
1

).4%2.!4)/.!,�/2'!.)3!4)/.�&/2�34!.$!2$)3!4)/.
/2'!.)3!4)/.�).4%2.!4)/.!,%�$%�./2-!,)3!4)/.

)3/�)%#�*4#��3#���7'��
#/$).'�/&�-/6).'�0)#452%3�!.$�!5$)/

)3/�)%#�*4#��3#���7'���.����
-0%'��

/CTOBER������-ELBOURNE
3OURCE� !UDIO�3UBGROUP
4ITLE� 2EVISED�2EPORT�ON�#OMPLEXITY�OF�-0%'��!!#�4OOLS
3TATUS� !PPROVED
!UTHOR� 3��2��1UACKENBUSH��9��4OGURI��AND�*¼RGEN�(ERRE

This document is based on document and N2005 [1], which presented the complexity of the tools in MPEG-2
AAC Main, Low Complexity and Sampling Scalable Rate Profiles. In addition, an analysis of the complexity of a
one-band AAC Scaleable Sampling Rate (SSR) Profile decoder is provided in an annex of this document.

We desire to quantify the complexity of the tools in the MPEG-2 Advanced Audio Coding (AAC) decoder. They
are:
• huffman decoding
• inverse quantization and scaling
• M/S dematrixing
• intensity stereo
• coupling channel
• backward adaptive prediction
• temporal noise shaping (TNS)
• inverse modified discrete cosine transform (IMDCT)
• gain control and hybrid filter bank (inverse polyphase quadrature filter (IPQF)+IMDCT)

Unless otherwise indicated, complexity is specified in terms of
• machine instructions required to realize the tool’s computations, as run on a typical (but unspecified)

programmable digital signal processor
• read/write storage locations
• read-only storage locations

We assume that:
• the target machine uses only IEEE floating point arithmetic, so that all floating point data require four bytes

of storage. All storage is specified in terms of 32-bit words.
• the coder block size is 1024 input samples, equivalent to 1024 spectral coefficients per channel.
• an audio signal is sampled at 48 kHz, 16-bits per sample
• the compressed bit rate is 64000 bits per second per audio channel
Furthermore, we only indicate storage that is required by a tool and cannot be shared or re-used by other tools.
Specifically, we do not count temporary, stack-based scratch storage (“automatic” variables), as such storage is
implicitly shared across tools.

Unless explicitly indicated, all complexity figures are for one audio channel.

/VERVIEW
One should consider two important categories of AAC decoder implementations: software decoders running on
general-purpose processors, and hardware decoders running on single-chip ASICs. For these two categories the

2

data presented in this document, augmented by demonstrated real-time software decoder implementations, can be
summarized in the following table:

Decoder Complexity
2-channel Main profile software decoder 40 % of 133 MHz Pentium
2-channel Low Complexity profile software decoder 25 % of 133 MHz Pentium
5-channel Main profile hardware decoder 90 sq. mm die, 0.5 micron CMOS
5-channel Low Complexity profile hardware decoder 60 sq. mm die, 0.5 micron CMOS
2-channel Scaleable Sampling Rate profile software
decoder

not estimated

5-channel Scaleable Sampling Rate profile hardware
decoder

53 sq. mm die, 0.5 micron CMOS
(3 band decoder)

In this Table, the 3-band SSR decoder complexity is shown. The 4-band SSR decoder has almost the same
complexity as Low Complexity Profile.

3PECIFICATION�OF�!!#�4OOL�#OMPLEXITY

)NPUT�/UTPUT�"UFFERS
Because of the encoder bit reservoir structure, a real-time decoder receiving a bitstream over a constant-rate
channel must, to accomodate worst case buffering conditions, collect a number of input bits equal to the nominal
rate per block plus the size of the encoder bit buffer before it can start decoding. This constraint specifies the
minimum input buffer size. On output, we assume that the IMDCT result is copied to a 16-bit PCM output buffer
in a conventional double-buffered manner.

4ABLE���)NPUT�/UTPUT�"UFFER�3TORAGE�2EQUIREMENTS

Bits Words
Input buffer 6144 192
Output buffer (two 16-bit values per word) 512

Totals 704

(UFFMAN�$ECODE
In order to decoding a Huffman codeword the decoder must traverse a Huffman code tree from “root node” to
“terminal node” (or leaf). The route taken depends on the Huffman codeword that is being decoded: if the next
bit to be processed in the codeword is a “zero” then the “left” branch is taken relative to the current node;
otherwise the “right” branch is taken. The decoder must be at the root note when it begins processing a new
Huffman codeword, and should be at a terminal node when the entire codeword has been processed. The code
fragment that does this processing is

v = *p;
while (v & Tnleaf) {

if (cword & 1)
p++;

else
p += v & (Tnleaf-1);

v = *p;
cword >>= 1;

}

where to start p points to the root node, cword contains the Huffman codeword to process (lsb first) and Tnleaf is
a mask equal to 0x8000 that signals a terminal node. Based on this code it requires approximately 10 instructions
per bit for the Huffman decoding. Table 2 shows the instruction complexity for both peak bits per block (3.5
times average) and average bits per block. The summary statistics use the complexity for average bits per block
because, in the case of a software-only decoder, there are software speed-ups that can be used to reduce that

3

complexity to 2 instructions per bit (using additional tables) and in the case of an ASIC decoder, the huffman
decoding is highly amenable to hardware acceleration.

Pulse lossless coding follows the Huffman decode of the quantized spectral coefficients. It has a very simple
reconstruction algorithm as follows:

k = start;
for (i=0; i<=number_pulse; i++) {

k += pulse_offset[i];
if (quant_coef[k] > 0) {

quant_coef[k] += pulse_amp[i];
}
else {

quant_coef[k] += pulse_amp[i];
}

}

The bitstream syntax permits “number_pulse” to be no greater than 4 and the loop requires no more than 10
instructions per iteration, so the instruction complexity for pulse lossless coding is no more than 40 instructions
per block, as indicated in Table 2. Based on figures for peak compression (50 bits per block or 4%) and average
compression (0.25 percent), a value of one tenth the peak complexity is used to approximate the average
complexity.

4ABLE���(UFFMAN�$ECODING�)NSTRUCTION�#OMPLEXITY

Channel rate (bps) 64000 Instruct.
Sample rate 48000
Block length 1024

peak average
Bits per block 4778.7 1365.3
Instructions per bit 10 10

Pulse lossless coding 40 4

Totals 47827 13657

The Huffman codewords can represent signed or unsigned values.
Table 3 shows the storage complexity for the Huffman codebooks in which spectrum tables 1, 2, 5 and 6 are
signed.

Huffman decoding requires the storage of the tree and the value corresponding to the codeword. Interior notes
must store an offset to the child nodes. The size of this offset does not have to be any larger than the total
number of nodes in the table. In
Table�� the offset is 8 or 16 bits. Furthermore, the offset to the left child can be implicit (it can always follow the
parent) so only one offset must be stored. At the terminal notes instead of storing an offset, the decoded value is
stored, in compressed form if necessary.

4

4ABLE���(UFFMAN�$ECODING�2EAD/NLY�3TORAGE

Huffman Table Leaves Nodes Wds/Nd Words
Scale factor 121 242 0.25 61
Spectrum LAV Tuple

1 1 4 81 162 41
2 1 4 81 162 41
3 2 4 81 162 41
4 2 4 81 162 41
5 4 2 81 162 41
6 4 2 81 162 41
7 7 2 64 128 32
8 7 2 64 128 32
9 12 2 169 338 0.5 169

10 12 2 169 338 169
11 16 2 289 578 289

Totals 2724 995

)NVERSE�1UANTIZATION�AND�3CALING
Each coefficient must be inverse quantized by a 4/3 power nonlinearity and then scaled by the quantizer stepsize.
Since the range of values represented by the decoded Huffman values is limited by the codebook itself (except
for the escape codebook), the inverse quantization can be done by table lookup. The stepsize, or scale factor, is
itself logarithmicaly encoded and is similarly limited in dynamic range, so that it can be decoded by a table
lookup as well. We assume that only 854 spectral coefficients (20 kHz bandwidth) must be inverse quantized and
scaled by a scale factor. This is summarized in Table 4.

4ABLE���)NVERSE�1UANTIZATION�AND�3CALE�&ACTOR�#OMPLEXITY

Block len 1024
Read-Only Storage Instructions

Inverse quantation 128 854
Stepsize scaling 128 854

Totals 256 1708

-�3�3YNTHESIS

This is a very simple tool that couples two channels into a stereo pair. For each sample in each channel of the
stereo pair the samples may already be the left and right signals, in which case no computation is necessary, or
the pair must be de-matrixed via one add and one subtract per pair of samples. Since the computation is done in-
place, there is no additional storage requirements. It is assumed that only a 20 kHz bandwidth needs the M/S
computation. This is summarized in Table 5.

5

4ABLE���-�3�3YNTHESIS�#OMPLEXITY

Block length 1024

Instructions per block per stereo pair 854
Storage per block 0

)NTENSITY�3TEREO

In this tool a region of coefficients for a stereo pair is identical except for a “position” scaling of the coefficients
of the second channel in the pair. Even though intensity stereo saves bits, the encoder will allocate those bits
elsewhere (which is the point of intensity stereo compression) such that the huffman decoding comlexity is
unchanged. Similarly, even though the right channel of intensity stereo coded regions do not have scale factors,
they do have intensity stereo position factors that require the same decoding complexity. Left-channel intensity
stereo regions must have inverse quantization and scaling applied. Right-channel intensity stereo regions use the
left-channel inverse quantized and scaled coefficients, which must be re-scaled by the intensity position factors.
Hence the net complexity of intensity stereo is a SAVINGS�of one inverse quantization per intensity stereo coded
coefficient. Intensity stereo does not use any additional read-only or read-write storage. This complexity
estimate is summarized in Table 6.

4ABLE���)NTENSITY�3TERO�#OMPLEXITY

Complexity: per blk:
per IS coefficient min max

Instruction complexity per stereo pair -1 0 -854
Read-only memory complexity 0 0 0
Read-write memory complexity 0 0 0

#OUPLING�#HANNEL
The coupling channel is at its core a single channel element. Since bits allocated for the coupling channel are
removed from other channels, there is no increase in Huffman decoding complexity. The coupling channel’s
intrinsic scaling is approptiate for the first target channel of the set of coupled channels, while the other coupled
channels scale factors must be transmitted and decoded. The final stage in the coupling decoding is to add the
coupled channel to the target channel in the frequency domain (dependently switched coupling channel) or in the
time domain (independently switched coupling channel).

Table 7 shows two cases for typical coupling channel compexity: one dependent coupling channel with three
target channels (1 dcc, 3 tc) such as would be used in the Low Complexity profile, and one independent coupling
channel and three target channels (1 icc, 3 tc) such as could be used in the Main profile.

6

4ABLE���#OUPLING�#HANNEL�#OMPLEXITY

Max coupling bandwidth 20000
Max coupling coef. 854
Max number of coupling channels (cc) 2
Max number of coupled channels (tc) 5

1-dcc, 3-tc 1-icc, 3-tc
Instructions

huffman decode 0 0
inv. quant. and scale for first tc 1708 1708
scale for subsequent tc 1708 2
prediction 0 44352
TNS 8130 13630
IMDT 0 19968
coupling mix 2562 3072
Total 11546 79660

Read-write storage, words 854 1536
Read-only storage, words 0 0

0REDICTION
The backward-adaptive predictors must run at every block in the decoding process for every coefficient that will
ever use prediction. In this analysis we that only the first 672 coefficients will use prediction and that all
prediction and coefficient adaptation calculations are done in IEEE floating point arithmetic (although the
calculations can be done on a fixed point platform as well). To reduce memory requirements, variables are
truncated to 16 bits prior to storage.

Table 8 shows the instruction complexity of the prediction tool, with instruction counts specified for each step in
the prediction computation. Table 9 shows the read-write storage required by the prediction tool.

4ABLE���0REDICTION�)NSTRUCTION�#OMPLEXITY

Number of coef. using prediction: 672
Bandwidth 15750
Predictor Order 2

Calculation Instructions per predictor Instructions per block
retrieval and inv. quant. 12
error summation 4
LMS prediction coef adaption 18
reflection summation 2
new prediction coefs (2 div) 8
quant. for error control 6
prediction 2
misc 2
quant. and storage 12

Totals 66 44352

4ABLE���0REDICTION�2EAD7RITE�3TORAGE�#OMPLEXITY

7

Number of coef. using prediction 672
Predictor Order 2

Function Words per Predictor Words per Channel

state variables (delay elements) 1
correlation coefs 1
variance estimates 1

Totals 3 2016

4.3
Temporal noise shaping (TNS) has a variable load, depending on the order of its filters and the number of
spectral coefficients that are filtered. Table 10 shows the “worst-case” complexity permitted by TNS. Table 11
shows that TNS requires negligible storage.

4ABLE����4.3�)NSTRUCTION�#OMPLEXITY

Maximum filter order 12 20
Maximum coefs to filter 672 672

Instructions
Filter coef inv quant 66 190
Filtering 8064 13440

Totals 8130 13630

4ABLE����4.3�3TORAGE�2EQUIREMENTS

Words
Read-write storage 0
Read-only storage

Filter coef inv quant tables 24

)-$#4
It is assumed that the IMDCT calculation is done in floating point, although fixed point realizations are feasible.
The only requirement is that any roundoff noise due to computational error (such as finite word length errors) be
less than 1/2 lsb after the transform result is rounded to 16-bit PCM. Fixed point realizations using 24 bit words
are certainly adequate, and word lengths as low as 20 or 21 bits may be sufficient. One compromise to this
requirement is made in this analysis, which is that the windows used in the overlap-add portion of the transform
are stored as 16-bit. This is reasonable since the window and overlap-add is the final computation prior to
rounding to 16-bit PCM and therefore computational errors do not accumulate.

Table 12 shows the IMDCT complexity in multiply/add operations per block (1024 samples). Table 13 and Table
14 show the IMDCT complexity in terms of words of read/write and read-only storage. Note that the coefficient
storage listed in Table 13 is actually the decoder’s “working storage” and is used by all the tools in the decoder.

4ABLE����)-$#4�!RITHMETIC�#OMPLEXITY

8

M = 1024 Instructions

first modulation 2*M 2048
complex FFT of size M2 = M/2 512

number of bfy (M2/2) 256
operations per bfy 6 6
number of stages log2(M2) 9
total = 6*log2(M2)(M2/2) 13824 13824

second modulation 2*M 2048
window and ovlp add 2*M 2048

Total 19968

4ABLE����)-$#4�2EAD�7RITE�3TORAGE�2EQUIREMENTS

Block len 1024 Words

coefficient storage 1024
state variable storage 512

Totals 1536

4ABLE����)-$#4�2EAD/NLY�3TORAGE�2EQUIREMENTS

Block length 128 1024
Words Words Words

First modulation sin/cos table 64 512
FFT twiddle table 12 18
Second modulation sin/cos table 512
Windows are 16-bit values

Sin window table 64
Alternate window table 64
Dolby window table 512
Alternate window table 512

Total 204 2066 2270

9

'AIN�#ONTROL�AND�(YBRID�&ILTER�"ANK���)01&���)-$#4�	
Table 15 shows the Gain-control tool instruction complexity. The Hybrid Filterbank which consists of IPQF and
IMDCT is also included in this table. The block size of the IMDCT for the Gain Control tool is 256 in the case
of LONG WINDOW and 32 in the case of SHORT_WINDOW. Note that the SSR profile has a scaleable
complexity due to the division of the 1024 spectral coefficients into four bands. Therefore an N-band (from 1-
band though 4-band) decoder can be implemented. For example, the 3-band SSR decoder needs only three
IMDCT operations per frame.
The mAXIMUM�instructions per channel for the Gain-control tool is shown in Table 15. It is assumed that the
instruction count associated with a single IPQF does not depend on the number of implemented bands and that
the maximum instructions per single IPQF band of the Gain Window Reconstruction is 896 instructions per
band for the case of EIGHT_SHORT_WINDOW.

4ABLE�����'AIN�#ONTROL�4OOL�)NSTRUCTION�#OMPLEXITY

M = 256 Instructions
1 band 2 band 3 band 4 band

first modulation 2*M 512
complex FFT of size M2 = M/2 128

number of bfy (M2/2) 64
operations per bfy 6 6
number of stages log2(M2) 7
total = 6*log2(M2)(M2/2) 2688

second modulation 2*M 512
window and ovlp add 2*M 512
IMDCT Total 4224 4224 8448 12672 16896
PQF synthesis (96-tap, 4-band split) 28672 28672 28672 28672
Gain Compensation 0 512 1024 1536
Gain Window Reconstruction 0 896 1792 2688
Gain control & Filerbank totals 32896 38528 44160 49792

3UMMARY�OF�4OOL�#OMPLEXITY
The following tables summarize the complexity of each tool based on number of instructions, amount of read-
write storage and amount of read-only storage for Main profile Low Complexity profile and Scaleable Sampling
Rate profile. Storage for the program itself has not been counted. The tables first list complexity on a per-
channel basis and then factor this up to get the complexity for a 5-channel coder. Resources scale linearly with
some exceptions: M/S joint stereo, intensity stereo and stereo prediction are stereo pair operations and there are
only two stereo pairs in a 5-channel system; and obviously read-only memory is a shared resource so that its
complexity is the same for 1- and 5-channel coders.

The most revealing data in the tables is the last column, which lists the complexity of a tool’s requirements
(instructions, read-write storage or read-only storage) as a percentage of the total amount of that resource used in
the entire 5-channel coder.

10

-AIN�0ROFILE
Tables 16 through 19 summarize the complexity of AAC Main profile.

4ABLE����3UMMARY�OF�)NSTRUCTION�#OMPLEXITY

1-Chan 5-Chan
Instr. Instr. percent

Huffman, pulse decode 13657 68285 13.3
Inv. quant. and scale 1708 8540 1.7
M/S synthesis 1708 0.3
Prediction 44352 221760 43.2
Coupling channel (1 icc) 79661 15.5
TNS (average) 6815 34075 6.6
IMDCT 19968 99840 19.4

Totals 86500 513869 100.0

4ABLE����3UMMARY�OF�2EAD7RITE�3TORAGE

1-Chan 5-Chan
Words Words percent

Input buffer 192 960 4.5
Output 512 2560 12.0
Working buffer 1024 5120 24.1
Prediction state vars. 2016 10080 47.4
Coupling (1 dcc, 1 icc) 2390 11.2
IMDCT state vars 512 2560 12.0

Totals 4256 21280 100.0

4ABLE����3UMMARY�OF�2EAD/NLY�3TORAGE

1-Chan 5-Chan
Words Words percent

Huffman decode 995 28.1
Inv. quant. and scale 256 7.2
Prediction 0 0.0
TNS 24 0.7
IMDCT 2270 64.0

Totals 3545 100.0

Table 19 lists the estimated area which each tool’s resources would consume if the AAC decoder were fabricated
as a single-chip device using a 0.5 micron CMOS. The ALU used in this analysis is a MIPS R3000 RISC core
with 1K instruction cache, 4K data cache and a fast 32 by 32 (64-bit result) integer multiplier. Each read-write
memory cell (bit) is assumed to take six transistors while each read-only memory cell is assumed to take one
transistor, so that the area of read-only cells are one sixth the area of read-write cells. Judging from a photo of
the R3000 die, the 20 Kbytes of cache memory is 1/3 of the total die area. Therefore, the size of 1 K byte of
read-write memory was assumed to be 1/60 of the total die area.

4ABLE����%STIMATED�#HIP�!REA�2EQUIRED�FOR�%ACH�4OOL

11

(mm)^2 % of die
Area per 1 Kbyte read-write memory 0.67

ALU core (less cache memories) 26.67 29.68
Read-Only Memory Words

Huffman tables 995 0.43 0.48
Inv quant and scaling tables 256 0.11 0.12
TNS tables 24 0.01 0.01
IMDCT tables 2270 0.99 1.10

Read-Write Memory
Input buffer 960 2.50 2.78
Output buffer 2560 6.67 7.42
Working buffer 5120 13.33 14.84
Prediction state variables 10080 26.25 29.22
Coupling channel (1 dcc, 1 icc) 2390 6.22 6.93
IMDCT state variables 2560 6.67 7.42

Totals 89.85 100.00

,OW�#OMPLEXITY�0ROFILE
Tables 20 through 22 summarize the complexity of the AAC Low Complexity profile. The Low Complexity
profile has the following features relative to the Main profile:
• no prediction
• TNS limited to 12 coefficients, but still over an 18 kHz bandwidth

4ABLE����3UMMARY�OF�)NSTRUCTION�#OMPLEXITY��,OW�#OMPLEXITY�0ROFILE

1-Chan 5-Chan
Instr. Instr. percent

Huffman, pulse decode 13657 68285 32.5
Inv. quant. and scale 1708 8540 4.1
M/S synthesis 1708 0.8
Coupling channel (1 dcc) 11546 5.5
TNS (average) 4065 20325 9.7
IMDCT 19968 99840 47.5

Totals 39398 210244 100.0

4ABLE����3UMMARY�OF�2EAD7RITE�3TORAGE��,OW�#OMPLEXITY�0ROFILE

12

1-Chan 5-Chan
Words Words percent

Input buffer 192 960 8.6
Output 512 2560 22.9
Working buffer 1024 5120 45.7
Coupling channel (1 dcc) 854 7.6
IMDCT state vars 512 2560 22.9

Totals 2240 11200 100.0

4ABLE����%STIMATED�#HIP�!REA�2EQUIRED�FOR�%ACH�4OOL��,OW�#OMPLEXITY�0ROFILE

(mm)^2 % of die
Area per 1 Kbyte read-write memory 0.67

ALU core (less cache memories) 26.67 44.75
Read-Only Memory Words

Huffman tables 995 0.43 0.72
Inv quant and scaling tables 256 0.11 0.19
TNS tables 24 0.01 0.02
IMDCT tables 2270 0.99 1.65

Read-Write Memory
Input buffer 960 2.50 4.19
Output buffer 2560 6.67 11.19
Working buffer 5120 13.33 22.37
Coupling channel (1 dcc) 854 2.22 3.73
IMDCT state variables 2560 6.67 11.19

Totals 59.60 100.00

3CALEABLE�3AMPLING�2ATE�0ROFILE
Tables 23 through 26 summarize the complexity of the AAC Scaleable Sampling Rate profile. The Scaleable
Sampling Rate profile has the following features relative to the Main profile:
• no prediction
• no coupling channel
• gain control
• Hybrid Filter Bank (IPQF + divided IMDCT)
• TNS is limited to 12 coefficients , and is limited to 6 kHz bandwidth

13

4ABLE�����3UMMARY�OF�)NSTRUCTION�#OMPLEXITY��332�0ROFILE

1-Chan 5-Chan MIPS/ch
Instr. instr.

Huffman, pulse decode 13657 68285 0.64
Inv. quant. and scale 2048 10240 (4 band) 0.10

1536 7680 (3 band) 0.07
1024 5120 (2 band) 0.05

512 2560 (1 band) 0.02
M/S synthesis
Coupling channel (1 dcc)
TNS (average) 2946 14730
IMDCT 16896 84480 (4 band) 0.79

12672 63360 (3 band) 0.59
8448 42240 (2 band) 0.40
4224 21120 (1 band) 0.20

Gain control and PQF 32896 164480 (4 band) 1.54
31488 157440 (3 band) 1.48
30080 150400 (2 band) 1.41
28672 143360 (1 band) 1.34

total 68443 342215 (4 band) 3.21
62299 311495 (3 band) 2.92
56155 280775 (2 band) 2.63
50011 250055 (1 band) 2.34

14

4ABLE�����3UMMARY�OF�2EAD7RITE�3TORAGE��332�0ROFILE

1-Chan 5-Chan
Words Words

Input buffer 192 960
Output 512 2560
Working buffer 1024 5120 (4 band)

768 3840 (3 band)
512 2560 (2 band)
256 1280 (1 band)

Coupling channel (1 dcc)
IMDCT state vars 512 2560 (4 band)

384 1920 (3 band)
256 1280 (2 band)
128 640 (1 band)

Totals 2240 11200 (4 band)
1856 9280 (3 band)
1472 7360 (2 band)
1088 5440 (1 band)

4ABLE�����3UMMARY�OF�2EAD/NLY�3TORAGE��332�0ROFILE

1-Chan 5-Chan
Words Words percent

Huffman decode 995 52.2
Inv. quant. and scale 256 13.4
Prediction 0 0.0
TNS 24 1.3
IMDCT 582 30.6
Gain control 48 2.5
Totals 1905 100.0

15

4ABLE�����%STIMATED�#HIP�!REA�2EQUIRED�FOR�%ACH�4OOL��332�0ROFILE

(mm)^2 % of die
Area per 1 Kbyte read-write memory 0.67 (4band)

ALU core (less cache memories) 26.67 46.06
Read-Only Memory Words

Huffman tables 995 0.43 0.75
Inv quant and scaling tables 256 0.11 0.19
TNS tables 24 0.01 0.02
IMDCT tables 582 0.25 0.44
Gain control 48 0.02 0.04

Read-Write Memory
Input buffer 960 2.50 4.32
Output buffer 2560 6.67 11.51
Working buffer (4 band) 5120 13.33 23.03

(3 band) 3840 10.00
(2 band) 2560 6.67
(1 band) 1280 3.33

Coupling channel
IMDCT state variables (4 band) 2560 6.67 11.51

(3 band) 1920 5.00
(2 band) 1280 3.33
(1 band) 640 1.67

Gain control (4 band) 475 1.24 2.14
(3 band) 470 1.22
(2 band) 465 1.21
(1 band) 461 1.20

Totals (4 band) 57.90 100.00
(3 band) 52.88
(2 band) 47.87
(1 band) 42.86

2EFERENCES
;�= 2EVISED�2EPORT�ON�#OMPLEXITY�OF�-0%'��!!#�4OOLS��.������&EBRUARY�������3AN�*OSE�

16

!NNEX��#OMPLEXITY�OF�/NE"AND�332�$ECODER

���)NTRODUCTION

AAC SSR (Scalable Sampling Rate) provides decoders with a scalable complexity. In particular, the one-band
SSR decoder provides low complexity implementation for AAC SSR. This scalable complexity feature is not
specified as the normative standard in 13818-7 and the use of this feature is up to developers/customers.

���3TRUCTURE�OF�THE�ONEBAND�332�DECODER

Figure 1 shows the block diagram of the AAC SSR 1-band decoder.
Only the lowest PQF-band signal is processed. IMDCT of higher three bands are omitted. Furthermore, the gain
control tool is not necessary, because the gain control tool does not apply to the lowest PQF band. IPQF is not
needed at all for the 1-band decoder. In this case, output signal from the decoder has a quarter frequency
bandwidth /sampling rate of the original signal.

256/32

IMDCT

Noiseless

Decoding

& Inverse

quantizer

M/S /TNS

tools

output signal

sampling rate: fs/4

spectral

limitation

optional

&IGURE��� �"LOCK�DIAGRAM�OF�THE��BAND�!!#�332�DECODER

���#OMPLEXITY

The following table shows the complexity data for MPEG-2 AAC (13818-7).
The values in the first three rows in the table is cited from the output document N2005 (Revised Report on
Complexity of MPEG-2 AAC Tools). The values in the last row are computed from the data shown in
N2005. Note that the AAC SSR one-band decoder without IPQF has lower complexity than the normative
AAC SSR decoder.

4ABLE����!!#�COMPLEXITY���#ITED�FROM�.������2EVISED�2EPORT�ON�#OMPLEXITY�OF�-0%'��!!#�4OOLS	

Object type (AAC profile) Instructions Read-Write Storage (Words)

AAC Main 86500 (4.05 MIPS) 4256
AAC LC 39398 (1.85 MISP) 2240

AAC SSR full bands 68443 (3.21 MIPS) 2240
AAC SSR 1-band without IPQF* 21339 (1.00 MIPS) 1088
MIPS values are estimated at 48kHz sampling rate.
* This decoder is not a normative decoder.

���!LIASING�AND�SPECTRAL�LIMITATION�

In the case of the one-band decoder without IPQF, the output signal contains the aliasing noise caused by the
leaks from higher bands.

17

Therefore, the frequency bandwidth of the output signal should be limited to a frequency F� below the PQF band
border. Although the decision of the upper frequency F� is up to the implementers, a value of 4.5 kHz is
suggested.

One possible simple way to limit the frequency is just to replace the values of MDCT coefficients corresponding
to frequencies higher than F� with zero. This bandwidth limitation process is done just before IMDCT operation
as shown in Figure 1.

