
to the best of our knowledge, no similar approach has been considered in
the literature for this purpose.

4The authors would like to thank Marta Sitges, Etelvino Silva (Hospital Clinic; IDIBAPS;
Universitat de Barcelona, Spain), Bart Bijnens (Instituco Catalana de Recerca i Estudis
Avan cats (ICREA) Spain) Nicolas Duchateau (CISTIB - Universitat Pompeu Fabra, Ciber-
BBN,Barcelona, Spain) for providing the images



160 Conclusions

0

500

1000

2
4

6
8

x 10
−4

0

5

10

15

20

R
g

σ

ε σ

0

500

1000

2

4

6

8

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

R
g

σ

 ||
F

X
(x

) 
−

 E
X
(x

|R
g) 

|| ∞

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R
ay

le
ig

h 
P

D
F

s 
fo

r σ
 ±

 9
%

x

0

500

1000

2
4

6
8x 10

−4

0

0.05

0.1

R
g

σ

 ||
F

X
(x

) 
−

 E
X
(x

|R
g) 

|| ∞

(c) (d)

Figure 8.3: (a) Relative error of σ. (b) uniform norm for the realistic log-compression law.
(c) Some examples of Rayleigh PDFs for σ (black solid lines) and σ ± 9% (dashed lines). (d)
uniform norm for the ideal log-compression law.

Patient Rg σ · 10−5 ||FX − FE ||∞
1 3.43± 2.98kΩ 2.40± 0.343 0.09± 0.03

2 0.09± 0.03kΩ 1.80± 0.168 0.17± 0.02

3 0.17± 0.02kΩ 1.88± 0.222 0.13± 0.02

4 0.13± 0.02kΩ 2.80± 0.262 0.05± 0.01

Table 8.2: Results for de-compressed real images.

Additionally, a method for the estimation of the compression parame-
ters is proposed for recovery purposes. This method is based on the min-
imization of the uniform norm of the difference of the empirical CDF after
de-compressing the image, and the estimated Rayleigh CDF.

Results with synthetic images showed that the proposed method achieved
a proper Rayleigh parameter estimate with low errors. Additionally, the
error committed when the realistic model is not taken into consideration
demonstrates that the inverse transformation obtains very different PDFs.
Experiments with real images showed that the inversion method is consis-
tent through the whole acquisition process when parameters of the loga-
rithmic amplifier are supposed constant through the process.
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Anisotropic LMMSE denoising of MRI based on

statistical tissue models

Nature appears not to have intended that any
flower should be fertilized by its own pollen.

Christian Konrad Sprengel, 1750–1816.

Abstract– Linear Minimum Mean Squared Error Estimation is a
simple, yet powerful denoising technique within MRI. It is based
on the computation of the mean and variance of the data being
filtered according to a noise model assumed, which is usually
accomplished by calculating local moments over squared neigh-
borhoods. When these neighborhoods are centered in pixels cor-
responding to image contours, the estimation is not accurate
due to the presence of two or more tissues with different sta-
tistical properties. We overcome this limitation by introducing
an anisotropic Linear Minimum Mean Squared Error Estimation
(LMMSE) scheme: the gray levels of each tissue in the MRI volume
are modeled as a Gamma-mixture, such that we can discriminate
between the different matters to construct anisotropic neighbor-
hoods containing only one kind of tissue. The potential of the
Gamma distribution relies on its ability to fit both the Rician dis-
tribution traditionally used to model the noise in MRI and the
non-central Chi noise found in modern parallel MRI systems.

Adapted from: G. Vegas-Sánchez-Ferrero1, A. Tristán-Vega1, S. Aja-Fernández1,
M. Martı́n-Fernández1, C. Palencia2 and R. Deriche3, Anisotropic LMMSE Denoising
of MRI Based on Statistical Tissue Models, In IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI), Barcelona, Spain, pp. 1519–
1522, April 2012.

1Laboratorio de Procesado de Imagen, Univ. Valladolid.
2Departamento de Matemática Aplicada, Univ. Valladolid.
3Athena Project Team, INRIA Sophia Antipolis, France
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9.1 Introduction

Magnetic Resonance Imaging (MRI) is one of the medical imaging modali-
ties that exhibits the largest Signal to Noise Ratio (SNR). Even so, noise-
induced artifacts in MRI are not negligible, degrading image quality in both
qualitative and quantitative applications. On one hand, several new acqui-
sition technologies have appeared lastly, aiming to speed-up the acquisition
of MRI, and to reduce phase distortions originated by the strong sensitiz-
ing gradients used in Diffusion Weighted Imaging (DWI). These methods
are commonly referred to as Parallel Magnetic Resonance Imaging (pMRI),
and are based on the simultaneous acquisition of different parts of the sub-
sampled k-space by different receiving coils. A well-known side effect of this
methodology is the worsening of the final SNR, which is typically modeled
through the g-factor [AF11]. On the other hand, imaging modalities such
as DWI demand much larger amounts of data compared to anatomical MRI,
and are also noisier. As a consequence, direct procedures for boosting the
SNR in MRI, mainly the averaging of multiple independent repetitions of the
volume, are no longer practical.

Given these concerns, the need for a posteriori denoising schemes have
become clear to many authors. General purpose and Gaussian-based filters
have been used, though Rician-adapted techniques have been proven more
adequate for quantitative pMRI. They include the conventional approach
[McG93], Rician Maximum Likelihood estimation [Sij04], Expectation-Maxi-
mization (EM) [Mar95], wavelets [Now99], anisotropic diffusion [Kri09b],
and Unbiased Non-Local Means [WD07].

Among these approaches, the LMMSE estimator for Rician data first de-
scribed in [AF08a] has shown to outperform the most common techniques.
This method is a classical estimation theory approach: provided we can
characterize the expected value and covariance matrix of both the signal to
estimate and the noise, it obtains the best linear estimation (i.e. that with
minimum variance) of the data. These parameters may be easily inferred
from local moments computed as sample estimates inside image neighbor-
hoods. Besides, the linear nature of the filter allows a very fast implemen-
tation, and moreover it may be adapted to cope with noise models deviating
from Rician, mainly the non-central Chi (nc-χ) [Bri11], arising with certain
modern machinery and pMRI protocols [AF11].

An important limitation of LMMSE models relies on the way the local
moments are estimated. For those voxels corresponding to image edges, the
neighborhoods used typically comprise several different kinds of tissues.
Hence, the value estimated for the variance is artificially increased due to
the superposition of the effect of noise and the multi-modal distribution of
gray levels corresponding to each matter. As a consequence, edge voxels
are not properly denoised, since the noisy pattern is mixed-up with the fine
details (gradients).

In this work we propose to estimate the probabilistic response of each
tissue by Gamma distributions for pMRI protocols. These distributions pro-
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vide a good fitting as was demonstrated by Patnaik in [Pat49]. With this es-
timation, the probability of belonging to each tissue class can be obtained
and, thus, the local moments used for the calculation of the LMMSE can
be derived as the local moments conditioned to each of the tissues. As a
consequence, the estimation of local variance is not biased by the presence
of different tissues because only those pixels belonging to each tissue class
contribute to the calculation of moments resulting in an anisotropic denois-
ing. Results demonstrate that this approach outperforms isotropic LMMSE
methods [Bri11].

9.2 Methods

9.2.1 Background

In the case of multiple-coil acquisition, the composite magnitude image can
be obtained using Sums of Squares (SoS) as ML =

√∑L
l=1 |Sl|2, where each

coil signal is modeled as Sl = Al + Nl(σ
2
n) where Nl is a complex Gaussian

process with zero mean and variance σ2
n. Defining AT =

√∑L
l=1 |Al|2 and

assuming the noise components are independent and identically distributed
(IID), the magnitude signal ML follows a nc-χ distribution [Bri11]. When the
square of the magnitude signal is considered, M2

L, the PDF trivially becomes
a nc-χ square distribution (nc-χ2).

The LMMSE filter in [AF08a] and the extended version of [Bri11] rely on
the following expression

Â2
T = E{A2

T }+ CA2
TM

2
L
C−1
M2
LM

2
L
(M2

L − E{M2
L}}), (9.1)

where CM2
LM

2
L

is the covariance of M2
L and CA2

TM
2
L

is the cross-covariance.
The Characteristic function of a nc-χ2 is

ϕM2
L
(t) = E{eitM2

L} =
1

(1− 2itσ2
n)L

e
iA2
T t

1−2itσ2
n . (9.2)

Note that this result gives rise to a Gamma distribution in the absence of
the original signal (AT = 0). The PDF, fX , and Characteristic function, ϕX ,
of a Gamma distributed random variable, X, of parameters α and β are

fX(x|α, β) =
xα−1

βαΓ(α)
e
− x
β u(x), ϕX(t) =

1

(1− iβt)α
, (9.3)

where α, β > 0; Γ(x) is the Euler Gamma function.

This result was noticed by Patnaik in [Pat49], where the approximation
of nc-χ2 by a Gamma distribution, was firstly proposed. As an example, in
Fig. 9.1.a the Gamma PDF approximation is depicted for a set of synthetic
images of size 512 × 512 obtained by SoS with incremental AT ∈ [0, 100],
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Figure 9.1: (a) M2
L PDF for AT ∈ [0, 100], L = 8, and σn = 20. (b) Empirical PDF of a pMRI

T1 image (L = 8 and σn = 70) and the proposed GMM for 5 elements in the mixture.

number of coils L = 8, and σn = 20. Note that the theoretical PDF of the nc-
χ2 and the Gamma approach are almost indistinguishable and both follow
the empirical PDF of M2

L.

This result shows the potential of the Gamma distribution for fitting the
response of both the Rician distributed noise traditionally used to model
conventional MRI and nc-χ distributed noise found in modern parallel MRI
systems. We propose to estimate the probabilistic response of each tissue
by a Gamma distributions. This way, the local moments required for the
LMMSE can be calculated as the local moments conditioned to each of the
tissues. In order to find the distributions of different tissues of the image,
a Gamma mixture model is proposed and explained in the next section.

9.2.2 Gamma Mixture Model

The mixture of Gamma distributions (GMM) is calculated by means the EM
algorithm [Mar95] in the following way1: Let X = {xi}, 1 ≤ i ≤ N be a IID set
of samples (pixel intensities ofM2

L). The GMM considers that these variables
result from the contributions of J distributions: p(xi|Θ) =

∑J
j=1 πjfX(xi|Θj),

where Θ is a vector of the parameters of the GMM (πj ,Θj) and Θj are the
parameters of the PDF, αj and βj and

∑J
j=1 πj = 1 .

The method is applied in the following way:

1. A first estimate of the hidden variables is obtained by k-means. For
each cluster,j parameters Θ

(0)
j and π̂

(0)
j , are calculated from samples.

2. Bayesian Inference Step. Calculate γi,j as

p(Zi = j|xi,Θ(n)) = γi,j =
π

(n)
j p(xi|Θ(n)

j )

p(xi|Θ(n))
. (9.4)

1This method maximizes the log-likelihood function when some hidden discrete random
variables (RVs), Z = {Zi}, are introduced to the model. These RVs take values in {1, · · · , J},
their meaning is that the sample xi belongs to the distributions class j when Zi = j.
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3. Expectation-Maximization Step. The estimate for α̂j, β̂j and π̂j are
calculated by the following equations

log(α̂j)− ψ(α̂j) = log

(∑N
i γi,jxi∑N
i γi,j

)
−
∑N

i γi,j log xi∑N
i γi,j

(9.5)

π̂j =
1

N

N∑
i=1

γi,j , β̂j =
1

α̂j

∑N
i=1 γi,jxi∑N
i=1 γi,j

. (9.6)

4. Go to step 2 until ||Θ(n) −Θ(n−1)|| < Tolerance.

As an example of the GMM, in Fig. 9.1.b the GMM is fitted to a pMRI T1
of Fig. 9.3 acquired with L = 8 and σn = 70 and the proposed GMM for 5
elements in the mixture.

9.2.3 Anisotropic-LMMSE

In [Bri11] it is shown that for uncorrelated and independent Gaussian noises
the variance and covariance terms, CM2

L,M
2
L

and CA2
T ,M

2
L

can be calculated
as

CM2
L,M

2
L

= E{M4
L} − E{M2

L}2 (9.7)

CA2
T ,M

2
L

= E{A4
T }+ 2Lσ2

nE{A2
T } − E{A2

T }E{M2
L}, (9.8)

where the 2nd and 4th moments of AT can be derived by the calculation of
the same order moments of M2

L which is a nc-χ2 distribution

E{A4
T } = E{M4

L} − 4(E{M2
L} − 2σ2

n)(L+ 1)σ2
n − 4L(L+ 1)σ4

n (9.9)

E{A2
T } = E{M2

L} − 2Lσ2
n. (9.10)

These moments can be calculated by assuming local ergodicity as was done
in [AF08a, Bri11]. Hence, the expectation, E{·} can be replaced by local
spatial mean, 〈·〉, calculated in a neighborhood. Now, the LMMSE can be
calculated just as a function of the local moments of M2

L,
〈
M2
L

〉
and

〈
M4
L

〉
.

The calculation of the components for the mixture model provides im-
portant information related to the probability of belonging to each tissue
class. This information can be taken into account by calculating the condi-
tioned mean for each tissue class in the local neighborhood, η(x, y). When
the moments are calculated in this way, only those pixels belonging to each
tissue class contribute to the estimate of each local moment, resulting in a
more accurate estimate of local moments. This result can be considered as
a non isotropic way to calculate the local moments since each pixel is not
equally treated when the local moments are calculated.

By introducing the probability of belonging to each tissue class in the
calculation of the local moments, they are calculated as

〈
M2
L(x, y)

〉
=

J∑
j=1

P (Z = j)
〈
M2
L(x, y)|Z = j

〉
, (9.11)
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where the local moment for each class is

〈
M2
L|Z = j

〉
=

∑
(x′,y′)∈η(x,y)

M2
L(x′, y′)p(Z(x′, y′) = j|M2

L,Θ
(n))∑

(x′,y′)∈η(x,y)

p(Z(x′, y′) = j|M2
L,Θ

(n))
, (9.12)

with

p(Z(x′, y′) = j|M2
L,Θ

(n)) =
πj · p(M2

L|Θ
(n)
j )

p(M2
L|Θ(n))

. (9.13)

The weight P (Z = j), is the probability of belonging to the j-th tissue
class for the neighborhood of (x, y) and is calculated as

P (Z(x, y) = j) =

∏
(x′,y′)∈η(x,y)

p(Z(x′, y′) = j|M2
L,Θ

(n))

J∑
j=1

∏
(x′,y′)∈η(x,y)

p(Z(x′, y′) = j|M2
L,Θ

(n))

. (9.14)

9.3 Results

For the sake of validation, two experiments are considered to test the per-
formance of the anisotropic LMMSE in comparison to the isotropic nc-χ
LMMSE [Bri11]. In the first one, 3D synthetic T1 and T2 images from Brain-
Web MR [Col98] with intensity values in [0− 255] and 1 mm Slice thickness
were considered. A simulation of 8-coil system was performed for an in-
creasing σn ∈ [10, 100] in each coil [AF11]. The image was reconstructed by
using SoS. A neighborhood of 5 × 5 × 5 for both the proposed and the nc-χ
LMMSE filter in [Bri11] was used. The number of elements in the GMM was
5.

Results for the experiment are shown in Fig. 9.3, in the top row, the T1
image is shown as well as the noisy image (Fig. 9.3.b) for σn = 70. The de-
noised image obtained by the isotropic nc-χ LMMSE is shown in Fig. 9.3.c.
Note that this filter retains noise in regions with the presence of several
tissues. the proposed method is shown in Fig. 9.3.d where the better per-
formance in areas with more than one tissue can be appreciated at first
sight. An analogous conclusion can be obtained for T2 images represented
in the lower row of Fig. 9.3.

The quantitative evaluation was performed using the mean squared er-
ror (MSE) and the mean structural similarity2 (MSSIM) [Wan04]. Twenty
independent trials were considered for each value of σn. The mean of both
measures is represented in columns Fig. 9.3.e-f for T1 and T2.

Though the proposed method outperforms the isotropic one for both
measures, for the MSE both methods do not exhibit a big difference. This
is so because homogeneous areas are equally treated by both methods and

2This gives a similarity value in [0, 1].
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Figure 9.2: (a) Noisy (SNR=15db) (b) nc-χ LMMSE (c) Proposed.

pixels in the edge of different tissues are not explicitly reflected by the
MSE. Nevertheless, for the MSSIM measure, the better performance of the
anisotropic filter becomes evident as we increase σn. This result confirms
the ability for detecting the structures of the image leading to a better esti-
mate of local moments and, thus, overcoming the main problem of LMMSE
methods.

For the second experiment, a 15 gradients DWI phantom presented in
[TV09] was considered. A simulation of 8-coil system was performed for a
SNR=15 dB. In Fig. 9.2 the fractional anisotropy colored by orientation is
represented. The zoomed area shows a better definition of areas with differ-
ent orientations. Quantitatively, the MSE was calculated for the mean FA;
noisy: 0.0271, nc-χ LMMSE: 0.0124, and the proposed: 0.0055. Addition-
ally, the MSE of the trace of the diffusion tensor gives the following results;
noisy: 7.38 ·10−6, nc-χ LMMSE: 8.23 ·10−7, and the proposed: 5.7 ·10−7. Both
measures show the better performance of the proposed method for the cal-
culation of the diffusion tensor.
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(a) Original (b) Noisy (c) nc-χ LMMSE (d) Proposed
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Figure 9.3: Quantitative comparison with synthetic T1 (first row) and T2 (second row) for
increasing σn.

9.4 Conclusions

An anisotropic LMMSE method is proposed. The anisotropy is achieved by
applying statistical models to the tissues based on a GMM model. This
mixture have proved to properly fit the probabilistic behavior of noise in
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conventional MRI (Rician) and pMRI (nc-χ). Experiments have shown that
the inclusion of statistical models lead to a better estimate of local moments
by considering the local moments conditioned to the probability of belonging
to each tissue class.
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