* k% DRAFT * k%

Draft date: 8/26/91
Audio Interchange File Format AIFF-C
Arevision to include compressed audio data
Apple Computer, Inc.
DRAFT NOTES

This is the same draft as the 9/30/90 document. Although it is still listed as "draft,” a number of users
including Apple Computer have been using this format. Recently, we have assembled a number of
changes to the document that are in process, and therefore we will continue calling this adraft copy until
those changes are in place at which time an official release can be made. It isimportant to note that the
changes are expected to be informational only, and do not change the definitions. They may, however,
affect recommended practices. For example, we will be providing a code example as to how to convert the
extended precision numbers used to specify frequency, and a'so may provide recommeded practice asto
conversion from floats to integer and back in relation to audio useage. Since thisis now an "external
document,” the confidentiality notices in the 9/30/90 draft have been removed.

Why a new format?

AIFF-C is being defined because AIFF does not allow for compressed audio data. AIFF-C adds the
ability to store compressed audio datain a standard manner. Naturally, AIFF-C aso allows the storage of
uncompressed audio data. The"C" in AIFF-C signifiesits extension to handle compressed audio data.

Differences between AIFF and AIFF-C

The differences between the origina AIFF and AIFF-C were kept to a minimum. Applications which
currently support AIFF should be easily upgradable to AIFF-C.

The following changes have been made from AIFF:

» The FORM identifier was changed from 'AlIFF to 'AIFC'. This distinguishes AIFF-C files from AIFF
files. Existing AIFF programs, until they are upgraded, will simply ignore AIFF-C files. See the
explanation below for this change.

The Common Chunk has been extended to include a compression type ID and a compression type name.
AlIFF-C isthus capable of storing compressed audio data generated from any compression algorithms.

The Sound Data Chunk can contain compressed audio data. The Chunk format has not been modified.

The Sound Accelerator (Saxel) Chunk isnew. It isdesigned to eliminate initial artifacts caused by the
de-compression algorithms when playback begins at arandom point defined by a Marker.

The Format Version Chunk isnew. This Chunk is designed to provide a smooth transition for potential
future upgrades to the AIFF-C specification.

Apple Computer, Inc. *** Draft 08/26/91*** i

Transition from FORM AIFF to FORM AIFC

Renaming the FORM type from AIFF to AIFC was done to minimize confusion for the end user. Let's
examine what would happen otherwise: A user running an application which stored compressed audio in
AIFF-C format would save his compressed audio data as an AIFF File type (viathe Save As ... dialog
box). He would then run another application which reads AIFF, but not AIFF-C, and the application
would not be able to play his sound, or it may even crash. By making explicit the difference between the
file types, the user would not experience this problem. The user till won't be able to transfer compressed
audio data to the second application, but at least he will know why.

Here are the guidelines which devel opers should follow to aid the transition from AlFF to AIFF-C:

1. Applications which currently read FORM AIFF files should a so be able to read FORM AIFC files.

2. Applications which currently create FORM AIFF files should maintain this capability for now, but
should offer the FORM AIFC format as the default option to the user.

3. New applications which have not supported AlFF should strongly consider supporting only AIFF-C,
at least for the creation of audio files.

Pearls of Wisdom

From experience gathered over the period of time since the original AlFF has been released, we offer the
following advice to those developers who are beginning to implement either AIFF or AIFF-C. For the
purposes of this section only, we will refer to both AIFF and AIFF-C as simply AIFF.

Chunk Ordering

Remember that there is no order imposed on the Chunks! They may appear in any order in an AIFFfile.
It may seem logical to place the Common Chunk at the beginning, followed by the other Chunks and
terminated with the large Sound Data Chunk, but thisis not arequirement. Y our application which reads
an AIFF file should be designed to get a Chunk, identify it, then process it with no supposition as to
which Chunk it isuntil it has been identified.

Modifying Chunks

If your application allows modification of a Chunk, you must also take on the responsibility of updating
other Chunks which are based on the modified Chunk. An example is cutting some sound data from the
Sound Data Chunk - if there are Markers which pointed to data which was removed, those Markers should
also be deleted (some user interaction may be appropriate in certain cases). Also, other Markers may need
to be re-calculated to preserve their position to the correct (shifted) sample frames.

BEWARE: If your application allowed an AIFF file to be edited (modified) and if there are Chunksin the
file which you do not recognize, you must discard those unknown Chunks when you save the file!!!
(Thisisamodification of the guideline stated in the previous AIFF specification.) Another application
which uses those unrecognized Chunks could be serioudly affected if those Chunks depend on the Chunks
which you modified. Of course, if your application is simply copying the AIFF file without
modifications, then it should also copy the unrecognized Chunks. We recommend that your application
understand each and every Chunk which islisted in this specification to handle this situation in the best
possible way.

Apple Computer, Inc. *** Draft 08/26/91*** i

Registering New Compression Types

You must register your compression type with Apple to establish an official compressionType and
compressionName. Y ou should also describe the format and usage of the Sound Accelerator Chunk for
your compression type. By registering thisinformation, other developers will know about and be able to
include your compressed sound format in their applications. This will allow end users the ability to
transfer compressed audio data between applications - which is the goal of this specification. Please see
appendix B on how to contact Apple to register your compression type.

Number of Sample Frames

The clearest indication of the number of sample frames contained within the file is obtained from the
numSampl eFrames parameter in the Common Chunk and not the ckDataS ze parameter in the Sound Data
Chunk. The ckDataSze parameter in the Sound Data Chunk is padded to include the fields which follow it
in addition to the actual sound data but does not include the zero pad byte at the end if the total number of
sound data bytesisodd. Simple!

Remember the Pad Byte!

Each Chunk must contain an even number of bytes. For those Chunks whose total contents would yield
an odd number of bytes, a zero pad byte must be added at the end of the Chunk. This pad byte is not
included in ckDataS ze, which indicates the size of the datain the Chunk. It helpsto keep thisin mind as
you seek through an AIFF file to get to the next Chunk.

Format Version Chunk

The section entitled "When reading an AIFF-C fil€" in the Format Version Chunk is of specia importance.

BEWARE: Obsolete format version of AIFF-C data in existence

A CD-ROM has been released to developers entitled the "Macintosh System Softwre 7.0 - May 1990
Alpha Development Release”. A file named "JLG MacWorld" existsin the MultiTrack folder inside the
Goodiesfolder. The"JLG MacWorld" file was created with a draft version of the AIFF-C specification
and it isNOT compatible with the most recent AIFF-C specification. Its FORM type is 'AIFS' (as
opposed to the correct 'AIFC") and it does not contain a Format VVersion Chunk. Y our applications should
NOT recognizethisfileasavaid AIFF-C file. Do not use thisfile as acompatibility test for your AIFF-C
applications.

Apple Computer, Inc. *** Draft 08/26/91*** i

Table of Contents

Section
1.0 Introduction L e e e 1
20 FileStructure e e e 2
30 FormatVersonChunk 6
40 CommonChunk 9
50 SoundDataChunk 11
6.0 Marker Chunk e e 14
70 CommentsChunk e 16
8.0 SoundAccderator (Saxel) Chunk oL 18
9.0 InstrumentChunk e 19
10.0 MIDIDataChunk e 22
11.0 AudioRecordingChunk 23
12.0 Application SpecificChunko 24
13.0 Text Chunks- Name, Author, Copyright, Annotation 25
140 Chunk Precedence. e e 27
Appendix A FORMAIFCExamples. 28
Appendix B Sending CommentstoApple L. 32
Appendix C Compressed Audio EncodingFormat 33
Appendix D Sound Accderator (Saxel) Chunk 36

Apple Computer, Inc. *** Draft 08/26/91***

Audio Interchange File Format AIFF-C

A Sandard File Format for Audio Data
Apple Computer, Inc.
Draft: July 30, 1990

1.0 INTRODUCTION

The Audio Interchange File Format AIFF-C provides a standard for storing uncompressed or compressed
sampled sounds. The format can store monaura or multichannel sampled soundsin arange of sample rates
and sample widths. The format is extensible to handle new compression types and application-specific
data.

AIFF-C is based on Audio IFF (AIFF) which conforms to the "EA IFF 85" Standard for Interchange
Format Files developed by Electronic Arts.

AIFF-C isdesigned for interchange, although application designers should find it flexible enough to use as
an everyday data storage format aswell. If an application uses a different storage format, it can convert to
and from the AIFF-C format defined here. This will facilitate the sharing of sound data between
applications and across various computer platforms.

Data types

A C-like language will be used to describe data structuresin this document. The data types used are listed
below:

char: 8 bits, signed. A char can contain more than just ASCII characters. It can contain any
number from -128 to 127 (inclusive).
unsi gned char: 8 bits, unsigned. Contains any number from zero to 255 (inclusive).

short: 16 bits, signed. Contains any number from -32,768 to 32,767 (inclusive).

unsi gned short: 16 bits, unsigned. Contains any number from zero to 65,535 (inclusive).

| ong: 32 bits, signed. Contains any number from -2,147,483,648 to 2,147,483,647
(inclusive).

unsi gned | ong: 32 bits, unsigned. Contains any number from zero to 4,294,967,295 (inclusive).

ext ended: 80 bit IEEE Standard 754 floating point number (Standard Apple Numeric
Environment [SANE] data type Extended).

pstring: Pascal-style string, one byte count followed by text bytes followed—when needed—

by one pad byte. The total number of bytesin a pstring must be even. The pad byteis
included when the number of text bytesis even, so the total of text bytes + one count
byte + one pad byte will be even. This pad byte is not reflected in the count.

| D 32 hits, the concatenation of four printable ASCII character in therange' ' (SP, 0x20)
through '~' (OX7E). Spaces (0x20) cannot precede printing characters; trailing spaces
are allowed. Control characters are forbidden. Upper/lower case is significant, that is,
IDs are compared using asimple 32-bit equality check.

OSType: 32 hits. A concatenation of four characters, as defined in Inside Macintosh, vol |1.
Upper/lower case is significant, that is, OSTypes are compared using a simple 32-bit
equality check.

Constants

Confidential *** Draft: 7/30/90 *** 1

Decimal values are referred to as a string of digits, for example 123, 0, 100 are all decimal numbers.
Hexadecimal values are preceded by a 0x, e.g. 0OXOA12, Ox1, Ox64.

Data Organization
All datais stored in Motorola 68000 format. Numbers are stored high-byte first, as follows:

7 0
char |msb Isb |
15 8 7 0
short |msb byte 0 | byte 1 Isb|
31 24 23 16 15 8 7 0
long |msb byte 0 | byte 1 | byte 2 | byte 3 Isb]
low address P high address

Referring to Audio Interchange File Format AIFF-C

The official name for this standard is Audio Interchange File Format AIFF-C. If an application needs to
present the name of thisformat to auser, such asina"Save as..." dialog box, the name can be abbreviated
to AIFF-C or Audio IFF-C.

2.0 FILE STRUCTURE

The "EA IFF 85" Standard for Interchange Format Files defines an overall structure for storing datain
files. AIFF-C conforms to the "EA IFF 85" standard. This document recaps those portions of "EA |FF
85" that are germane to AIFF-C. For a more complete discussion of "EA IFF 85", please refer to the
documents "EA IFF 85" Sandard for Interchange Format Files and A Quick Introduction to IFF.

An"EA IFF 85" fileis built up from a number of chunks of data. Chunks are the building blocks of "EA
IFF 85" files. A chunk consists of some header information followed by data:

ckiD } .
ckDataSize header info
A chunk. data data bytes

A chunk can be represented using our C-like language in the following manner:

Confidential *** Draft: 7/30/90 *** 2

typedef struct {

ID ckl D /* chunk 1D */
| ong ckDat aSi ze; /* chunk data size, in bytes */
char ckDat a[]; /* data */

} Chunk;

ckiD describes the format of the chunk's data portion. A program can determine how to interpret the chunk
data by examining ckiD.

ckDataSze is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckiD and ckDataS ze.

ckData is the data stored in the chunk. The format of this data is determined by ckiD. If the datais an odd
number of bytes in length, a zero pad byte must be added at the end. The pad byte is not included in
ckDataSze.

Note that an array with no size specification (e.g. char ckbDat a[];) indicates avariable-sized array in our
C-likelanguage. Thisdiffersfrom standard C.

An AIFF-Cfileisacollection of anumber of different types of chunks. There isa Common Chunk which
contains important parameters describing the sampled sound, such asits length and samplerate. Thereisa
Sound Data Chunk that contains the actual audio samples. There are severa other optional chunks that
define markers, list instrument parameters, store application-specific information, etc. All of these chunks
are described in detail in later sections of this document.

The chunksin a AIFF-C file are grouped together in a container chunk. "EA IFF 85" defines a number of
container chunks, but the one used by AIFF-Ciscaled aFORM. A FORM has the following format:

typedef struct {

ID ckl Dy /* "FORM */
| ong ckDat aSi ze;

ID f or nirype; [* "AIFC */
Chunk chunks[];

} For mAl FCChunk;
ckiD isalways'FORM'. Thisindicates that thisisa FORM chunk.

ckDataSze contains the size of data portion of the 'FORM' chunk. Note that the data portion has been
broken into two parts, formType and chunkg[].

formType describes what's in the 'FORM' chunk, much like a Mac filetype. For AIFF-C files, formType
is'AIFC'. Thisindicates that the chunks within the FORM pertain to sampled sound according to this
AIFF-C standard. A FORM chunk of formType 'AIFC' is called a FORM AIFC.

chunks are the chunks contained within the FORM. These chunks are called local chunks since their own
ckiD's are local to (i.e. specific to) FORM AIFC. A FORM AIFC along with itslocal chunks make up an
AIFF-Cfile.

Confidential *** Draft: 7/30/90 *** 3

Here's an example of a simple AIFF-C file. It consists of a file containing single FORM AIFC Chunk
which contains two local chunks, a Common Chunk and a Sound Data Chunk. (Please refer to Appendix A
for more detailed examples.)

FORM AIFC | 'FORM'
176464
'‘AlIFC

Common Chunk '‘COMM'
50

Sound Data 'SSND'
Chunk 176358

Other Chunks | '

There are no restrictions on the ordering of local chunks within a FORM AIFC.

On an Apple Il, the FORM AIFC is stored in a ProDOS file. The file type is 0xD8 and the aux type is
0x0000. AIFF versions 1.2 and earlier used file type OXCB, which is incorrect. Please see the Apple Il
File Type Note for file type 0xD8 and aux type 0x0000 for strategies on dealing with this incons stency.

On aMacintosh, the FORM AIFC is stored in the data fork of an AIFF-C file. The Macintosh file type of
an AIFF-Cfileis'AIFC'. Thisisthe same as the formType of the FORM AIFC.

Macintosh or Apple Il applications should not store any information in the resource fork of an AIFF-Cfile,
as this information might not be maintained by other AIFF-C editors. Applications can use Application
Secific Chunks, defined later in this document, to store extra information specific to their application.

On an operating system that usesfile extensions, such asMS-DOS or UNI X, it is recommended that AIFF-
C file names have a".AFC" extension.

Local Chunk Types

The formats and ckiDs of the local chunk types found within a FORM AIFC are described in the following
sections.

The Common Chunk isrequired in aFORM AIFC. If the sampled sound has greater than zero length, then
the Sound Data chunk is required. All other chunks are optional. All applications that use FORM AIFC
must be able to read the required chunks and can choose to selectively ignore the optional chunks.

Dealing with Unrecognized Local Chunks

When reading an IFF file, your program may encounter local chunk types that it doesn't recognize,
perhaps extensions defined after your program was written. In a FORM AIFC, this situation aso applies
to Application-Specific Chunks with unrecognized application signatures. (The application signature acts
as achunk subtype.) Clearly your program cannot process the contents of unrecognized chunks.

So what should your program do when it encounters unrecognized chunksin an IFF FORM? The safest
thing is to simply discard them while reading the FORM. If your program copies the FORM without

Confidential *** Draft: 7/30/90 *** 4

edits, then it 's nicer (but not necessary) to copy unrecognized chunks, too. But if your program modifies
the dataiin any way, then it must discard all unrecognized chunks. That's because it can't possibly update
the unrecognized data to be consistent with the modifications.

To insure that this standard remains usable by everyone, Apple Computer, Inc. will act as the central

repository of new chunk types for FORM AIFC. If you have suggestions for new chunk types, Appleis
happy to listen! Please refer to Appendix B for instructions on how to send commentsto Apple.

Confidential *** Draft: 7/30/90 *** 5

3.0 FORMAT VERSION CHUNK

The Format Version Chunk contains a date field to indicate the format rules for an AIFF-C specification.
Thiswill enable smoother future upgrades to this specification.

Format Version Chunk
The format for the data within a Format V ersion Chunk is shown below.

#define AIFCVersionl 0xA 2805140 /* Version 1 of AIFF-C */
/¥ thisis 2726318400 in decimal */

typedef struct {

ID ckl D ; /* 'FVER */
| ong ckDat aSi ze ; /* 4 */
unsi gned long tinmestanmp ; /* Al FCVersi onl */

} For mat Ver si onChunk;

ckiD is aways 'FVER'.

ckDataSze is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckiD and ckDataSze. For this Chunk, ckDataSze has avalue of 4.

timeStamp indicates when the format version for the AIFF-C file was created. Units are the number of
seconds since January 1, 1904. (This time convention isthe one used by the Macintosh. For procedures
that manipulate the time stamp, see The Operating System Utilities chapter in Inside Macintosh, vol 11).
For aroutine that will convert thisto an Apple Il GS/OS format time, please see Apple Il File Type Note
for filetype OxD8, aux type 0x0000.

Only Apple may alter the value of timestamp.

Do not confuse the format version with the creation date of the file. The format version refersto the rules
embodied in this, or future, documents which specify how an AIFF-C file is arranged. When your
application checks for compatibility with the format version chunk, do not do arange check (e.g. less than
or equal to thisdate). You must do an exact comparison of dates to know for certain that your application
can correctly read and process a specific AIFF-C file. Do not modify the timestamp value. If you have a
request for a new format version, please submit it to Apple Computer - see appendix B on how to contact
Apple. Through this mechanism where only Apple Computer can issue official AIFF-C releases with new
timestamps, we can ensure the maximum compatibility of AIFF-C files across applications.

The Format Version Chunk is required. One and only one Format Version Chunk must appear in a
FORM AIFC.
Why the Format Version Chunk was added

"Geg, if we had had aVersion Chunk in AIFF, we wouldn't have had to change the FORM type for AIFF-
C." - Anonymous (circa 1990)

From the above proverb, we gained the wisdom to include a Format Version Chunk in the AIFF-C

specification. The philosophy isthat the Chunk names which you recognize will contain information in the
format you are familiar with. If you don't find a Chunk which your application requires, then examine the

Confidential *** Draft: 7/30/90 *** 6

Format Version Chunk to determine if the file is corrupted or if there is a mismatch between your
application and thefile. Inany case, you'll be able to give a more enlightened message to the user.

See how the following steps simplify your life (and ours) to determineif aFORM AIFC is usable;
When reading an AIFF-C file

1. First find the FORM AIFC field. If you don't find it, issue an aert like "This file doesn't contain an
AIFC standard audio recording.”, then exit from these directions.

2. Try tofind al the chunks which are critical to your application (probably COMM and SSND, but we can
imagine an app that only needs the COMM chunk, e.g. to determine the playback duration).

If found, those familiar chunk IDs indicate that the chunk contents are in the format you expect. Y ou're
golden. Exit these directions.

3. If not found, don't crash yet. Instead, check for the Format Version Chunk.

If you can find it and it does not contain a date which you recognize, issue an aert like "This file
contains an unrecognized version of the AIFC standard.” You may also want to indicate the file's
format version and the format versions which your application recognizes.

Otherwise, issue an alert like "Thisfile seems to be malformed.” Maybe say which Chunks are missing.

Remember

* In order to survive interchange and format evolution, reader programs must be robust about chunk order,
missing chunks, and unexpected chunks.

» Contrary to the original AIFF spec, when a program encounters an unrecognized chunk, it should just
skip it. Do not copy it to anew, edited file. Thisisthe general rule in IFF because there's no way to
maintain the integrity of unrecognized chunks when the surrounding datais edited.

How the Format Version Chunk will help potential future upgrades

If and when we design evolutionary changes to the file format, we will try to make the new representation
backward compatible (e.g. just add new chunk types). If we must change the format of existing data, then
we will change the relevant Chunk IDs to a new name. For example, let's say that the INST Chunk needs
to be upgraded to have more than 2 loop points. In this case, we would replace the INST Chunk with a new
Chunk, call it "LOOP". In the transition time between widespread adoption of the new LOOP Chunk, a
FORM could contain both the old INST Chunk and the new LOOP Chunk. Applications which know about
the new LOOP Chunk would be able to process it correctly, while preserving the INST Chunk for other
applications. Applications which do not use the INST or LOOP Chunks are unaffected. Applications which
need the old INST Chunk can still use it, but should upgrade to the new LOOP Chunk since there is no
longer any guarantee that other (editing) applications will preserve the old INST Chunk.

Here's how we would have upgraded AIFF to handle compressed audio, if we had had a Format Version
Chunk aready in AIFF:

» Compression isoptional. What followsis only for the compressed case.
» Don't change the format of the COMM Chunk. Existing programs can till read it.

Confidential *** Draft: 7/30/90 *** 7

» Add a"Compression Descriptor” Chunk containing the 4-letter compression type code and the
compression name string. (The codeisfor programs. The string is for aerts when the codeis
unrecognized.)

» Replace the SSND Chunk with a Compressed Sound-Data Chunk "CSND". (Existing programs will
ignoreit.)

» Changethe Format Version date (for the sake of alerts).

» Add the optional Saxel Chunk.

We chose to change the FORM type from AIFF to AIFC because, lacking the Format Version Chunk,

existing applications would not be able to issue a helpful error message. Some existing applications may
even crash if they did not find the SSND Chunk.

Confidential *** Draft: 7/30/90 *** 8

40 COMMON CHUNK
The Common Chunk describes fundamental parameters of the sampled sound.

#defi ne Conmonl D ' COVM /* ckl D for Common Chunk */

typedef struct {

I D ckl b /[* 'COMWM */

| ong ckDat aSi ze;

short nunmChannel s; /* # audi o channels */

unsi gned | ong nunBSanpl eFr anes; /* # sanple frames = sanpl es/channel */
short sanpl eSi ze; /* # bits/sample */

ext ended sanpl eRat e; /* sanpl e_franes/sec */

ID conpr essi onType; /* conpression type |ID code */

pstring conpr essi onNane; /* human-r eadabl e conpression type nane */

} CommonChunk;

ckiD is dways 'COMM'. ckDataSze is the size in bytes of the data portion of the chunk. It does not
include the 8 bytes used by ckiD and ckDataSze. For the Common Chunk, ckDataSze is 22 + the size of
the pstring. (The pstring includes a pad byte when needed to fill out to an even number of bytes.)

numChannels contains the number of audio channels for the sound. A value of 1 means monophonic
sound, 2 means stereo, and 4 means four channel sound, etc. Any number of audio channels may be
represented.

The actual sound samples are stored in another chunk, the Sound Data Chunk, which will be described
shortly. For multichannel sounds, single sample points from each channel are interleaved. A set of
interleaved sample pointsis called asample frame. Thisisillustrated below for the stereo case.

sample sample sample
frame 0 frame 1l frame N

chllch2jchifch2 ¢ ° o chl]|ch2

|:| = one sample point

For monophonic sound, a sample frame is a single sample point.

Confidential *** Draft: 7/30/90 *** 9

For multichannel sounds, the following conventions should be observed:

channel
1 2 3 4 5 6
stereo left right
3 channel left right center
front front rear rear

quad left right left right

4 channel left center right surround
left : right

6 channel left center center right center surround

numSampleFrames contains the number of sample frames in the Sound Data Chunk. Note that
numSampleFrames is the number of sample frames, not the number of bytes nor the number of sample
points in the Sound Data Chunk. For uncompressed sound data, the total number of sample pointsin the
fileis numSampleFrames* numChannels.

sampleSze is the number of bitsin each sample point of uncompressed sound data. It can be any number
from 1to 32. Theformat of a sample point will be described in the next section, the Sound Data Chunk.
For compressed sound data, sampleS ze indicates the number of bits in the original sound data before
compression.

sampleRate is the sample rate at which the sound is to be played back, in sample frames per second.

compressionType is used by programs to identify the compression algorithm, if any, used on the sound
data. compressionName is used by people to identify the compression algorithm. Use compressionType
to select the decompression routine. Use compressionName to display a human-readable message when it
you don't have the needed decompression routine. Remember to pad the end of compressionName with a
zero byte if the pstring length is not an even number of bytes, but do not include the pad byte in the count.

Theinitia values are:

English
compressionType compressionName meaning
'NONE' "not compressed” uncompressed, that is, straight digitized samples
'ACE2' "ACE 2-to-1" 2-to-1 11GS ACE (Audio Compression / Expansion)
'ACES8' "ACE 8-t0-3" 8-t0-3 I1GS ACE (Audio Compression / Expansion)
'MAC3 "MACE 3-to-1" 3-to-1 Macintosh Audio Compression/ Expansion
'MACE' "MACE 6-to-1" 6-to-1 Macintosh Audio Compression/ Expansion

Note: compressionType is a standard 32-bit ID value that identifies the compression algorithm. In
contrast, the compressionName's val ue can be country-specific, e.g. stored in French or Spanish.

Compression types are alocated by Apple. Other third party compression schemes are welcome, but you
must reserve the compressionType ID with Apple. Please see Appendix B.

The Apple 11GS ACE (Audio Compression / Expansion) and the Macintosh Audio Compression /
Expansion encoding schemes are documented in appendix C.

One and only one Common Chunk must appear in every FORM AIFC.

Confidential *** Draft: 7/30/90 *** 10

5.0 SOUND DATA CHUNK
The Sound Data Chunk contains the actual sample frames.

#defi ne SoundDat al D ' SSND /* ckl D for Sound Data Chunk */
typedef struct {

ID ckl Dy /* '"SSND */
| ong ckDat aSi ze;

unsi gned long offset;
unsi gned | ong bl ockSi ze;
char soundDat a[| ;

} SoundDat aChunk;

ckiD is always 'SSND'.

ckDataS ze is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckiD and ckDataSze. It doesinclude the 8 bytes taken by offset and blockSze. If soundData[] contains an
odd number of bytes, a pad byte with avalue of zero is added at the end to preserve an even length for this
Chunk. This pad byte, if present isnot included in ckDataSze. To avoid confusion, the actual number of
sample frames should aways be obtained from the numSampleFrames parameter in the Common Chunk.

offset determines where the first sample frame in the soundData starts. offset is in bytes. Most
applications won't use offset and should set it to zero. Use for a non-zero offset is explained in the Block-
Aligning Sound Data section below.

blockSze is used in conjunction with offset for block-aligning sound data. It contains the size in bytes of
the blocks that sound datais aligned to. As with offset, most applications won't use blockS ze and should
set it to zero. See also Block-Aligning Sound Data, below.

soundData contains the sample frames that make up the sound. The number of sample frames in the
soundData is determined by the numSampleFrames parameter in the Common Chunk. If soundData]]
contains an odd number of bytes, azero pad byte is added at the end (but not used for playback).

Linear Sound Data (not compressed)

Each sample point in a sample frameisalinear, 2's complement value. Sample points are from 1 to 32 bits
wide, as determined by the sampleS ze parameter in the Common Chunk.

Each sample point is stored in an integral number of contiguous bytes. One to 8 bit wide sample points are
stored in one byte; 9 to 16 bit wide sample points are stored in two bytes; 17 to 24 bit wide sample points
are stored in 3 bytes; and 25 to 32 bit wide samples are stored in 4 bytes. When the width of a sample
point is less than a multiple of 8 bits, the sample point data is left justified (using a shift-left instruction),
with the remaining bits zeroed. The remaining low-order bits at the right end are set to zero.

Confidential *** Draft: 7/30/90 *** 11

As an example, the 12-bit sample, binary 101000010111, is stored left justified in two bytes:

| I B B R B N | I S EESE S B B
10100 O0O01jJ01 12 1 0 0 0O
- - a—p

12-hit sample point is left justified right-most 4 bits
are zero padded

Sample Frames

The sample points within a sample frame are packed together as described in the section on the Common
Chunk, above. Sample frames are stored contiguously in order of increasing time. There are no pad bytes
between samples or between sample frames.

Compressed Sound Data
The soundData is compressed according to the compressionType parameter in the Common Chunk.

Appendix C describes the encoding format for the existing Apple Computer audio compression utilities
and the use of Marker and Saxel Chunks (see below) with the various compression types. Developers
wishing to include their own compression type should contact Apple (see appendix B), and provide
documentation similar to that contained in appendix C. Some applications may not need to understand the
encoding format of compressed audio information and may only need to copy the sound data for
interchange purposes. Applications which desire to manipulate the compressed sound data, such as an
editing application, will need to observe the encoding schemes used by the compressed sound types they
wish to edit.

Block-Aligning Sound Data
There may be some applications that, to enable real time recording and playback of audio, wish to align the
sampled sound data on a fixed-size disk block. This can be accomplished with the offset and blockSze

parameters, as shown below.

soundDat a[] in SSND chunk

unused sample frames unused
-f— offset - -—— numSampleFrames sample frames —
bytes
|- blocksize bytes | | |
disk block N - 1 disk block N disk block N + 1 disk block N + 2

Block-aligned sound data
In the above figure, the first sample frame starts at the beginning of disk block N. Thisisaccomplished by
skipping the first offset bytes of soundData. The soundData array may also extend beyond valid sample
framesin order to end on a disk block boundary.

blockS ze specifies the size in bytes of the alignment block. A blockSze of zero indicates that the sound
data does not need to be block-aligned. Applications that don't care about block alignment should set

Confidential *** Draft: 7/30/90 *** 12

blockS ze and offset to zero when writing AIFF-C files. Applications that write block-aligned sound data
should set blockS ze to the appropriate block size. Applications that modify an existing AIFF-C file should
try to preserve alignment of the sound data, although thisis not required. If an application doesn't preserve
alignment, it should set blockSze and offset to zero. If an application needs to realign sound data to a
different sized block, it should update blockS ze and offset accordingly.

The Sound Data Chunk is required unless the numSampleFrames field in the Common Chunk is zero. A
maximum of one Sound Data Chunk can appear in a FORM AIFC.

Confidential *** Draft: 7/30/90 *** 13

6.0 MARKER CHUNK

The Marker Chunk contains markers that point to positions in the sound data. Markers can be used for
whatever purposes an application desires. The Instrument Chunk, defined later in this document, uses
markers to mark loop beginning and end points, for example.

Markers

A marker has the following format.

t ypedef short Mar ker | d;

typedef struct {

Mar ker | d id; /* must be >0 */
unsi gned | ong position; /* sanple franme nunber */
pstring mar ker Nane;

} Marker;

id isanumber that uniquely identifies the marker within a FORM AIFC. Theid can be any positive non-
zero integer, aslong as no other marker within the same FORM AIFC hasthe sameid.

The marker's position in the sound datais indicated by position . Markers conceptually fall between two
sample frames. A marker that falls before the first sample frame in the sound datais at position zero, while

amarker that falls between the first and second sample frame in the sound data is a position 1. Note that
the units for position are sample frames, not bytes nor sample points.

Uncompressed Sample Frames

A A A

position 0 position 5 position 12

For compressed sound data, the marker's position is based on expanded (uncompressed) sound data, and
not the position of the compressed sample frame. This alows fine-grained resolution for placing marker
points exactly where they are needed (especially important for loop points). A single byte of compressed
sound data may expand into many bytes of expanded sound data, preventing high resolution of markers
based on compressed data. The mapping of compressed sound data sample frames to expanded sound
data sample framesis easily done for the existing Apple audio compression algorithms. These mappings
are described in appendix C.

We recommend that audio editor programs update the markers when the audio datais edited.

markerName is a pstring containing the name of the mark. Remember to include a pad byte when needed to
round out a pstring to an even number of bytes.

Note: Some "EA IFF 85" files store C-style strings (text bytes followed by a null terminating character)
instead of pstrings. AIFF-C uses pstrings because they are more efficiently skipped over when
scanning through chunks. A program can skip over apst ri ng by adding the string count and the pad size
to the address of the first character. C strings require that each character in the string be examined for the
null terminator.

Confidential *** Draft: 7/30/90 *** 14

Marker Chunk Format
The format for the data within aMarker Chunk is shown below.

#defi ne Mar ker1 D ' MARK' /* ckl D for Marker Chunk */

typedef struct {

ID ckl D /* 'MARK */
| ong ckDat aSi ze;
unsi gned short numvar ker s;
Mar ker mar kers[];

} Mar ker Chunk;

ckiD is aways 'MARK'. ckDataSze is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckDataS ze.

numMarkersis the number of markersin the Marker Chunk.

numMarkers, if non-zero, is followed by the markers themselves. Because all fields in a marker are an
even number of bytesin length, the length of any marker will always be even. Thus, markers are packed
together with no unused bytes between them. The markers need not be ordered in any particular manner.

The Marker Chunk isoptional. No more than one Marker Chunk can appear in a FORM AIFC.

I mportant!

If a segment of sound data containing one or more Markersis relocated in the sound stream, the Markers
within the segment being moved must be re-calculated. If a segment of sound datais being deleted, all
Markers within that segment should be deleted and all Markers after that segment must be adjusted. |If
sound data is inserted at a point in the sound data stream, all Markers after that point must be adjusted.
Any Saxels (see appendix D) which are associated with the updated or deleted Markers must also be
updated if affected by the new Marker values. Updating Markers in some cases may have implicationsin
the user interface and the application designer should consider when the user should be notified or asked
about the consequences of an edit.

Confidential *** Draft: 7/30/90 *** 15

7.0 COMMENTS CHUNK

The Comments Chunk is used to store comments about markersin the FORM AIFC. "EA IFF 85" hasan
Annotation Chunk that can be used for comments, but the Comments Chunk adds to each comment (1) a
timestamp and (2) areference to a marker.

Comment

A comment consists of atime stamp, marker id, and atext count followed by text.

typedef struct {

unsi gned | ong ti meSt anp; /* conment creation date */
Mar ker | d mar ker ; /* coments for this marker number */
unsi gned short count; /* coment text string length */
char text[]; /* comrent text */
} Comment; |

timeStamp indicates when the comment was created. Units are the number of seconds since January 1,
1904. (Thistime convention isthe one used by the Macintosh. For procedures that manipulate the time
stamp, see The Operating System Utilities chapter in Inside Macintosh, vol 11). For aroutine that will
convert thisto an Apple Il GSOS format time, please see Apple |l File Type Note for filetype 0xD8, aux
type 0x0000.

A comment can be linked to amarker. This allows applications to store annotations or long descriptions of
markers as a comment. If the comment is referring to a marker, then marker isthe ID of that marker.
Otherwise, marker is zero, indicating that this comment is not linked to amarker.

count is the length of the text that makes up the comment. Thisisa 16 bit quantity, allowing much longer
comments than would be available with apst ri ng.

text is the comment itself. This text must be padded with a byte at the end as needed to make it an even
number of byteslong. This pad byte, if present, is not included in count.
Comments Chunk Format

#def i ne Comment | D ' COMT" /* ckl D for Comments Chunk */

typedef struct {

I D ckl Dy [* rcourt */
| ong ckDat aSi ze;
unsi gned short nunConment s;
Mar ker Conmrent coments[];

} Comment sChunk;

ckiD is dways 'COMT'. ckDataS ze is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckDataS ze.

Confidential *** Draft: 7/30/90 *** 16

numComments contains the number of comments in the Comments Chunk. This is followed by the
comments themselves. Comments are always an even number of bytesin length, so there is no padding
between comments in the Comments Chunk.

The Comments Chunk is optional. No more than one Comments Chunk may appear in a single FORM
AlIFC.

Confidential *** Draft: 7/30/90 *** 17

8.0 SOUND ACCELERATOR (SAXEL) CHUNK - ** Under Construction! **

** WARNING**
This is a rough proposal and discussion only at this time!!

The Saxel Chunk is designed to provide high-quality playback from any random point, indicated by a
Marker, in the compressed audio data stream . There are several possible ways that this mechanism could
be implemented and we have not come to any final conclusions yet. One possible method has been
documented in appendix D for your review and comments. Please send us your feedback on the Saxel
Chunk proposal or on any other method you would recommend.

The need for a Saxel Chunk arises from the behavior of audio de-compressors which, for the most part,
rely on some history of the recently de-compressed samples to predict the value for the next sample to be
de-compressed. De-compressing the audio stream beginning at a random point would cause initial audio
artifacts to be heard before the algorithm's internal de-compression parameters stabilized.

Please refer to appendix D for the Sound Accelerator Chunk proposal.

Confidential *** Draft: 7/30/90 *** 18

9. INSTRUMENT CHUNK

The Instrument Chunk defines basic parameters that an instrument, such as a sampling keyboard, could use
to play back the sound data.

Looping

A portion of the sound data can be repeated in order to lengthen the sound. This portion, called the loop
segment, is repeated until interrupted by something like the release of akey on a sampling keyboard.

There are two waysto play aloop: forward looping and forward/backward (or "ping pong") looping.

I
sample frames: II00|I0 slegrnelnt
begin loop position end loop position

forward looping: E

>
forward/ < >
backward < >
looping: >

To implement forward looping, play the loop segment over and over again. To implement
forward/backward looping, play the loop segment forwards, then backwards, and repeat this
forwards/backwards pair over and over again.

Forward/backward (or "ping pong") looping is nice because its automatically seamless. To do forward
looping without clicks, carefully pick the loop begin and end positions so they match up without a seam.

If looping is being done on compressed sound data, make sure to pay particular attention to setting the
markers to the expanded sound data (see the section on Markers). Extra attention may be required for
smooth playback between the end of the looped data and the beginning of the looped data due to
discontinuities in the sound data encountered by the expansion algorithm. In this case, the best recourse
may be to modify sound samples in the beginning or end part of the loop, or to avoid compressing the
looped data.

The structure bel ow describes a loop:

typedef struct {

short pl ayMode;
Mar ker 1l d begi nLoop;
Mar ker | d endLoop;

} Loop;

Confidential *** Draft: 7/30/90 *** 19

playMode specifies which type of looping to perform:

#defi ne NoLoopi ng 0
#def i ne For war dLoopi ng 1
#defi ne For war dBackwar dLoopi ng 2

NoLoopi ng meansignore these loop points during playback.

beginLoop and endLoop are marker ids that mark the begin and end positions of the loop segment. The
begin position must be less than the end position so the loop segment will have a positive length. (If thisis
not the case, then ignore thisloop segment. No looping takes place.)

Instrument Chunk Format

The format of the data within an Instrument Chunk is described below.

#defi ne InstrumentI D ' I NST /* cklID for Instrunment Chunk */

typedef struct {

I D ckl D [* "INST */
| ong ckDat aSi ze;
char baseNot e;
char det une;

char | owNot e;

char hi ghNot e;
char | owVel oci ty;
char hi ghVel ocity;
short gai n;

Loop sust ai nLoop;
Loop rel easelLoop;

} Instrunent Chunk;

ckiD is aways 'INST'. ckDataSize is the size of the data portion of the chunk, in bytes. For the
Instrument Chunk, ckDataSze is aways 20.

baseNote isthe pitch of the originally recorded sound. Unitsare MIDI (MIDI isan acronym for Musical
Instrument Digital Interface) note numbers, and are in the range 0 through 127. Middle Cis 60.

detune is used to make small tuning adjustments to the sound in case it wasn't recorded exactly in tune.
detune determines how much the instrument should alter the pitch of the sound when it is played back.
Unitsarein cents (1/100 of a semitone) and range from -50 to +50. Negative numbers mean that the pitch
of the sound should be lowered, while positive numbers mean that it should be raised.

lowNote and highNote suggest the useful playback range for this sound data. Use this sound datato play a
note between the low and high notes, inclusive. (Look for some other sound data to play notes beyond this
range. The baseNote does not have to be within thisrange.) Units for lowNote and highNote are MIDI
note values.

gain is the amount to change the gain of the sound when it is played. Units are decibels. For example, O

db means no change, 6 db means double the value of each sample point, while -6 db means halve the value
of each sample point. To play louder and softer notes, further adjust the playback gain.

Confidential *** Draft: 7/30/90 *** 20

lowVel ocity and highVelocity suggest the useful note-on velocity (volume) range for this sound data. Use
this sound data to play a note between lowVelocity and highVelocity, inclusive. (Look for some other
sound data to play notes beyond thisrange.) Units are MIDI velocity values, 1 (lowest velocity) through
127 (highest velocity).

sustainLoop specifies aloop to play when an instrument is sustaining a sound.

releasel.oop specifies aloop to play when an instrument is in the release phase of playing back a sound.
The release phase usually occurs after akey on an instrument is rel eased.

[TBD] Extensionsto store multiple samplesin an AIFC file, e.g. one sample per octave.
» The[TBD] hereiswaiting to hold a decision on how to store multiple instrumentsin a FORM AIFC.
We discussed the possibility that this could be done simply by adding two more markerlds to the

InstrumentChunk—start and end markers, and by specifying exactly how to use this, including how to
set the "baseNote" field so the different audio samples (perhaps one per octave) can have different

samplerates.

The Instrument Chunk is optional. No more than one Instrument Chunk can appear in a FORM AIFC.

Confidential *** Draft: 7/30/90 *** 21

10. MIDI DATA CHUNK

The MIDI Data Chunk can be used to store MIDI data. (Please refer to Musical Instrument Digital Interface
Foecification 1.0, available from the International MIDI Association, for more details on MIDI.)

The primary purpose of this chunk isto store MIDI System Exclusive messages, although other types of
MIDI data can be stored in this block aswell. As more instruments come on the market, they will likely
have parameters that have not been included in the AIFF-C specification. The MIDI System Exclusive
messages for these instruments may contain many parameters that are not included in the Instrument
Chunk. For example, a new sampling instrument may have more than the two loops defined in the
Instrument Chunk. These loops will likely be represented in the MIDI System Exclusive message for the
new machine. This MIDI System Exclusive message can be stored in the MIDI Data Chunk.

#defi ne M DI Dat al D "MD" /* cklD for MDI Data Chunk */

typedef struct {

ID ckl D /["MD" */
| ong ckDat aSi ze;
unsi gned char M Dl data[];

} M DI Dat aChunk;

ckiD isaways' M DI .

ckDataS ze is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckiD and ckDataSze. If ckDataSzeis odd, a pad byte must follow this chunk.

MIDIData contains astream of MIDI data.
The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in a FORM AIFC. If

MIDI System Exclusive messages for several instruments are to be stored in a FORM AIFC, it is better to
use one MIDI Data Chunk per instrument than one big MIDI Data Chunk for al of the instruments.

Confidential *** Draft: 7/30/90 *** 22

11. AUDIO RECORDING CHUNK
The Audio Recording Chunk contains information pertinent to audio recording devices.

#def i ne Audi oRecor di ngl D " AESD /* ckl D for Audio Recording Chunk */

typedef struct {

ID ckl Dy /* "AESD */
| ong ckDat aSi ze;
unsi gned char AESChannel St at usDat a[24] ;

} Audi oRecor di ngChunk;

ckiD isaways'AESD'. ckDataSze isthe size of the data portion of the chunk, in bytes. For the Audio
Recording Chunk, ckDataSze is always 24.

The 24 bytes of AESChannel SatusData are specified in the AES Recommended Practice for Digital Audio
Engineering - Serial Transmission Format for Linearly Represented Digital Audio Data, section 7.1,
Channel Status Data. That document describes aformat for real-time digital transmission of digital audio
between audio devices. Thisinformation is duplicated in the Audio Recording Chunk for convenience. Of
general interest would be bits 2, 3, and 4 of byte O, which describe recording emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may appear in a
FORM AIFC.

Confidential *** Draft: 7/30/90 *** 23

12. APPLICATION SPECIFIC CHUNK

The Application Specific Chunk can be used for any purposes whatsoever by manufacturers of
applications. For example, an application that edits sounds might want to use this chunk to store editor
state parameters such as magnification levels, last cursor position, and the like.

#defi ne Appli cationSpecificlD "APPL' /* cklD for Application Specific Chunk */

typedef struct {

ID ckl Dy /* "APPL' */
| ong ckDat aSi ze;

OSType appl i cati onSi gnat ur e;

char datal];

} ApplicationSpecificChunk;

ckiD is always 'APPL'. ckDataSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckDataS ze.

ckDataS zeize indicates the length in bytes of the data portion plus the length of the OSTypefield. The data
must be padded with a byte at the end as needed to make it an even number of byteslong. This pad byte,
if present, is not included in ckDataS ze.

applicationSgnature identifies a particular application.
For Macintosh applications, thiswill be the application’'s four character signature.

For Apple Il applications, applicationSgnature should always be' pdos' , or the hexadecimal bytes
0x70646F73. If applicationSgnatureis' pdos' , the beginning of the data area is defined to be a
Pascal-style string (a length byte followed by ASCII string bytes) containing the name of the
application. Thisis necessary because Apple Il applications do not have a four-byte signature as do
M acintosh applications.

For applications which run on other than Apple computers, the application signature should aways be
'stoc’. The beginning of the data area is defined to be a Pascal-style string (a length byte followed by
ASCII string bytes) containing the name of the application.

data is the data specific to the application. The data must be padded with a byte at the end as needed to
make it an even number of byteslong. The guidelines listed under applicationSgnature for Applell and
non-Apple applications must also be followed for this data portion.

As ageneral guideline for developers using this Chunk, be sure to plan for the future when defining the
structure of the data portion. Use aversion numbering scheme or other appropriate method that will enable
the current and future versions of your applicationsto interpret the datain the FORM AIFC. Specificaly,
the current application should be able to inform the user when a new version is encountered which it cannot
handle (and possibly even prompt the user to a solution). Future applications should be able to handle
older versions of data or guide the user to a solution.

The Application Specific Chunk is optional. Any number of Application Specific Chunks may exist in a
single FORM AIFC.

Confidential *** Draft: 7/30/90 *** 24

13. TEXT CHUNKS - NAME, AUTHOR, COPYRIGHT, ANNOTATION

These four chunks are included in the definition of many IFF FORMSs. All are text chunks; their data
portion consists solely of text. Each of these chunksis optional.

#defi ne Narel D " NAVE' /* ckl D for Name Chunk */

#def i ne Aut hor | D " AUTH /* ckl D for Author Chunk */
#defi ne Copyrightl D "(c) ' /* ckl D for Copyright Chunk */
#def i ne Annot ationl D " ANNO /* ckl D for Annotation Chunk */

typedef struct {

ID ckl D;
| ong ckDat aSi ze;
char text[];

} Text Chunk;

ckiD is either ' NAME', " AUTH', '(c) ', or ' ANNO, depending on whether the chunk as a Name Chunk,
Author Chunk, Copyright Chunk, or Annotation Chunk, respectively. For the Copyright Chunk ID, note
that the 'c' is lowercase and there is a space (0x20) after the close parenthesis.

ckDataSze isthe size of the data portion of the chunk, in this case the number of charactersin text.

text contains pure ASCII characters. Itisneither apstring nor aC string. The number of charactersin
text is determined by ckDataSze. The meaning of the text depend on the chunk type, as described below:
Name Chunk

text contains the name of the sampled sound. The Name Chunk is optional. No more than one Name
Chunk may exist within a FORM AIFC.

Author Chunk

text contains one or more author names. An author in this case is the creator of a sampled sound. The
Author Chunk is optional. No more than one Author Chunk may exist within a FORM AIFC.

Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. text contains a date followed by the
copyright owner. The chunk ID '(c) ' serves as the copyright character '[1'. For example, a Copyright

Chunk containing the text "1988 Apple Computer, Inc." means "] 1988 Apple Computer, Inc.”
The Copyright Chunk is optional. No more than one Copyright Chunk may exist within a FORM AIFC.

Confidential *** Draft: 7/30/90 *** 25

Annotation Chunk

text contains a comment. Use of this chunk is discouraged within FORM AIFC. The more refined
Comments Chunk should be used instead. The Annotation Chunk is optional. Any number of Annotation
Chunks may exist withinaFORM AIFC.

Confidential *** Draft: 7/30/90 *** 26

14. CHUNK PRECEDENCE

Several of the local chunks for FORM AIFC may contain duplicate information. For example, the
Instrument Chunk defines loop points and MIDI system exclusive datain the MIDI Data Chunk may also
define loop points. What happens if these loop points are different? How is an application supposed to
loop the sound?

Such conflicts are resolved by a defined precedence for chunks:

Format Version Chunk Highest precedence
Common Chunk

Instrument Chunk

Saxel Chunk

Comments Chunk

Marker Chunk

Sound Data Chunk

Name Chunk

Author Chunk

Copyright Chunk

Annotation Chunk(s) -- inthe order they appear in the FORM
Audio Recording Chunk

MIDI Data Chunk(s)

Application Specific Chunks Lowest precedence

The Common Chunk has the highest precedence, while the Application Specific Chunk has the lowest.
Information in the Common Chunk always takes precedence over conflicting information in any other
chunk. The Application Specific Chunk always loses in conflicts with other chunks. By looking at the
chunk hierarchy, for example, one sees that the loop points in the Instrument Chunk take precedence over
conflicting loop points found in the MIDI Data Chunk.

It is the responsibility of applications that write data into the lower precedence chunks to
make sure that the higher precedence chunks are updated accordingly.

Confidential *** Draft: 7/30/90 *** 27

Appendix A. Examples of a FORM AIFC

[lustrated below are examples of several FORM AIFC files. An AIFF-C fileissimply afile containing a
single FORM AIFC. On aMacintosh, the FORM AIFC is stored in the datafork of afile and the file type
is 'AIFC'.

These examples have been designed to illustrate several of the possible variations of sound data and Chunk
formats you may encounter. A careful study of these examples will clarify the Chunk specifications.

Remember that the Chunks may appear in any order in aFORM AIFC - the order shown here is only for
the sake of the examples.

List of Examples:

1. 8-bit monophonic sound data sampled at 22.25454 kHz. The sound data is not compressed.

2. 8-bit monophonic sound data sampled at 22.25454 kHz and compressed by a factor of 3 using the
Macintosh Audio Compression & Expansion utility.

3. 16-hit stereo sound data sampled at 44.1kHz (CD quality). The sound datais not compressed.

Confidential *** Draft: 7/30/90 *** 28

1. A file containing approximately 4.476 seconds of 8-bit monophonic sound data sampled at 22.25454
kHz. The sound datais not compressed.

FORM AlFCfile KP[[FTO[R[M
ckSize 99764
foomTypel[A ' 1'|' F|' C
Va‘s'on KkiDI['F|'V]I'EIl'R
Chunk ckDataSize 4
timestamp || 2726318400
Common ckiDfI'cl o' M['M
Chunk ckDataSize 38
numChannels 1 |
numSampleFrames 99611 [
sampleSize 8
sampleRate 22254. 54 I
compressionTypefl|' N[O N|' E
compressionName| [14 [n'[* o'|' t'|' ‘['c'[' o'['m]|' p'|'r'|' e'['s'["s'[e dT O]
Marker kDI MI"AI'R|' K
Chunk ckDataSize 66
numMarkers 4
id 101
position 318
makerName([9 b e [g | ‘[d | r| ul ml| 1]
id 115
position 47829
markerName|[9 ['b'|"e' ' g’ T d' [r'] u] m[2]
id 108
position 97127
markerName|| 9 ' e'['n' " d'["Td' T r T u] m[2]
id 103
position 45233
makeName|| 9 ['e' |'n"['d'|" "[g'|' r'[u] m[1]
Sound Data ckiDf[' S |'S|I'N|'D
Chunk ckDataSize 99619
offset 0
blockSize 0
soundData [|] T 1T 1 [ToJl
sanpl e franes 99611th pad byte

sanmpl e frame

Confidential *** Draft: 7/30/90 *** 29

2. A file containing approximately 28.972 seconds of 8-bit sound data sampled at 22.25454 kHz and
compressed by afactor of 3 using the Macintosh Audio Compression & Expansion utility.

NOTE: The Sound Accelerator Chunk (Saxel) uses the preliminary version of Saxels as defined in
appendix D. This may change in the future subject to your feedback.

FORM AlFCfile KP|[FIOIR[M
ckSize 215164
foormTypel[A ' 1'|' F|' C
Verson ckiDI['F|'V]'EI]'R
Chunk ckDataSize 4
timestamp || 2726318400
Common &D|[cT o M] ™M
Chunk ckDataSize 34
numChannels 1 |
numSampleFrames 107460 |
sampleSize g8 |
sampleRate 2254. 54 I
compressionType||' M|' A'|' C|' 3
compressonName|[11 [' m[" Al cT ET T3 - Tt o] - 1]
Marker &D|[M AT RT K
Chunk ckDataSize 38
numMarkers 2
id 97
position 35
markerName|| 11]' b’ e’ [g'[" T p T h I r T al s el 1]
id 24
position 587132
makerName]| 11]'b'['e ' g'|' "['p' [h' [r'| af s'[e 3]
Saxdl adD|[s Al x[' L
Chunk ckDataSize 116
numSaxels 2
id 97
Sze 10 bytes 0 through 9
saxelData |- [of soundDat a
dfl_24
Sze 96 bytes 195614
saxelData - [T] t hr ough 195709
Sound Data KIDI'S[S|N[D of soundDat a
Chunk ckDataSize 214928
offset 0
blockSize 0
soundDataf [T] T 11 1]
sanpl e frames 107460t h

sampl e frame

Confidential *** Draft: 7/30/90 *** 30

3. A file containing approximately 2.325 seconds of 16-bit stereo sound data sampled at 44.1kHz (CD
quality). The sound datais not compressed.

FORM AIFCfile XD[[FlO]R[M

ckSize 410256
formType ' AI [II 1 FI ' C
Va_s-on CkID ' FI I\/l 1 EI ' Rl
Chunk ckDataSize 4

timestamp || 2726318400
Common &D|[CT O M[M
Chunk ckDataSize 38
numChannels 2 |
numSampleFrames 102527 |
sampleSize 16 |
sampleRate 44100. 00 [
compressionType| [N|' O|' N|'E
compressionName| (14 [' n'|' o' |' t
Marker kD[MI"A'R]'K
Chunk ckDataSize 34
numMarkers 2
id 101
position 6853
markerName| | 8 [b'|'e'['g'|' "['I'f o[o[p]0 |
id 102
position 84572
markerName| | 8 ['e'|'n"['d'['['I']'o'|' o' | p'[0O |
Instrument KD I'IN) ST T
Chunk ckDataSize 20
baseNote| | 60
detune| [- 3
lowNote| | 57
highNote| [63
lowVeocity| | 1
highVelocity| [127
gan 6
sustainLoop.playMode 1
sustainLoop.beginLoop| [101
sustainLoop.endLoop| | 102
releasel_oop.playMode 0
releasel_oop.beginLoop|| 101
releasel oop.endLoop|| 102

' |||C|||O|||mllplllrlllelllsll.s.l.e.||d|| Ol

Sound Data &D|[STS|TNTD
Chunk ckDataSize 410116
offset 0
blockSize 0
soundDatal [ch 1 | ch 2 [ch 1] ch 2]
first sanple frane 102527t h sanple frane

Confidential *** Draft: 7/30/90 *** 31

Appendix B. Sending Comments to Apple

If you have suggestions for new chunks to be added to this Audio Interchange File Standard, please
describe the chunk in as much detail as possible, and give an example of its use. Suggestions for new
FORMs and new local chunks are welcome. When sending in suggestions, be sure to mention that your
comment refers to the Audio Interchange File Sandard: "AlFF-C" document.

Send comments to:
Developer Technica Support
Apple Computer, Inc.

20525 Mariani Avenue, MS: 75-3T
Cupertino, CA 95014 USA

Confidential *** Draft: 7/30/90 *** 32

Appendix C. Compressed Audio Encoding Format

1. Encoding Formats for ACE and Macintosh compression utilities
2. Markersfor ACE and Macintosh compressed sound data
3. Saxelsfor ACE and Macintosh compressed sound data

Encoding Formats

Encoding formats are shown for monophonic sound data. Examples of multi-channel compressed audio
encoding are described below. The original sound datafor the following are 8-hit linear samples.

3:1 Macintosh Audio Compression & Expansion utility Framesize= 2 bytes

Origina uncompressed single channel sound data:
Marker: O 1 2 3 4 5 6 7 8 9 10

[8-bits | | 8-bits | | 8-bits | | 8-bits | [8-bits | | 8-bits | |8-bits | |8-bits | |8-bits | | 8-bits | | 8-bits |
| Il oo

N /

| 11]
3:1 Compressed Sound Data: 8-bits 8-bits 8-bits 8-bits

6: 1 Macintosh Audio Compression & Expansion utility Framesize= 1 byte

Origina uncompressed single channel sound data:
Marker: O 1 2 3 4 5 6 7 8 9 10

[8-bits | |8-bits | | 8-bits | | 8-bits | [8-bits | |8-bits | [8-bits | [8-bits | |8-bits | |8-bits | | 8-bits |
| /

6:1 Compressed Sound Data: 8-bits 8-bits 8-bits

ACE 2:1 Apple 11GS utility Framesize= 1 byte

Origina uncompressed single channel sound data:
Marker: 0 1 2 3 4 5 6 7 8 9 10

[8-bits | | 8-bits | [8-bits | [8-bits | |8-bits | |8-bits | [8-bits | |8-bits | | 8-bits | | 8-bits | |8-bits |
| 11 11 11]

[

2:1 Compressed Sound Data: 8-bits 8-bits 8-bits

Confidential *** Draft: 7/30/90 *** 33

ACE 8:3 Apple 1GS Utility Frame size = 3 bytes

Origina uncompressed single channel sound data:
Marker: 0 1 2 3 4 5 6 7 8 9 10

[8-bits | | 8-bits | | 8-bits | [8-bits | |8-bits | |8-bits | [8-bits | |8-bits | | 8-bits | | 8-bits | | 8-bits |
| I

\

8:3 Compressed Sound Data: 8-bits 8-bits 8-bits L

The sample frame size is the basic unit of a compressed data block. For the Macintosh 6:1 and the ACE
2:1 utilities - the frame sizeis 1 byte. For the Macintosh 3:1 utility, the frame sizeis 2 bytes. For the ACE
8:3 utility, the frame sizeis 3 bytes.

For storage of multichannel compressed sounds, the conventions listed in the Common Chunk section
should be followed, using a sample frame of compressed sound data in place of uncompressed samples.
Here are some examples:

Sereo: Macintosh 6:1 and IIGSACE 2:1

Sample frame: 0 1 2 3 4 5 6 7
| | | | | | | | 1

compressed sound bytes: [o[1[2]3 4[5 [6 |7 [8]o [10[11]12]13[14]15] = * *
channel: 121 2121212121212

Sereo: ACE8:3

Sample frame: | 0 : 1 : 2

compressed sound bytes: [o[1[2[3[4]5[6 |7 [8]9 [10]11]12[13]14]25] « - -
|]]]]]
channgl: 1 2 1 2 1

Markers

Markers positions (see Marker Chunk section) are targeted to expanded (uncompressed) sound data.
Thus, a calculation must be done to map from a position in the compressed data stream to the target
position in the uncompressed sound data. Fortunately, the existing compression utilities are linear - there
Isastraight multiplicative ratio between the size of compressed sound data to uncompressed sound data.
Here is atable which can help you to calculate the actual Marker position, given an offset index into the
compressed (single channel) sound data:

Confidential *** Draft: 7/30/90 *** 34

Compression (Bytes) Single channel sound data

Macintosh 3:1 | Compressed dataoffset: O 2 4 6 8 10 12 14
Marker Position: 0 6 12 18 24 30 36 42

Macintosh 6:1 | Compressed dataoffset: 0O 1 2 3 4 5 6 7
Marker Position: 0 6 12 18 24 30 36 42

ACE 21 Compressed dataoffset: 0 1 2 3 4 5 6 7
Marker Position: 0 2 4 6 8 10 12 14

ACE8:3 Compressed dataoffset: 0 3 6 9 12 15 18 21
Marker Position: 0 8 16 24 32 40 48 56

It is possible to specify a Marker position which is not a multiple of the compression rate (e.g. Marker
position of 19 for Macintosh 3:1 compressed sound data). In this case, the playback system must be
contain enough intelligence to (1) expand a compressed sample frame and discard the initial expanded
sample(s) before playback; and (2) to stop playback of samples before the last expanded sample. In the
case of acompressed sound which must be looped, this capability provides added accuracy in determining
the best loop points.

Confidential

*** Draft: 7/30/90 ***

35

Appendix D. Sound Accelerator (Saxel) Chunk
*** - Caution ***

The use of a Sound Accelerator Chunk (Saxel) and the specific implementation of a Saxel have not yet
been finalized! The draft version of this document is being prepared to get early devel oper feedback on the
other sections of this specification. Such early feedback is considered to be more va uable than waiting for
the details on this particular Chunk to be finalized. However, we do have something to say about what
Saxels could look like and we would like your input on this topic aswell. The following section is NOT
finalized - it contains a possible, not a probable, implementation of a Saxel. Its inclusion in this
specification is primarily to give you, the developer, an opportunity to learn about the purpose of a Saxel
and to send us your considered feedback on this topic.

Rk S Ik Sk e

Saxd Definition

Audio de-compression algorithms contain internal parameters which track the behavior the sound being
expanded. As these internal parameters depend on the history of the previous sound samples, a simple
attempt to begin playback at arbitrary positions in the compressed sound data would result in artifacts and
distortion of the initial portion of the expanded sound. A Saxel stores information about the compressed
sound at a Marker position, thus providing a means for high quality playback of random selections of
compressed sound data.

Background

Generally, a decompressor must start from the beginning of the compressed data stream. It requires
running state (e.g. internal filter parameters or recently de-compressed samples) to decompress the next
sample. To start playback at amarker point somewhere within the audio stream, you could:
(&) decompress the data from the beginning and start playing once you reach the marker, or
(b) use additional datato locate the marked point within the compressed data stream and load up the
decompressor state, then start playing, or
(c) compute the marked point within the compressed data stream (only possible for fixed-ratio
compression types), initialize the decompressor asif it were starting at the beginning, and ignore
the startup transient (only useful for decompressors that would "settle down" in this case).

Method (@) is always possible as a fall-back. Method (b) is much faster, if you have the required data.
And that's what Saxel (Sound Accelerator) chunks are for. Method (c) may be acceptable for certain
applications and/or certain classes of audio compression. At thistime, no firm decision has been made on
which method to implement. The following is a tentative implementation of a variation of method (b)
although there is no commitment to using this approach. We would value your feedback on this.

A Sound Accelerator (Saxel) chunk is used in combination with a Marker when the sound data is
compressed. The saxel carries the required data to locate a point in the compressed data stream and to
initialize the decompressor. Saxels enable method (b) and a modified method (a):
(d) decompress the data from the previous marker that has a Saxel and start playing once you reach
the desired marker.

The data format for a Saxel is inherently specific to the compression type. Here, we
specify saxels for the currently supported Apple compression techniques listed below.
For other compression algorithms supported by developers, other schemes for a Saxel
may be employed. Applications which support compressed audio need to understand

Confidential *** Draft: 7/30/90 *** 36

how to process the Saxel Chunks for each compression type they support. We are
primarily interested in your feedback on the following:

* Is the Saxel Chunk as described below for Apple's audio compression algorithms
suitable?

 What would you need in a Saxel for another compression algorithm you want to
support?

Saxel

A Saxel hasthefollowing format:

typedef struct {

Mar ker | d id; /* link accelerator data to a marker */

unsi gned short size; /* size of saxel Data */

char saxel Data[]; [/* algorithmspecific accelerator data */
} Saxel;

id identifies the marker for which the sound accelerator dataisto be used. It's considered good practice to
supply a saxel for every marker. That way, you don't have to guess which markers will be used as
playback points.
size indicates the length in bytes of the sound accelerator data, saxel Data. The data must be padded with a
byte at the end as needed to make it an even number of bytes long. This pad byte, if present, is not
included in size.

saxel Data contains the specific sound accelerator data which is compression-type specific. See appendix C
for a description of Saxel Data formats for the Macintosh and Apple [1GS compression types.

Saxel Chunk Format

The format for the data within a Saxel Chunk is shown below.

#def i ne Saxel | D ' SAXL' /* ckl D for Saxel Chunk */

typedef struct {

I D ckl Dy [* ' SAXL' */
| ong ckDat aSi ze;
unsi gned short nunaxel s;
Saxel saxel s[];
} Saxel Chunk;

ckiD is aways 'SAXL'. ckDataSze is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckDataS ze.

Confidential *** Draft: 7/30/90 *** 37

numSaxels is the number of saxels in the Saxel Chunk. Multiple Saxel Chunks are allowed in asingle
FORM AIFC file. Sincethetotal amount of Saxel datafor a heavily-edited sound file may be quite large,
it may be easier for an application to store the various Saxels independently of each other.

numSaxels, if non-zero, isfollowed by the saxels themselves. Since each saxel occupies an even number
of bytes, the saxels are packed together with no unused bytes between them. The saxels need not be
ordered in any particular manner.

The Saxel Chunk isoptional. Any number of Saxel Chunks may appear in a FORM AIFC.

Saxels for ACE & Macintosh Audio Compression Types

An application which is requested to begin playback at a specific marker will first pass the data contained
in saxelData[] to the buffered_expansion_playback routine without doing an audible playback. After this,
the internal parameters in the expansion algorithm will have reached stability and expansion_playback of
compressed data beginning at the marker position may begin. See the section on Markers for setting
markers into compressed sound data. See appendix C for specific information on compaction methods for
Macintosh and Apple I1GS compressed sounds.

The saxelData for the compression types 'ACE2', 'ACES8', 'MAC3, and 'MACE6' consist of the previous
48 sample frames of compressed sound data. That is, saxelData[] contains the 48 sample frames of
compressed sound preceding the Marker. 1f the Marker position is such that there are less than 48 sample
frames of compressed sound data before the expanded sample would be encountered, then the Saxel
would contain the compressed sound data from the beginning up to, but not including, the compressed
sample frame containing the initial sample to be played, and the Saxel sizeis set accordingly. A Saxel is
not necessary for a Marker which references a sample to be expanded from the first sample frame of the
compressed sound data. Here are some examples:

Macintosh 3:1 single-channel compressed sound (Frame size = 2 bytes)
Marker position Saxel Datasize Saxel data

0-5 -- No Saxel for this Marker

6 -11 2 bytes O - 1 of compressed sound data (1 sample frame)

12-17 4 bytes 0 - 3 of compressed sound data (2 sample frames)

18-23 6 bytes O - 5 of compressed sound data (3 sample frames)
282 - 287 9 bytes 0 - 93 of compressed sound data (47 sample frames)
288 - 293 96 bytes 0 - 95 of compressed sound data (48 sample frames)
294 - 299 96 bytes 2 - 97 of compressed sound data (48 sample frames)

300 - 305 96 bytes 4 - 99 of compressed sound data (48 sample frames)

Macintosh 6:1 single-channel compressed sound (Frame size= 1 byte)
Marker position Saxel Datasize Saxel data

0-5 -- No Saxel for thisMarker

6 -11 1 byte O of compressed sound data + a zero pad byte

12 - 17 2 bytes O - 1 of compressed sound data

18- 23 3 bytes 0 - 2 of compressed sound data + a zero pad byte

282 - 287 47 bytes O - 46 of compressed sound data + a zero pad byte

Confidential *** Draft: 7/30/90 *** 38

288 - 293 48 bytes O - 47 of compressed sound data
294 - 299 48 bytes 1 - 48 of compressed sound data
300 - 305 48 bytes 2 - 49 of compressed sound data

ACE 2:1 single-channel compressed sound (Frame size = 1 byte)
Marker position Saxel Datasize Saxel data

0-1 -- No Saxel for this Marker

2-3 1 byte 0 of compressed sound data + a zero pad byte

4 -5 2 bytes O - 1 of compressed sound data

6 -7 3 bytes 0 - 2 of compressed sound data + a zero pad byte
94 - 95 47 bytes O - 46 of compressed sound data + a zero pad byte
96 - 97 48 bytes O - 47 of compressed sound data
98 - 99 48 bytes 1 - 48 of compressed sound data

100 - 101 48 bytes 2 - 49 of compressed sound data

ACE 8:3 single-channel compressed sound (Frame size = 3 bytes)
Marker position Saxel Datasize Saxel data

0-7 -- No Saxel

8-15 3 bytes O - 2 of compressed sound data + a zero pad byte at end
16- 23 6 bytes O - 5 of compressed sound data
24 - 31 9 bytes O - 8 of compressed sound data + a zero pad byte at end
376 - 383 141 bytes 0 - 140 of compressed sound data + a zero pad byte at end
384 - 391 144 bytes O - 143 of compressed sound data
392 - 399 144 bytes 3 - 146 of compressed sound data

400 - 407 144 bytes 6 - 149 of compressed sound data

Macintosh 6:1 Sereo (Frame size = 2 bytes)
Refer to the paragraph on multichannel compressed sound storage in this appendix for clarification of
which bytes are used to store the Saxel data. Remember that Marker positions reference uncompressed

sample frames (see Marker Chunk).

Marker position Saxel Datasize Saxel data

0-5 -- No Saxel

6 - 11 2 bytes O - 1 of compressed sound data (1 stereo sample frame)
12 - 17 4 bytes O - 3 of compressed sound data (2 stereo sample frames)
18 - 23 6 bytes O - 5 of compressed sound data (3 stereo sample frames)
282 - 287 9 bytes 0 - 93 of compressed sound data (47 stereo sample frames)
288 - 293 96 bytes 0 - 95 of compressed sound data (48 stereo sample frames)
294 - 299 96 bytes 2 - 97 of compressed sound data (48 stereo sample frames)

300 - 305 96 bytes 4 - 99 of compressed sound data (48 stereo sample frames)

Confidential *** Draft: 7/30/90 *** 39

Saxels and Markers

In general, whenever a Marker is created, a Saxel should be created for that Marker (except in the case
where the Marker position is within the first sample frame of compressed sound data). Whenever a
Marker is deleted, the Saxel for that Marker should be deleted. If a Marker exists within a portion of
sound data which has been relocated, both the Marker position and Saxel for that Marker need to be
updated.

If the Marker is at or near the beginning of the sound data which has been relocated, you may want to
consider the following information when updating its Saxel. In the following figure, segment A of sound
data containing marker A and its associated Saxel A isto be cut and pasted into the sound data stream at
position B. Since Marker A is near the beginning of segment A, Saxel A contains sound data which is
outside segment A. Updating Marker A to its new position would normally cause the sound data indicated
by potential Saxel B to be used to refer to the new marker position.

Saxel A
@mh position B
| € iy

potential Saxel B

marker A

Saxel A, however, contains the natural progression of sound which leads to marker A and creates a
smooth transition to the sound data beginning at Marker A. The sound data located at potential Saxel B is
not necessarily related to the sound datain segment A and may actually cause a discontinuity if used asa
Saxel for the updated Marker A. Thus, to preserve sound quality for playback beginning at the updated
Marker A, the origina contents of Saxel A may be used for the Saxel referring to the updated Marker A.

A potential problem with this may be seen in the following two scenarios: (1) Suppose that the original
Saxel A data were kept to refer to the updated Marker A which is now near position B. The user now
deletes the updated Marker A, then inserts anew Marker at the same position. A new Saxel corresponding
to the Marker is created using the data indicated by potential Saxel B. Sound playback beginning at the
Marker position now sounds different. The reason for this may not be obvious to the user who simply cut
one Marker and created another in its place. (2) A new Marker with a Saxel using approximately the
sound data at potential Saxel B is created one sample position after the updated Marker A which uses the
original Saxel A datato refer to it. Playback beginning at the new Marker sounds quite different than
playback beginning at the updated Marker A.

The choice as to the selection of which Saxel datato usein this (hopefully unlikely) corner case depends
on the contents of the sound, the position of the Marker relative to the beginning of the relocated segment
and the expectations and sophistication of the user. Your application should consider these criteria and
make the best choice it can, or pass the choice on to the user if required.

Confidential *** Draft: 7/30/90 *** 40

References

AES Recommended Practice for Digital Audio Engineering - Serial Transmission Format for Linearly
Represented Digital Audio Data, Audio Engineering Society, 60 East 42nd Street, New Y ork, New Y ork
10165

MIDI: Musical Instrument Digital Interface, Soecification 1.0, the International M1DI Association.

"EAIFF 85" Sandard for Interchange Format Files. Electronic Arts.
A Quick Introduction to |FF. Electronic Arts.

"8SvX" IFF 8-Bit Sampled Voice. Electronic Arts.
Inside Macintosh, Volume I1. Apple Computer, Inc., Addison Wesley Publishing Company, Inc., 1986.
Applel] Numerics Manual, Addison Wesley Publishing Company, Inc., 1986.

Confidential *** Draft: 7/30/90 *** 41

